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ABSTRACT Single molecule tracking is widely used to monitor the change in position of lipids and proteins in living cells. In many
experiments in which molecules are tagged with a single or small number of fluorophores, the signal/noise ratio may be limiting, the
number of molecules is not known, and fluorophore blinking and photobleaching can occur. All these factors make accurate
tracking over long trajectories difficult and hence there is still a pressing need to develop better algorithms to extract the maximum
information from a sequence of fluorescence images. We describe here a Bayesian-based inference approach, based on a trans-
dimensional sequential Monte Carlo method that utilizes both the spatial and temporal information present in the image sequences.
We show, using model data, where the real trajectory of the molecule is known, that our method allows accurate tracking of
molecules over long trajectories even with low signal/noise ratio and in the presence of fluorescence blinking and photobleaching.
The method is then applied to real experimental data.

INTRODUCTION

Using fluorescence microscopy with single-molecule sensi-

tivity, it is now possible to follow to movement of individual

fluorophore tagged molecules such as proteins and lipids in

the cell membrane with nanometer precision (1–3). Using

single molecule tracking, diffusion or directed motion of

molecules on the cell can be investigated to elucidate the

structure of the cell membrane. To date, most methods have

been based on nonlinear least-square fitting of the fluores-

cence images to Gaussian functions and while automated

tracking algorithms exist, quite often manual input is nec-

essary (4,5). The number of molecules has to be known and

most software cannot handle the appearance of additional

objects during tracking. This frequently happens when the

density of molecules is high at the beginning of the image

sequence so that they are initially so close together that they

cannot be resolved separately and later move apart (6). An-

other problem is that due to low signal/noise ratio, some

molecules cannot be detected in individual frames so that

longer tracks are split into shorter sections. Long trajectories

are usually needed to get good statistics for diffusion analysis

whereas the typical observation time of the fluorophore, be-

fore irreversible photobleaching occurs, sets a limit to the

length of trajectories. Furthermore deterministic methods,

where no randomness is assumed, detect spots with regional

maxima (7). They usually require us to set a threshold and the

detection is very sensitive to this threshold setting. For ex-

perimental data, the correct threshold is usually not known.

To be computationally efficient, a well-known deterministic

method selects the threshold at the upper 30th percentile of

brightness for the entire image (8). However, the threshold-

based method may fail to detect real spots which are less

bright than the threshold. Also, most algorithms for single

molecule tracking focus only on fitting of spatial information

(9–11). Since we are processing a set of sequential images,

we have used both temporal and spatial information. Spe-

cifically we have used a Bayesian-based approach, which

uses prior information in time and space about the molecule

trajectory and does not require a strict threshold.

The tracking of single dye-conjugated molecules is a

multitarget tracking problem with each target a fluorescent

signal. We have developed a sequential Monte Carlo (SMC)

algorithm which considers spatial and temporal information

of the molecular motion since this gives longer and more

accurate tracks. The SMC algorithm can also track several

molecules simultaneously. However, the number of mole-

cules is not known, a priori, since the number of targets may

be different in each frame. To cope with the unknown number

of targets, we have used trans-dimensional SMC where the

number of dimensions can change with time. We also require

parameter association for this trans-dimensional SMC method

to identify the correct molecules in each frame. In this article,

we solve the parameter association problem by clustering

parameters using expectation maximization (EM) algorithm.

Each target for tracking via our SMC method is represented

by a Gaussian profile with unknown center coordinate, am-

plitude, and width (12–14). The proposed algorithm based on

the track-before-detection (TBD) scheme uses original data

(15,16). Therefore, we can avoid the information loss which

may happen in the threshold-based detection algorithm (8,17).

In case of low signal/noise ratio (SNR), our modified SMC

algorithm with TBD scheme may detect weak signals.

The remainder of the article is organized as follows. The

Theory section gives the philosophy of the Bayesian inference

as used in this article. The Sequential Monte Carlo (SMC)

section introduces the Bayesian sequential estimation frame-

work, which leads to a particular trans-dimensional SMC ap-

proach. The Fluorescence Image section discusses the

modeling assumptions such as prior information for the single

molecule fluorescence images. The main algorithms for the
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trans-dimensional SMC tracking of the objects on the single

molecule fluorescence images are presented in the Algorithm

section. This section focuses on three points: how to generate

the proposal function based on the image itself; how to decide

the dimension; and how to associate parameters among par-

ticles. In the Results section, our proposed method is evaluated

with the synthetic and real experimental data sets and with the

results obtained using Crocker’s well-known deterministic

approach (8). We then discuss possible future work and make

concluding remarks.

THEORY

Bayesian inference and Monte Carlo

Bayesian inference (18,19) provides a logical framework for

assessing the existing state of knowledge and then refining

this on the basis of new experimental data. It is a learning

system that tests the degree to which a model or hypothesis is

consistent with the experimental data and any prior knowl-

edge available about the problem. Consequently, it is to some

extent dependent on a reasonable choice for this prior

knowledge. It refines a model M in the light of the experi-

mental data D, starting from a set of prior assumptions C. The

first step is to define a conditional prior probability p(MjC),

that is to say, the probability that the model M is correct,

given only the initial assumptions. The next stage updates

p(MjC) in response to the experimental data (D) to give the

posterior probability p(MjD, C). To do this, it makes use of

Bayes’ theorem:

pðMjD;CÞ ¼ pðMjCÞpðDjM;CÞ
pðDjCÞ : (1)

For this rule to be applicable, it must be possible to define the

probability p(DjM, C) (the likelihood) that the experimental

images D are consistent with the model M and the prior

assumptions C. Samples from this posterior probability can

be collected by Monte Carlo algorithm. In most applications,

it is not feasible directly to generate independent samples

from the distribution p(MjD, C). In this case, a user-defined

trial distribution q(�), which is different from p(MjD, C), is

used to generate the samples. Rejection method (20), impor-

tance sampling (21,22), and sampling-importance-resam-

pling (SIR) (23) are well studied to generate the samples

from q(�). In this article, we use the SIR scheme for sampling.

