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ABSTRACT Bilayers composed of phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (CHOL) are commonly
used as systems to model the raft-lipid domain structure believed to compartmentalize particular cell membrane proteins. In this
work, micropipette aspiration of giant unilamellar vesicles was used to test the elasticities, water permeabilities, and rupture
tensions of single-component PC, binary 1:1 PC/CHOL, and 1:1 SM/CHOL, and ternary 1:1:1 PC/SM/CHOL bilayers, one set of
measurements with dioleoyl PC (DOPC; C18:1/C18:1 PC) and the other with stearoyloleoyl PC (SOPC; C18:0/C18:1 PC).
Defining the elastic moduli (KA), the initial slopes of the increase in tension (s) versus stretch in lipid surface area (ae) were
determined for all systems at low (15�C) and high (32–33�C) temperatures. The moduli for the single-component PC and binary
phospholipid/CHOL bilayers followed a descending hierarchy of stretch resistance with SM/CHOL . SOPC/CHOL . DOPC/
CHOL . PC. Although much more resistant to stretch than the single-component PC bilayers, the elastic response of vesicle
bilayers made from the ternary phospholipid/CHOL mixtures showed an abrupt softening (discontinuity in slope), when
immediately subjected to a steady ramp of tension at the low temperature (15�C). However, the discontinuities in elastic stretch
resistance at low temperature vanished when the bilayers were held at ;1 mN/m prestress for long times before a tension ramp
and when tested at the higher temperature 32–33�C. The elastic moduli of single-component PC and DOPC/CHOL bilayers
changed very little with temperature, whereas the moduli of the binary SOPC/CHOL and SM/CHOL bilayers diminished
markedly with increase in temperature, as did the ternary SOPC/SM/CHOL system. For all systems, increasing temperature
increased the water permeability but decreased rupture tension. Concomitantly, the measurements of permeability exhibited a
prominent correlation with the rupture tension across all the systems. Together, these micromechanical tests of binary and
ternary phospholipid/CHOL bilayers demonstrate that PC hydrocarbon chain unsaturation and temperature are major deter-
minants of the mechanical and permeation properties of membranes composed of raft microdomain-forming lipids.

INTRODUCTION

The outer membranes of eukaryotic cells typically contain

higher concentrations of cholesterol (CHOL) and sphingo-

myelin (SM) than do internal membranous organelles (1,2).

For example, along the secretion pathway, the concentrations

of CHOL and sphingolipids increase from the endoplasmic

reticulum through the Golgi apparatus to the plasma mem-

brane (1,3). These trans-Golgi and plasma membranes are

thought to contain lateral microdomains, termed ‘‘rafts’’ (4–7),

that are enriched in CHOL and SM (2,8,9). Although some

membrane proteins are excluded from rafts (10), other types

of proteins appear to be associated with rafts, including ac-

ylated proteins (11–13), glycosyl-phosphatidylinositol-an-

chored proteins (14,15), and certain transmembrane receptors

(16,17) and ion channels (18–20). Due to their ability to se-

quester specific lipids and proteins, rafts are thought to be

involved in a number of important cell functions, including

signal transduction (13,21), lipid sorting (5,22,23), and pro-

tein trafficking (4,24). Specifically, an early fundamental

question related to lipid and protein sorting was whether rafts

would form in lipid mixtures in the absence of proteins. For

example, in the Golgi apparatus, Simons and van Meer (22)

envisaged a lateral separation of glycerolipids and sphingo-

lipids as the necessary first event in the sorting process. In the

past several years, many experimental studies have shown

that raft microdomains do form in lipid bilayers for lipid

compositions approximating those found in trans-Golgi or

plasma membranes. Along with structural characterization by

x-ray diffraction (9), a variety of techniques, including flu-

orescent probes (8), atomic force microscopy (25), and light

microscopy (26–29), have been used to image microdomains

in bilayers composed of a combination of an unsaturated

phosphatidylcholine (PC), SM, and CHOL. For dioleoyl

phosphatidylcholine (DOPC)/SM/CHOL model systems, the

nonraft domains appear to be enriched in the unsaturated

DOPC, whereas the raft domains are enriched in SM and

CHOL (9,28).