METHODS

Sequential Monte Carlo (SMC)

We describe a Bayesian sequential estimation framework for multitarget

tracking, i.e., the sequential Monte Carlo (SMC) algorithm (24–26). We

describe the general framework for a dynamic model with the state space ut

and observation space Yt, respectively, where t denotes the discrete time

index. The distribution of interest for tracking is the posterior, p(utjY1:t),

where Y1:t is a shorthand notation for (Y1, ���, Yt). In the Bayesian sequential

estimation framework, the posterior distribution is obtained by the two-step

recursion, as follows.

Prediction step,

pðutjY1:t�1Þ ¼
Z

pðutjut�1Þpðut�1jY1:t�1Þdut�1: (2)

Filtering step,

pðutjY1:tÞ ¼
pðYtjutÞpðutjY1:t�1Þ

pðYtjY1:t�1Þ
: (3)

This recursion requires the specification of two models; a dynamic update

model for the hidden states p(utjut–1) and a model for the state likelihood

given the current measurement p(Ytjut). The recursion is initialized with some

distribution for the initial state p(u0). The dynamic update and likelihood

models are given by

ut ¼ Ftðut�1;UtÞ
Yt ¼ Gtðut;VtÞ;

ð4Þ

where Ft and Gt can be regarded as either nonlinear or linear functions

corrupted by noise, Ut and Vt at time t.

In our application of interest, the number of dimensions is unknown and

hence we need a trans-dimensional approach which estimates the number

of dimensions (27,28). Let {u
ðnÞ
0:t ;K

ðnÞ
0:t ;w

ðnÞ
t gN

n¼1 denote a random measure

that characterizes the posterior distribution p(u0:t, K0:tjY1:t), where {u
ðnÞ
0:t ;

n¼ 0, ���, N} is a set of hidden variables with associated weights fwðnÞt gN
n¼1: u0:t

and K
ðnÞ
0:t are the sets of all states and the dimensions of the nth sample, re-

spectively. Applying a sequential importance sampling and resampling

scheme to Eqs. 2 and 3, we can obtain a generic particle filter (25). For the

sake of simplification, wt is expressed instead of w
ðnÞ
t where +N

n¼1
w
ðnÞ
t ¼ 1 as

wt } wt�1

pðYtjut;KtÞpðutjut�1;Kt;Kt�1ÞpðKtjKt�1Þ
qðutjKt; ut�1;Kt�1; YtÞqðKtjKt�1; YtÞ

� �s

; (5)

where s is the scaling factor to avoid a numerical problem in the likelihood.

The prior distribution of ut is given by

pðutjut�1;Kt;Kt�1Þ

¼

QKt

k¼1 pðuk;tjuk;t�1Þ; Kt¼Kt�1

pðuKt ;tÞ
QKt�1

k¼1 pðuk;tjuk;t�1Þ; Kt¼Kt�1 11

+
Kt�1

d¼1

QKt�1

k¼1;k 6¼d pðuk;tjd;uk;t�1ÞpðdjKt�1Þ; Kt¼Kt�1�1

;

8><
>:

(6)

where, in the case of Kt , Kt–1, pðdjKt�1Þ ¼ 1=Kt�1 and d is the index for the

spot to be deleted.

Fluorescence image

Single molecule fluorescence images may be represented by particular pro-

files such as Gaussian profiles for spot shapes. Only four parameter elements

are required to define a Gaussian profile: the x and y position, amplitude, and

width. Each frame of a sequence of fluorescence images is represented by an

intensity function I(x) at time t as

IðxÞ ¼ +
K

k¼1

Akfkðx; mk;skÞ1 eeðxÞ; (7)

where Ak is the amplitude of each spot and fk(x;mk, sk) denotes the radial

function of x with a Gaussian profile which consists of two components,

center position mk and width of the spot, sk as

fkðx;mk;skÞ ¼
1

2ps
2

k

exp � 1

2s
2

k

ðx�mkÞ
Tðx�mkÞ

� �
; (8)
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with x ¼ [x1, x2]T and mk ¼ [mk, 1, mk, 2]T representing coordinate positions.

The quantity ee(x) in Eq. 7 is assumed to be white noise with mean me and

variance s2
e ; i.e., ee(x) ; N(ee(x);me, s2

eÞ: In practice, Eq. 7 may be written in

the linear model framework: Y ¼ XA1:K1e�e where e�e;N e�e; me1;s2
e I

� �
:

Here, 1 and I denote a vector with value 1 and the identity matrix, re-

spectively, and A1:K ¼ ½A1;A2; . . . ;AK� is a vector for amplitudes of spots. Y

is built from Eq. 7 by assembling all intensities I(x) into a vector and X is

defined by ½X1;X2; . . . ;XK�T where Xk is a vector made up from the image

profile of the kth spot. Denoted by uk 2 Qk, the parameter vector associated

with the model indexed by k 2 k. Now, the priors are defined as

u1:K ¼ ðm1:K;1;m1:K;2;s1:K;A1:K;me;seÞ
mk;1;Uðmk;1; 1; T1Þ; mk;2;Uðmk;2; 1; T2Þ
sk;Gaðsk; a;bÞ; Ak;NðAk;mA;s

2

AÞ
;

(
(9)

where k¼ 1, 2, . . ., K and K 2 {0, 1, . . . , K max}. T1 and T2 are the size of an

image and N, U, and Ga stand for the normal, uniform, and g-distributions,

respectively. The values a and b are assumed to be known and me and se are

estimated during the simulation. For the synthetic example in this article, mA

and sA are fixed. The nuisance parameter A1:K may be removed in the SMC

estimation by linear analytical integration (Rao-Blackwellization) (29).

Marginal likelihood

Marginalizing A1:K, the likelihood is defined as

pðYjX;mA;sA;seÞ ¼
exp �1

2

1

s
2
e

Y9
T
Y9 1 1

s
2
A

m
T

AmA �F
T
Â

� 	n o
ð2pÞðT1T2Þ=2

sesAjFj1=2
;

Â ¼ F
�1

C; Y9 ¼ Y � me

F ¼ 1

s
2
e

X
T
X 1 1

s
2
A

; C ¼ 1

s
2
e

X
T
Y9 1 1

s
2
A

mA

:

(

However, this marginal likelihood still requires very heavy computation

since Y is a big quantified vector even though we are updating only a small

number of spots. We can reduce the time complexity of computation using an

approximation with the following steps. We introduce an auxiliary image Z

and each pixel of the auxiliary image is set to be mZ where it is obtained by the

mean of the global background. If the region occupied by the spots of interest

is relatively small compared to the whole region in each frame, we can obtain

mZ ¼ 1
L
+L

i¼1
Yi: We can calculate the likelihood for image Z using pðYjZÞ ¼QL

i¼1 pðYijZiÞ from Yi ¼ mZ 1 eZi
where eZi

; NðeZi
; 0;s2

Zi
Þ: We then divide

the image into two regions, S and Sc where S has the interesting spots. Sc is the

noninteresting region and it is regarded as background with only noise. Now,

we redefine the likelihood

pðYjX;QXÞ ¼ l 3

Q
i2S pðYijXi;QXi

ÞQ
i2S pðYijZiÞ

; (10)

where l ¼
QL

i¼1 pðYijZiÞ and L is the number of pixels in the image. Note that

l is calculated once in each frame so that we can reduce the time complexity.

The values QX and S denote (mA, sA, se) and the region in which Gaussian

profiles of X appear, respectively.

Prior probability

There are two terms for the prior information, p(utjut–1, Kt, Kt–1) and p(KtjKt–1).

In the prior information for Kt given Kt–1, it is assumed that each target is

independent of all others and the distribution is assumed uniform distribution.

That is, p(KtjKt–1) ¼ 1/Kmax. The density for parameters p(utjut–1, Kt, Kt–1) is

divided into three different forms, as in Eq. 6.

For Kt ¼ Kt–1,

YKt

k¼1

pðuk;tjuk;t�1Þ ¼
YKt

k¼1

pðmk;tjmk;t�1Þpðsk;tjsk;t�1Þ; (11)

for Kt ¼ Kt–1 1 1,

pðuKt ;tÞ
YKt�1

k¼1

pðuk;tjuk;t�1Þ ¼ pðmKt;t
ÞpðsKt;tÞ

YKt�1

k¼1

pðmk;tjmk;t�1Þ

3 p ðsk;tjsk;t�1Þ; (12)

and for Kt ¼ Kt–1 – 1,

+
Kt�1

d¼1

YKt�1

k¼1;k 6¼d

pðuk;tjuk;t�1Þ
" #

pðdjKt�1Þ ¼

1

Kt�1

+
Kt�1

d¼1

YKt

k¼1

pðmk;tjmzðd;kÞ;t�1Þpðsk;tjszðd;kÞ;t�1Þ; (13)

where z(d, k) is an index function and if k , d, z(d, k)¼ k otherwise, z(d, k)¼
k 1 1. The partial terms in the above equations are defined as

pðmk;tjmk;t�1Þ ¼ Nðmk;t; mk;t�1;SmÞ

pðsk;tjsk;t�1Þ ¼ Ga sk;t;
fsk;t�1g2

Ss

;
Ss

sk;t�1


 �

pðmk;tÞ ¼ Uðmk;t; Tx; TyÞ ¼
1

TxTy

pðsk;tÞ ¼ Ga sk;t;
fmsg

2

Ss

;
Ss

ms


 �
; (14)

where Yt is a Tx 3 Ty image. Here, p(sk,tjsk,t–1) is a random walk with mean

sk,t–1 and variance Ss where the mean of the width ms and the variance of the

width Ss are assumed to be known hyperparameters for mean and variance

of size of width. We set ms ¼ 1.5 and Ss ¼ 0.01 in this article.

Algorithm

Before applying the sequential Monte Carlo method, it is important to re-

move background noise which may lie in particular regions. In the real ex-

perimental image, this background noise is very hard to detect and subtract so

we use a very simple approach which subtracts the average values in the

given area for each pixel of the image. That is, we average the intensities of

the M closest pixels around the pixel of interest. The calculated value is

subtracted as a background noise for the pixel. This is a so-called the local

mean removal procedure (30). Afterwards, we use a trans-dimensional se-

quential Monte Carlo method which has three types of proposal functions:

Dimension Invariant, Birth, and Death. We set Kt ¼ Kt–1 for the Dimension

Invariant. For other proposals, the difference between the dimensions be-

tween previous and current steps is limited to one. That is, Kt ¼ Kt–1 1 1 in

the Birth move and Kt ¼ Kt–1 – 1 for the Death move, respectively.

Proposal functions

Proposal functions q have two forms. One is the kernel function for di-

mension, q(KtjKt–1, Yt). The other is the proposal function for parameters,

q(utjut–1, Kt, Kt–1, Yt). Here, the proposal function for Kt is designed to be the

same as the prior function, p(KtjKt–1). However, the proposal function for

parameters is designed by dealing with information of the images directly. To

make a good proposal function, we factorize the function q(utjut–1, Kt, Kt–1,

Yt) ¼ p(ut, djut–1, Kt, Kt–1, Yt) into the three different forms, as follows.

Dimension invariant,
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qI ð�Þ ¼
1

Kt�1

YKt

k¼1

pðsk;tjmk;t;sk;t�1; Ŷ
k

t Þpðmk;tjmk;t�1;sk;t�1; Ŷ
k

t Þ:

(15)

Birth move,

qBð�Þ ¼
1

Kt�1

pðsKt ;tjŶ
Kt

t ÞqðmKt ;t
jŶKt

t Þ
YKt�1

i¼i

pðsk;tjmk;t;sk;t�1; Ŷ
k

t Þ

3 pðmk;tjmk;t�1;sk;t�1; Ŷ
k

t Þ: (16)

Death move,

qDð�Þ ¼
YKt

k¼1

pðsk;tjmk;t;szðd;kÞ;t�1; Ŷ
k

t Þ
�

3 pðmk;tjmzðd;kÞ;t�1;szðd;kÞ;t�1; Ŷ
k

t Þ



pðdjut�1;Kt�1; YtÞ:
(17)

Here, note that Ŷk
t is different from the original image, Yt. The Ŷk

t is generated

from the original image by subtracting an image which is reconstructed with

k – 1 previous proposed spots.