Another key factor thought to be important in the sorting of

transmembrane peptides or proteins is the difference in

elastic deformabilities between raft and nonraft bilayers (30–

32). Due to the high concentrations of CHOL and SM with its

long hydrocarbon chains, raft-lipid bilayers are expected to

be much less compressible in area than PC/CHOL bilayers.

Indeed, previous tests of the area-stretch moduli (KA) for

SM/CHOL bilayers at room temperature have produced
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values 10-fold larger than that of a typical single-component

PC (nonraft) bilayer (33–35). However, little is known about

how the elastic properties of SM/CHOL and PC/SM/CHOL

bilayers change as temperatures approach physiological

conditions. The temperature dependence of elasticity for raft-

containing bilayers is of interest because previous studies

have shown that the size and shape of rafts (26–28), as well as

the sorting of lipids and transmembrane peptides (31,32),

depend on temperature. Significantly, microdomains are of-

ten not resolvable in PC/SM/CHOL bilayers by light mi-

croscopy at temperatures above 30�C (26–28). Moreover,

even less is known about how temperature affects the me-

chanical strength and permeability properties of bilayers

containing both raft and nonraft microdomains and to what

extent lateral phase separation of membrane lipids may

modulate bilayer strength and permeability, both critical to

plasma membrane function.

In this work, we present results from micromechanical

experiments on giant bilayer vesicles that demonstrate the

impact of temperature on the elastic area-stretch moduli (KA),

rupture (lysis) tensions (sL), and water permeabilities (PW)

of bilayers containing PC, binary PC/CHOL and SM/CHOL,

and ternary PC/SM/CHOL. Based on published data, the

1:1:1 ternary systems tested in our experiments at low tem-

perature (15�C) are expected to contain microdomains, whereas

the PC and binary PC/CHOL systems are not. Consistent

with the most commonly studied raft microdomain-containing

bilayer systems (36), one set of measurements was performed

using vesicle bilayers that contained the symmetrically un-

saturated DOPC ((C18:1) (C18:1) PC). We also tested bilayer

systems that contained stearoyloleoyl phosphatidylcholine

(SOPC) ((C18:0) (18:1) PC) to compare how symmetric

and asymmetric acyl chain unsaturation affect the mechan-

ical and permeability properties of bilayers as well as their

change with temperature. PC acyl-chain saturation is an

important consideration in biological membranes since

glycerophospholipids in plasma membranes normally con-

tain a saturated chain in the sn-1 position (3), and adding a

double bond is known to dramatically change phospholipid-

phospholipid and phospholipid-CHOL interactions as well as

in the lateral organization of bilayer domains (28,37). Con-

sistent with these features, we show that PC acyl-chain sat-

uration has a major effect on material properties of bilayers

containing CHOL. Yet, these measurements also demon-

strate that interactions with CHOL are an important factor in

the properties of bilayers containing DOPC.

MATERIALS AND METHODS

Materials

Brain SM, DOPC, SOPC, and CHOL were purchased from Avanti Polar

Lipids (Alabaster, AL) and used without further purification. The gel to

liquid crystalline phase transitions are ;40�C (broad), 6�C, and �20�C for

SM, SOPC, and DOPC, respectively ((34) and Avanti Polar Lipids catalog).

Vesicle preparation

Giant unilamellar vesicles (GUVs) were formed by slow hydration of lipid

films as described previously (35,38). The lipid mixtures were first dissolved

in chloroform (10 mg/ml). Then 20–30 ml of the lipid solution was spread on

a roughened Teflon disk, followed by evaporation of the chloroform for .4 h

in a vacuum chamber. Next, the dried lipid film was prehydrated by passing

warm water vapor over the disk for 10 min, which was carried by argon gas

after perfusion through distilled water at 35–40�C. The final swelling step

used to form the GUVs involved soaking the disk in 200 mM sucrose

overnight at 37�C for PC or mixed PC/CHOL films and at .50�C for lipid

films containing SM. Before the micropipette tests, the vesicle suspension

was equilibrated at room temperature for 2–3 h. Then an aliquot of the vesicle

suspension was diluted manyfold in a buffer containing glucose with an

osmolarity 2–5 mOsm/kg higher than the sucrose solution used for swelling.