Ŷk

t ¼
Yt for k ¼ 1

Yt � Hðu1:k�1;A1:k�1Þ for k . 1
;

�
(18)

where A1:k–1 stands for the vector of amplitudes of the spots and H(�, �)
denotes the reconstruction function to generate an ideal image with i – 1

spots. Since the equation has the recurrence form, we can rewrite it as

Ŷ
k

t ¼
Yt for k ¼ 1

Ŷk�1

t � Hðuk�1;Ak�1Þ for k . 1
:

�
(19)

We can reduce the required time complexity through the use of this

recurrence form. We have many functions in Eqs. 15–17,

pðsk;tjsk9;t�1; Ŷ
k

t Þ ¼ Ga sk;t;
s

2

k9;t�1

Ss

;
Ss

sk9;t�1

 !

pðmk;tjmk9;t�1; Ŷ
k

t Þ ¼ Q2ðmk;t; mk9;t�1; Ŷ
k

t Þ

pðsKt ;tjŶ
Kt

t Þ ¼ Ga sKt ;t;
m

2

s

Ss

;
Ss

ms


 �
pðmKt ;t

jŶKt

t Þ ¼ Q1ðmKt ;t
; Ŷ

Kt

t Þ:
We introduce two further functions, Q1 and Q2. The first proposal function,

Q1 is used to generate samples for a new spot in the birth move. We obtain a

corresponding vector by transforming a two dimensional image Ŷk
t : From the

TxTy 3 1 vector, we reconstruct a cumulative density function (CDF). Now,

we can sample the position of a new spot from the inverse probability density

function given the CDF. The brief algorithm for the Q1 function is as follows:

Algorithm 1: Q1 function

1. Let yL be the Tx 3 Ty image Ŷk
t :

2. yL is transformed to be a vector.

3. Make a cumulative density function (CDF) from the vector.

4. Generate a random number, u. That is, u ; U(u;0, 1).

5. Propose a position from the inverse probability density function using

the CDF.

Unlike the Q1 function, the second proposal function Q2 is used to update the

locations of the existing spots. Thus, the Q2 function has one more input,

mk9, t–1 which is the location of the kth spot in the previous image. Since we

know the potential area to be updated and searched for the spot in the next

time step, we do not have to search for the next position in the whole area

as the Q1 function does. This speeds up the algorithms by reducing the time

complexity. First of all, we extract an m 3 n size subimage centered at mk9, t–1

in Yt. All elements of the subimage are divided by the total sum of the

elements of the image to make a normalized image. We call this normalized

image yL where +m

i
+n

j
yLði; jÞ ¼ 1: We also introduce a m 3 n size

normalized user defined Gaussian Kernel, yprior, where +m

i
+n

j
ypriorði; jÞ ¼

1: We obtain ypost by simply multiplying yL and yprior,

ypost ¼ yL5yprior; (20)

where 5 denotes the elementary multiplication operation. The explanation

of the algorithm for Q2 is shown in Algorithm 2.

Algorithm 2: Q2 function

1. Extract an m 3 n subimage centered at mk, t–1 in Ŷk
t :

2. Normalize the extracted subimage and name it as yL where

+m

i
+n

j
yLði; jÞ ¼ 1:

3. Introduce yprior where yprior is a m 3 n size normalized Gaussian

kernel.

4. Calculate ypost in Eq. 20 and normalize it.

5. Propose the position from an inverse probability density function using

the normalized ypost as in steps 2–5 in Algorithm 1.

Note that Q1 and Q2 functions follow the Bayesian scheme by using prior

information. Since there is no prior information for location in Q1, the pro-

posal function is based only on the image. By comparison, the second func-

tion Q2 has the previous position which is used for prior information. Thus,

we can use posterior and prior information from the image directly. The prob-

ability of q(djut–1, Kt–1, Yt) for dimension invariant and birth move simply

becomes 1=Kt�1: However, in the Death move, this equation may be

designed more carefully. To obtain this probability, we use a p-value for

significance and first-order Markov random field (MRF). That is, the MRF

prior probability of the subimage based on the previous position for a spot is

compared with that of a finite number of randomly permuted images. Before

explaining the algorithm in detail, we present MRF prior probability p(�) of a

particular image. Let y be a particular M 3 N image. Since pðyÞ 6¼QMN
i¼1 pðyijy�iÞ where y–i means a set of all elements except the ith element

in y, we instead use a pseudo-prior probability for p(�),

pðyÞ ¼ �pðyÞ ¼
YMN

i¼1

pðyijy�iÞ ¼
YMN

i¼1

texp �1

4
+
j;i

jyi � yjj
( )

;

(21)

where i ; j denotes that jth element is a neighbor of the ith element in the

image and t is a parameter for normalization.

Returning to the algorithm to select a spot for deletion, we extract a m 3 n
subimage yorigin from Yt. The extracted image yorigin is permuted randomly h

times so that we obtain h permuted images fyðiÞpermutegi¼1:h: With h 1 1 im-

ages including yorigin, we obtain p(yorigin) and fpðyðiÞpermuteÞgi¼1:h: We cal-

culate how many permuted images have higher MRF prior probability than

the original image yorigin. The calculated count for each spot is used to build

the probability, q(djut–1, Kt–1, Yt). The brief algorithm for q(djut–1, Kt–1, Yt) is

described in Algorithm 3.

Algorithm 3: q(djut–1, Kt–1, Yt) for Death move

1. for i ¼ 1 to Kt–1 do
2. Extract an m 3 n subimage, yorigin, centered at mi,t–1 from Yt.

3. Calculate p(yorigin) in Eq. 21.

4. count ¼ 0.

5. for j ¼ 1 to h do
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6. Permute the yorigin randomly and make yðjÞpermute:

7. Calculate pðyðjÞpermuteÞ in Eq. 21.

8. end for
9. if pðyðjÞpermuteÞ. ¼ pðyoriginÞ; then

10. count ¼ count 1 1.

11. end if
12. Obtain p-values for significance of ith spots. PV(i) ¼ count.

13. end for
14. qðd ¼ ijut�1;Kt�1; YtÞ ¼ PVðiÞ

+
Kt�1
j¼1

PVðjÞ
:

15. d ; q(djut–1, Kt–1, Yt)

Resampling

We use a resampling method to reduce the degeneracy phenomena since only

a small number of samples dominate the weights after a few iterations in

time. Generally this problem is solved by generating a new set of fũn
t g

Ns

n¼1 by

resampling Ns times from the approximation of p(utjY1:t) and the weight of

the resampled sample is reset to wn
t ¼ 1=Ns (31). In this article, we use a

modified resampling method since our sequential Monte Carlo addresses a

dimension variable problem. A sample may have spots for both real mole-

cules (targets) and incorrectly identified molecules (false alarms). For ex-

ample, suppose that we have a sample with three spots. Assume that two

spots indicate targets but the other spot is a false alarm. In this case, the

typical resampling approach cannot remove the false spot since they are

jointly resampled. Therefore, we modified the conventional resampling

scheme with the following three steps. First, we divide the nth sample u
ðnÞ
t

with k spots into k samples with only one spot. The same weights as w
ðnÞ
t is

assigned to the k separated samples. Next, we resample the divided samples

by the typical resampling method (31). Finally, we recombine samples to

make dimension variable samples under a discrete probability density

function.

Estimating parameters

The parameters of all samples in each time are estimated by clustering al-

gorithms. We use an EM algorithm which clusters samples with given weights

wt. Since we have approximated the value, �Kt ¼ +N

n¼1
w
ðnÞ
t K

ðnÞ
t =+N

n¼1
w
ðnÞ
t for

the number of clusters, we will do several EM clustering algorithms for kt 2
f�Kt � o; �Kt � o11; � � � ; �Kt1o� 1; �Kt1og where o 2 R: There are two

types of observations: spot information and sample information. Spot infor-

mation given by X consists of x– and y– position for each spot. Sample in-

formation by w denotes the weights for the sample. Our model for clustering

is designed as follows, if there are kt clusters with mean mk and Sk for k 2
{1, ���, kt}:

Q ; pðQjX ;w; ktÞ
where Q ¼ fQ1; � � � ;QKg for Qk ¼ fmk;Skg: (22)

Introducing a hidden variable Z, which associates the data with clusters,

gives complete likelihood in the EM algorithm. Now, we have the joint

likelihood through pðX ;ZjQ; ktÞ (32). The initial mean of kth cluster, mk, is

obtained by finding the x(i) with the kth highest weight from X under the

restriction on kmi – mjk. v where k � k is Euclidean distance and we set i 6¼ j

and v ¼ 4. The initial variances of clusters are set to identity matrices, I. The

EM algorithm has recursions until convergence with two steps:

Step 1: E-step (Expectation)

For each i, suppose that a1:K and s1:K are the mixing coefficients ofX and w,

respectively, and s2
1:K is the variance of w,

QiðZ iÞ :¼ pðZ ijX i;wi;Q; ktÞ; (23)

l
i

k ¼
Nðwijskf

i

k;s
2

kÞNðX ijmk;SkÞak

+
K

d¼1
Nðwijsdf

i

d;s
2

dÞNðX ijmd;SdÞad

; (24)

where

f
i

� ¼ pðX ijm�;S�Þ:

Step 2: M-step (Maximization)

Q :¼ arg max
Q

+
i

+
Zi¼k

QiðZ i ¼ kÞlog
pðX i;Z i ¼ k;wijQ; ktÞ

QiðZ i ¼ kÞ :

(25)

For each k,

m9k ¼
+

N

i¼1
l

i

kX iImk
ðX iÞ

+
N

i¼1
l

i

k

S9k ¼
+

N

i
l

i

kðX i � mkÞðX i � mkÞ
T

+
N

i
l

i

k

ak ¼
1

N
+
N

i¼1

l
i

k

s
2

k ¼
+

N

i¼1
l

i

k

+
N

i¼1
l

i

kðwi � skf
i

kÞ
2

sk ¼
+

N

i¼1
l

i

kwif
i

k

+
N

i¼1
l

i

kðf
i

kÞ
2
: (26)

m1:K)m91:K and S1:K)S91:K:

The indicator function Imk
ðX iÞ is 1 if jX i � mkj#r: Otherwise, Imk

ðX iÞ is 0.

In this article, r is assumed known as 10 and the initial value for the mixing

coefficient ak is set to 1/K for k ¼ 1, 2, ���, K.

Specification of model order

To obtain the best clusters among those generated by EM algorithm,

we calculate the joint posterior distribution of m and K by spatial point

processes which specify both the likelihood and prior distribution of cluster

centers given the observations. Thus, the likelihood and prior models allow

interactions between the underlying landmarks, interactions between ob-

servations and restrictions to a portion of the observations as in McKeague

and Loizeaux (33). Further, the observation and the cluster centers are as-

sumed to be Poisson-distributed as in Castelloe and Zimmerman (34).

The observed point configuration which arises from the landmarks m will

be denoted X ¼ fX1;X2; . . . ;XNg � W; and is assumed to be a nonempty

set. As well, the background noise is taken to have its own point process.

That is, our model for clustering has three different point processes super-

imposed: point processes for m, X , and background noise on W. The prior

distribution of landmarks corresponds to a point process m having den-

sity pm(m). The daughters X are generated by landmarks when it falls in a

silhouette region S(m) � W given by

SðmÞ ¼ ðm4GÞ \W ¼ [j2mDðj; rsilÞ; (27)

where D(j, rsil) ¼ {c 2 W: kc – jk # rsil} and k � k is Euclidean distance.

Here, 4 denotes the Minkowski addition and the grain G is the ball of radius

r centered at the origin. Now, the probability of interest is pðm;KjS;X ; yÞ
where K is the number of clusters and y is the parameter rate for the number

of clusters in Poisson distribution
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In this article, we set to l ¼ 0.6 and rsil ¼ 3. First, we use a silhouette region

S(m),

sðXjmÞ ¼ WðX \ SðmÞ;1 Þ=WðX ;1 Þ: (29)

The unnormalized likelihood function is designed with a Neyman-Scott model

in which the observation process X is the superposition of K independent

inhomogeneous Poisson processes and a background Poisson noise process

of intensity e . 0. We assume that the prior pm(m) is locally stable as in

McKeague and Loizeaux (33) and then we obtain

fXjC¼mðXjm;KÞ ¼
YN

j¼1

LðX jjmÞ; (30)

LðX jjmÞ ¼ e 1 +
K

k¼1

hðX jjmkÞ; (31)

and

hðX jjmkÞ ¼
k

2pSk

e
� 1

2Sk
kX j�mkk

2
� �wj

: (32)

The unnormalized prior density f(m) is assumed to follow a Strauss

process. The Strauss process only models repulsive pairwise interaction

f ðmjKÞ ¼ b
K
g

t ðmÞ
: (33)

Here, b . 0, 0 , g # 1 and t(m) is the number of unordered pairs of points in

m which are within a specified distance r of each other. Since we assumed

that the observation and cluster centers follow Poisson distributions, clearly

Kjy ; Poiss(yTxTy), and so we have

pðKjyÞ} ðyTxTyÞKexpð�yTxTyÞ
K!