The difference of inside-outside solutions created a refractive index and

density gradient across the vesicle membrane, providing excellent image

contrast and sedimentation of the vesicles to the bottom of the chamber.

Measurements of bilayer elasticity, strength, and
water permeability

Selected from a very dilute suspension, individual GUVs were captured by a

micropipette with a suction pressure that set the initial membrane tension in

the range of 0.5–1 mN/m. At this level of tension, all vesicles were pulled

tightly into the pipette, exhibiting an optically perfect spherical shape outside

the pipette. To prevent necking of the aspirated projection inside the pipette

under the large suctions needed to stretch the vesicle surface, the initial

projection length was limited to 1.5–2 pipette diameters by slight adjustment

of the outside osmolarity of the vesicle suspension before injection into the

microscope chamber. Once captured, a vesicle was then either stressed by

steadily increasing the pipette suction to determine the elastic stretch modulus

(KA) and rupture (lysis) tension (sL) or held at constant tension and trans-

ferred to an adjacent chamber with higher osmolarity to determine the coef-

ficient of bilayer permeability to water (Pw), following procedures developed

in our other studies (35,38–40). To set and maintain the temperature, a cir-

culating temperature-controlled water system was plumbed to a heat-ex-

change jacket that formed one wall of the test chamber. A tiny thermocouple

was placed near the site of vesicle tests in the chamber to control the tem-

perature (within 0.5�C).

Stretch elasticity

Immediately after initial capture or after an extended period of prestress,

vesicles were steadily pressurized at a rate set to apply a 2 mN/m/s ramp of

tension to test the bilayer area elasticity and strength. To quantify the change

in surface area under the increasing tension s(t), the length of the vesicle

projection pulled into the micropipette and the length of the vesicle spherical

shape outside the pipette were tracked using high-resolution image analysis

(40,41). At the levels of tension needed to expand the bilayer-surface area,

the pipette suctions applied to the ;20 mm vesicles were small (;103 Pa) in

comparison to the osmotic activity of the trapped sucrose (;5 3 105 Pa) and

insufficient to draw water out of a vesicle during the short time frame of an

elasticity and rupture test. Thus, the vesicle volume could be treated as ef-

fectively fixed during the area expansion test, allowing the change in visible

area (DA/Ao) of the vesicle to be accurately computed from the increase in

projection length inside the pipette. Even so, to determine the bilayer stretch

modulus (KA), it was necessary to quantify the dilation in lipid-surface area

ae under the increasing tension s(t).

As demonstrated previously (35,39), the apparent geometric increase in

vesicle-surface area DA/Ao measured optically includes the elastic stretch of

the lipid surface ae plus a small (submicroscopic) expansion in area a�
contributed by reduction in thermal-bending undulations, i.e., DA/Ao¼ ae 1

a�. To determine the direct stretch in lipid-surface area ae ¼ DA/Ao � a�,
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the reduction in thermal undulations at each tension was subtracted from the

apparent area expansion using the compliance relation established previ-

ously, a�¼ (kBT/8pkc) loge(s/so), which is governed by the ratio of thermal

energy kBT to the bilayer bending modulus kc (35,39). In the case of the

single-component lipid and binary phospholipid/CHOL bilayers, the values

for elastic-bending moduli were taken from previous measurements. Al-

though almost negligible in the case of the ternary PC/SM/CHOL bilayers,

the small contributions from thermal undulations to the area expansions in

vesicles were treated the same way, using approximate bending moduli es-

timated by interpolation between the properties of the binary phospholipid/

CHOL systems.