; (34)

where y is defined to �K/(TxTy)
2 and we set to b¼ 1.3, g¼ 0.001, and r¼ 3 in

this article. However, if the spot size is much bigger than the size of a spot in

the current model for this article or a spot frequently moves much longer

distance, the parameters should be changed.

Classifying real spots from K candidates for spots

Let K̃t be the best estimated number of the clusters by the above clustering and

model ordering strategies. This means the number of the candidates of real

spots. Unfortunately, some candidates may be false spots since EM algorithm

clusters the noisy data as well as real spots. Therefore, the number of real spots

is rather different from K̃t: To classify the real spots from artifacts, we can use

the weight information within each cluster. Let w1(k) be +N

i¼1
wiImk

ðX iÞ:
Therefore, the kth candidate is regarded as a real spot if w1(k) $ a*. Otherwise,

it is assumed to be an artifact. We can choose the a* in (0, 1] deterministically

and we set a* to 0.1 in this article. This is different from conventional threshold

determination in that a* is not dependent on SNR. We chose a low value of a*

at 0.1 to ensure that the SMC method did not miss any real spots.

Implementation

In this article, we run the simulation with MatLab (The MathWorks, Natick,

MA) on a Pentium CPU at 3.20 GHz. When an image sequence consists of 50

frames and each frame has 50 3 50 size and there are approximately five

spots in each frame, it takes ;150 min with 1000 samples to process and

analyze the image sequences. The complexity of our SMC algorithm depends

less on the size of a frame but more on the number of spots in a frame. We

also coded a deterministic method (8) for comparison.

RESULTS

Synthetic data

To evaluate our tracking algorithm it is necessary to generate

artificial data which resembles the data we want to analyze.

This is important when we analyze robustness of the algo-

rithm against blinking or low signal/noise as these might be

related to the characteristics of movement of our objects.

Simulated data with constant step size might not be sufficient

in this case. Therefore we generated random walks using

Algorithm 4 which have distributions of step sizes and dif-

fusion coefficients expected for diffusion processes in two

dimensions (6). The time in the generated data is represented

FIGURE 1 Synthetic data with five tracks: (a) the first frame of the

synthetic image sequence and (b) the ground truth trajectories.

pðm;KjX ;S; yÞ ¼ pðXjm;S;KÞpðmjKÞpðKjyÞ
pðXjyÞ

} t fXjC¼mðXjm;S;KÞfC¼mðmjKÞpðKjyÞ1fsðXjmÞ. lg: (28)

Single Molecule Fluorescence Tracking 4937

Biophysical Journal 94(12) 4932–4947



in the frame number and the x and y coordinates in pixel

numbers. The mean-squared distance for a single step is

chosen to be 0.45 pixel. Under our experimental conditions,

as described in Bruckbauer et al. (6) and below, this corre-

sponds to a diffusion coefficient of 0.059 mm2/s. Each po-

sition of the random walk is then used to generate a Gaussian

function of width and intensity. Gaussian noise is added to

the intensity. An image is then created from all the Gaussian

profiles and Gaussian background noise with standard devi-

ation sN is added. The signal/noise ratio (SNR) is defined by

FIGURE 2 Comparison of trajectories detected by a deterministic method with variable thresholds and by SMC method with different sample size: (a) by a

deterministic method with a low threshold 22; (b) by a deterministic approach with a proper threshold 50; (c) by a deterministic approach with a high threshold

90; (d) by SMC method with 100 samples used in the Monte Carlo scheme; (e) by SMC method with 1000 samples used; and (f) by SMC method with 2000

samples used.
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SNRk ¼
Ik

sN

; (35)

where Ik denotes the peak intensity of the kth spot.

Algorithm 4: Generating random walk for
artificial data

1. set up dl to a small value (0.01, 0.015, or 0.02)

2. for t ¼ 1 to T do
3. for k ¼ 1 to K do
4. dl ¼ 0.01, lx ¼ 0, ly ¼ 0;

5. for i ¼ 1 to 1000 do
6. u ; {1, 2, 3, 4};

7. if u ¼ 1, lx ¼ lx 1 dl, ly ¼ ly 1 dl
8. if u ¼ 2, lx ¼ lx 1 dl, ly ¼ ly � dl
9. if u ¼ 3, lx ¼ lx � dl, ly ¼ ly 1 dl

10. if u ¼ 4, lx ¼ lx � dl, ly ¼ ly � dl
11. end for
12. �xt

k ¼ �xt�1
k 1lx:

13. �yt
k ¼ �yt�1

k 1ly:

14. �st
k;Ga �st

k;
�st�1

kð Þ2
0:12 ; 0:12

�st�1
k


 �

15. �It
k;N �It

k;�It�1
k ;s2

I

� �
16. end for
17. Make K Gaussian profiles, Vk.

18. Mix K radial images into make a image and add it to St.

That is, St ¼ +K

k¼1
Vk:

19. Generate St by adding Gaussian noise in the image,

St;NðSt; �St;sIÞ:
20. end for

Trajectory of positions

Our sequential Monte Carlo is compared to a deterministic

approach based on nonlinear least-square fitting of Gaussians

(8). For real data the right threshold is usually not known. If a

molecule cannot be detected in one frame but appears again in

the next frame, this algorithm stops the first trajectory and

starts a new trajectory. If this often happens in one image

sequence due to incorrect thresholds or low signal/noise ratio,

the algorithm produces a large number of small trajectories.

The SMC method may link such short trajectories resulting in

longer trajectories which are close to the ground truth. As

TABLE 1 Comparison of the lengths of trajectories and RMSE

for positions

Methods

Full tracks

detected

Only

matched tracks

RMSE

(.�) for position

Deterministic method

(low threshold, 22)

451 250 0.3903

Deterministic method

(proper threshold, 50)

250 250 0.3903

Deterministic method

(high threshold, 90)

159 159 0.3715

Sequential Monte Carlo

(100 samples)

249 249 0.3370

Sequential Monte Carlo

(1000 samples)

248 248 0.2836

Sequential Monte Carlo

(2000 samples)

249 249 0.2804
FIGURE 3 Comparison of variable length tracks: (a) ground truth, (b)

deterministic method, and (c) SMC method.
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synthetic data for the ground truth, we generated five trajec-

tories of length 50 with SNR varying between 1.5 and 3.5. Fig.

1 a is the first frame of the synthetic image sequence and the

two-dimensional plots of these trajectories are shown in Fig.

1 b. Trajectories obtained from the generated image se-

quences by the deterministic method (with different thresh-

olds) and our SMC algorithm (with variable number of

samples) are shown in Fig. 2. In the figure only trajectories

with more than five steps are plotted and the numbers denote

the length of each trajectory. As can be seen in Fig. 2 and

Table 1, results from the deterministic approach vary with

thresholds. The deterministic method detects all trajectories in

full length and no additional (false) trajectories when the

correct threshold is used (see Fig. 2 b). However, if a lower

threshold is used, we obtain the five trajectories of interest

FIGURE 4 The number of spots detected (dimension, K): (a) comparison

of the number of spots by deterministic method with four different threshold

with 20, 25, 50, 120, and (b) comparison of the number of spots by

deterministic method with a threshold 50 and our SMC algorithm.

FIGURE 5 Images with single blinking signals: (a) trajectories for ground

truth; (b) trajectories longer than five steps by a deterministic method; and

(c) detected tracks longer than five steps by SMC method.
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(red) but also 33 artifacts (see Fig. 2 a). With a higher

threshold, the deterministic method cuts the trajectories into

several shorter pieces because they are separated by weak

spots (see Fig. 2 c). In comparison, our proposed SMC

method tracks well and detects weak spots which fail to be

found in the threshold-based deterministic method. It there-

fore links shorter tracks together and detects trajectories

which are close to the ground truth. We find that the length and

the number of trajectories are almost stable in our SMC

method even with a small number of samples.

It is also important to know how accurately the two algo-

rithms determine the positions of the molecules. Here we can

directly compare the ground truth with the detected trajecto-

ries and calculate the root mean-square error (RMSE) .� to

compare the position accuracy. When n(�) is the length of the

interesting trajectories, then the RMSE is defined by

.�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nðT Þ1 1
+

nðT Þ

i¼1

kT i � I ik2

s
; (36)

where T and I denote positions for the estimated tracks and

the ideal tracks, respectively. Compared to the deterministic

approach using the right threshold (RMSE¼ 0.39 pixel), our

SMC approach has a higher accuracy (RMSE ¼ 0.28 pixel).

We can compare these values to the theoretical position

accuracy for the fitting two-dimensional Gaussians in the

case of background dominated noise according to the liter-

ature (35,36). The mean-square error for the position of a

two-dimensional Gaussian of width s, intensity C (in photon

counts), when a background noise of standard deviation sN is

present and the signal is recorded with a detector of pixel size

a, is given by (35)

ÆðDxÞ2æ ¼ 8ps
4
s

2

N

a
2
C

2 : (37)

For a two-dimensional Gaussian the number of photon

counts is related to the signal amplitude I and pixel width

through

C ¼ 2ps
2I

a
2 ; (38)

so that the equation for the position error can be simplified to

ÆðDxÞ2æ ¼ 2a
2
s

2

N

pI
2 ¼

2a
2

pSNR
2: (39)

For a SNR of 3, we get a RMSE of 0.27 pixel, which is very

close to the value of 0.28 pixel obtained for our SMC approach.

FIGURE 6 Five spots with decreasing SNR with frame number.

FIGURE 7 Images with decreasing intensities at six

different time: 1, 5, 70, 80, 90, and 100 (synthetic data).
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Disappearing spots

Our automatic SMC approach is designed to deal with ap-

pearing and disappearing objects, the latter is an important

feature of all single molecule fluorescence measurements

because of photobleaching of the fluorophores. We have to

evaluate how accurately our proposed method detects dis-

appearing spots. This means that we have a variable number

of spots in each frame. Dealing with a variable number of

spots is an important issue in that our SMC algorithm is based

on a trans-dimensional approach. Fig. 3 a shows a two-di-

mensional plot for the ground truth which has several varying

lengths of tracks. Meanwhile, Fig. 3, b and c, plot the tra-

jectories by the deterministic approach with a proper

threshold 50 and by the SMC algorithm.

The number of spots detected by the deterministic method

and our proposed method are compared in Fig. 4. In this

figure, the deterministic approach with the proper threshold

detects all objects when they appear in the image sequence

and detects only one false position when an object is re-

moved. However, if we use a lower threshold than the proper

threshold, a large number of false objects are detected due to

noise being detected as signal as shown with thresholds 20

and 25 in Fig. 4 a. Meanwhile, if we use a higher threshold

(120) than the proper threshold, we lose many weak spots.

However, even though our SMC approach does not require

the threshold, it detects a number of spots very close to the

ground truth, as shown in Fig. 4 b.

Robust against a single blink

The next issue to be considered is that of reconstructing the

lost positions by a single blink, defined by a complete loss of

signal in a single frame. Fig. 5 a shows ground truth of the

signals with a single blink every five steps. Fig. 5, b and c,

plot the trajectories by the deterministic and SMC ap-

proaches, respectively. As we can see, our proposed ap-

proach can restore most of the underlying tracks (Fig. 5 c)

from blinking signals using spatial and temporal information.

Our proposed SMC tracking method finds many underlying

tracks which the deterministic approach cannot restore.

Moreover, our proposed method restores .75% of the un-

derlying positions, which, by using spatial and temporal in-

formation, are removed by blinking.

Robust against low signal/noise ratio

The last issue to consider in this article is that of the ro-

bustness against low signal/noise ratio. While single fluo-

rophores undergo a sudden loss of intensity from one frame

to the other (single-step photobleaching), the fluorescence

can also change due to change in the fluorophore orientation,

change in the local environment, or change in the illumina-

tion intensity due to absorption of laser light by other features

underneath the cell membrane. Furthermore, molecules

which are labeled with more than one fluorophore can un-

dergo stepwise photobleaching. We model these changes

using several objects of decreasing intensity. We generate

five tracks with different initial intensities in the 100 frames.