Rupture strength

In the course of testing bilayer stretch elasticity, the strength of each bilayer

was quantified by the value of tension sL at the instant (within 1 ms) of

vesicle lysis, as indicated by each ‘‘star’’ (*) in Fig. 1. To provide a simple

FIGURE 1 Representative examples of vesicle bilayer tension s versus dilation in lipid-surface area ae measured by micropipette pressurization at 15�C and

at 32–33�C. (To emphasize the data, the ;1000 points measured during each test are plotted as small gray circles. The dotted black curves superposed on the

data are fits of a cubic polynomial used to accurately determine the slope at zero tension (e.g., the elastic modulus KA) as discussed in the text. (A) Sample tests

of 1:1 SM/CHOL vesicles show the smooth-continuous stretch response seen at both 15�C (left panel) and 33�C (right panel). (B) Tests of 1:1:1 DOPC/SM/

CHOL vesicles loaded continuously without prestress (see text) show a break in slope near 10 mN/m observed routinely at 15�C (left panel) and the smooth-

continuous stretch response observed at 32�C (right panel). (C) As for the DOPC/SM/CHOL system, tests of 1:1:1 SOPC/SM/CHOL vesicles loaded

continuously without prestress show a break in slope near 5 mN/m observed routinely at 15�C (left panel) and a smooth-continuous stretch response at 32�C

(right panel). (D) On the other hand, tests of 1:1:1 DOPC/SM/CHOL vesicles (left panel) and 1:1:1 SOPC/SM/CHOL (right panel) vesicles show the smooth-

continuous stretch response observed routinely at 15�C when subjected to prestress followed by continuous loading. (E) Only rarely seen (,10% of cases), this

test of a 1:1:1 DOPC/SM/CHOL vesicle at 15�C shows discrete jumps in area presumably due to incorporation of fluid membrane blebs.
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comparison among the strength measurements reported here, the values of

lysis tension sL were obtained at a single tension (ramp) rate of 2 mN/m/s.

Even though rupture strength depends on the ramp rate (40,42), the lysis

tensions vary weakly with stress rate below 10 mN/m/s (see detailed treat-

ment in the Appendix).

Water permeability

To measure the coefficient of bilayer permeability to water, single vesicles

were selected by a micropipette and then transferred to an adjacent micro-

scope chamber with ;15% higher osmolarity where the time course of de-

hydration was analyzed as described previously (38). The transfer process

involved passing the vesicle through a small air gap that separated the mi-

croscope chambers. To do this, the vesicle was held by a micropipette and

inserted into the entrance of a much larger pipette. The microscope stage was

then translated to leave the sequestered vesicle in the second chamber, where

it was exposed to the new osmotic environment. Typically, vesicles were

transferred from a chamber that contained 200 mOsm glucose to a chamber

that contained ;230 mOsm glucose. Consistent with passive osmotic trans-

port, we have previously shown (38) that higher or lower osmolarities yield

linearly proportional faster or slower filtration rates with the same coefficient

for water permeability. Moreover, transfer back to the original chamber re-

covers the original vesicle volume, showing no loss of vesicle sucrose or

uptake of outside glucose (38).

Throughout each test, the vesicle was held under small, fixed suction

pressure, setting a low bilayer tension (;1 mN/m). The changes in vesicle

volume were computed from the time-dependent increase in the aspirated

projection length. The time course of volume change was analyzed to obtain

the rate of filtration, using the standard phenomenological law for water

transport across a semipermeable membrane (43). The change of vesicle

volume in time is proportional to the surface area A, the coefficient for water

permeability Pw, and the outside-inside difference in mole fraction of solute,

Dxs(t) ¼ xsN
� xs(t), as given by dV/dt ¼ �APwDxs. Impermeable to solutes

(on the timescale for water filtration), the solute mole fraction inside the

vesicle (or equivalently the osmolarity, xs/vw, when scaled by the molar

volume of water vw) varies in inverse proportion to the volume given the

fixed number of moles m of trapped solute, i.e., xs¼ vwm/V(t). Integration of

the transport relation predicts that the relative vesicle volume, �V(t) ¼ V(t)/

V(o), follows transcendental expression:

kwt ¼ rosm½1� �VðtÞ�1 ln½ðrosm � 1Þ=ðrosm
�VðtÞ � 1Þ�;

which is parameterized by the ratio of final/initial osmolarities rosm¼ xsN
/xso

and the filtration rate kw ¼ APw ½rosmxsN
/V(o)�. As shown by the example in

Fig. 4 A, the fit of this transport model to the reduction in vesicle volume

yields the filtration rate kw, which is then converted to the permeability

coefficient using the vesicle area A, initial volume V(o), and solution

osmolarities (38).