The intensities of all tracks decrease as time goes on, as

shown in Fig. 6. The corresponding images in time series are

FIGURE 8 Comparison of trajectories with decreasing intensities (syn-

thetic data): (a) ground truth, (b) trajectories by a deterministic method, and

(c) trajectories by SMC.
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shown in Fig. 7. While we can see all spots in the first frame

of Fig. 7, it is hard to find spots at the last frame. In Fig. 8, we

compare the results of the deterministic method and the SMC

method with the ground truth. This figure demonstrates that

the SMC method detects many weak spots which may not be

found in the deterministic approach. Because of the fixed

threshold used in the deterministic approach, it loses the track

when the signal is lower than the threshold. However, our

proposed approach detects longer trajectories since it does

not require an optimum setting for the threshold.

Experimental data

To test the SMC approach against the deterministic method

on experimental data we reanalyzed two image sequences

from a previously published study of Atto 647-labeled wheat

germ agglutinin diffusing on the cell membrane of live boar

spermatozoa (6). These videos are available in Supplemen-

tary Materials, Data S1, and Movie S1, Movie S2, Movie S3,

Movie S4, Movie S5, and Movie S6. Fluorescence was ex-

cited with a HeNe laser (LHP 925, Melles Griot, CA) at 632.8

nm in total internal reflection geometry and image sequences

were recorded using a highly sensitive back-thinned electron

multiplying CCD camera (Cascade II 512B, Photometrics,

Tucson, AZ). Time intervals were 0.025 s and pixel size

0.170 mm.

In Fig. 9, there are four plots: trajectories longer than five

steps detected by the deterministic method (Fig. 9 a), tra-

jectories longer than five steps detected by the SMC method

(Fig. 9 b), trajectories longer than 20 steps detected by the

deterministic method (Fig. 9 c), and trajectories longer than

20 steps detected by our SMC method (Fig. 9 d). As can be

seen in this figure, our SMC algorithm has two benefits:

fewer artifacts and longer tracks.

In addition, Fig. 10, b and c, show two-dimensional figures

longer than 10 steps for the second set of experimental data.

FIGURE 9 Comparison with experimental data: (a) trajectories longer than five steps detected by the deterministic method; (b) trajectories longer than five

steps detected by the SMC method; (c) trajectories longer than 20 steps detected by the deterministic method; and (d) trajectories longer than 20 detected by

SMC method.
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These figures show that the track at [15, 35] is detected only

by the SMC method. The SNR of the weak spot varies be-

tween 0.5 and 0.75. The deterministic method cannot find

this track since the threshold is higher than the signal. We

also investigated the region circled in a dotted line in both

figures. In Fig. 10, panels d–f are the comparisons of the

trajectories for the same periods of time in this circled region

using SMC. By using the SMC method, we can see longer

tracks in Fig. 10, d–f, as shown in Table 2. For example, it

can be seen in Fig. 10 d that a long track can be split by

FIGURE 10 Comparison with a second set of experimental data: (a) 78th frame from the experimental data. (b and c) Full trajectories found by a

deterministic method and by SMC, respectively; and panels d–f compare the tracks by a deterministic method and SMC for the same period of time in the

dotted and circled region in panels b and c.
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the deterministic method into several tracks because of

blinking.

Fig. 11, a and b, show that our SMC method gives more

accurate and better trajectories when two tracks become

close. When tracks A and B become close, the deterministic

method cannot find one of the tracks due to the difficulty in

separating these close tracks. However, SMC method detects

two tracks until they meet. When two tracks meet, a trajectory

stops and the other trajectory continues. This still provides

additional information compared to the deterministic method

which has shorter and missing tracks. Moreover, Fig. 11, c
and d, shows that the deterministic approach may also in-

correctly link two tracks B and C, which should be separated.

In contrast the SMC method found two separated tracks.

DISCUSSION

Future works

A future concern with our method is how to reduce the time

complexity which increases as the number of spots increases.

In cases with more spots than shown in this article in a frame,

we may need impractically large number of samples to obtain

full posterior distribution for tracking since we are consid-

ering the joint full posterior distribution. Therefore, we may

need to develop a more efficient and practical algorithm,

which requires small numbers of samples.

Another concern is to design good parameter association

schemes to identify spots among samples for our trans-

dimensional sequential Monte Carlo method based on track-

before-detect. In this article, we have used a clustering

algorithm (EM clustering) for the parameter association, al-

though it is rather slow and occasionally gives incorrect re-

sults when the initial positions are chosen badly. Thus, we

will develop better algorithms for parameter association to

identify and estimate parameters. Also, we determine the

model order by applying spatial point processes, which

FIGURE 11 (a and b) Trajectories found by a deterministic method and SMC respectively for two close spots. (c and d) The deterministic approach can

incorrectly link two different tracks.

TABLE 2 Comparison of the lengths of trajectories of Fig. 10

Lengths Deterministic SMC method

(d) (SNRs: 0.70 ; 2.00) 11 1 11 34

(e) (SNRs: 0.34 ; 1.20) 10 24

(f) (SNRs: 0.34 ; 1.13) 13 43
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specify both likelihood and prior distribution of the cluster

centers obtained by the EM algorithm. However, we may

associate the parameters and obtain model order by directly

using spatial point processes rather than via EM clustering.

This unifying scheme may reduce the time complexity

and improve the performance of our SMC tracking algo-

rithm.

CONCLUSION

We have proposed a trans-dimensional sequential Monte

Carlo method for tracking single molecules and compared it

with a well-known deterministic method. Although the SMC

method based on the Bayesian sequential estimation frame-

work is rather slow, it has many benefits compared to the

deterministic method when we have prior information such

as the mean of diffusion coefficients, the dimensions, and

fluorescence intensity of the spots of interest. Our proposed

method can detect weak signals and make closer estimates to

real trajectories than the deterministic method. Also, the

SMC method can restore lost positions caused by single

blinks since it considers spatiotemporal information in the

sequence of images. Lastly, our proposed algorithm can deal

with the disappearance of objects due to photobleaching of

the fluorophores. These improvements should enable greater

and more accurate data about the trajectories of diffusing

molecules to be obtained, even when the signal/noise is low,

and hence help to improve our understanding of the structure

of the cell membrane.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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