X-ray diffraction

The bilayer thicknesses of 1:1 SOPC/CHOL and 1:1:1 SOPC/SM/CHOL

were determined by techniques previously used for DOPC, 2:1 DOPC/

CHOL, 1:1 SM/CHOL, 1:1:1 DOPC/SM/CHOL, and SOPC (9,34,35). In

brief, oriented multibilayers were deposited on a curved glass surface by

evaporation from chloroform. The supported multibilayers were mounted in

a controlled humidity chamber of a line-focused x-ray camera. The lamellar

diffraction was recorded and analyzed as described previously (9,34,35).

RESULTS

Bilayer lipid-area elasticity

Fig. 1, A–D, shows particular examples of vesicle tension s

versus lipid-area dilation ae obtained at 15�C and 32–33�C

for bilayers composed of 1:1 SM/CHOL, 1:1:1 DOPC/SM/

CHOL, and 1:1:1 SOPC/SM/CHOL. As detailed below,

these sample data demonstrate the significant impact of

composition and temperature on the elastic response and

rupture strength of SM/CHOL-containing bilayers and how

the properties of these bilayers depended on whether or not

the vesicles were subjected to prestress. Ramped at a tension

rate of 2 mN/m/s, each vesicle membrane was stretched until

lysis; the rupture strength was quantified by the level of

tension (sL) at the maximum area stretch (marked by the last

data point adjacent to the symbol *). In these plots, the small

gray circles represent the measurements (s, ae), and the

dotted black lines are fits of a cubic polynomial in the lipid

area strain where the coefficient of the linear term was used to

define the elastic modulus KA at zero tension. The pro-

nounced differences of elastic moduli in phospholipid/CHOL

systems are clearly seen in Fig. 1, A–D, following a de-

scending order given by SM/CHOL . SOPC/SM/CHOL .

DOPC/SM/CHOL.

As shown by the examples in the left panels of Fig. 1, B
and C, abrupt downward shifts (discontinuous ‘‘breaks’’) in

the slope appeared in the tension s versus lipid-area dilation

ae responses of the ternary 1:1:1 DOPC/SM/CHOL and

SOPC/SM/CHOL vesicles at 15�C when subjected to a ramp

of tension from an initially unstressed state. However, the

breaks were not observed in any of the vesicle systems at

32–33�C (right-hand panels of Fig. 1, B and C). Importantly,

prestressing the ternary lipid/CHOL vesicles at 15�C with

;1 mN/m for long times (.1 min) eliminated the breaks in

slope, leaving the smooth elastic responses illustrated in Fig.

1 D and those observed routinely at high temperature.

In the absence of prestress, the discontinuity in elastic

response at 15�C appeared at ;9 mN/m for the DOPC-

containing vesicles and at ;4–5 mN/m for the SOPC-con-

taining vesicles. Before the breaks in slope, the bilayers were

much more resistant to change in area (e.g., Ds/Dae ; 900

mN/m for DOPC/SM/CHOL and ;2200 mN/m for SOPC/

SM/CHOL) than following the breaks (e.g., Ds/Dae ; 650

mN/m for DOPC/SM/CHOL and ;1720 mN/m for SOPC/

SM/CHOL). Moreover, the slopes of the elastic response

following breaks were consistent with the elastic area com-

pressibility measured after prolonged periods of prestress

(Fig. 2).

The appearance of discontinuities in elastic response of

these ternary bilayers at 15�C suggests that some type of in-

homogeneous structure was initially present in the materials.

The subsequent elimination of the discontinuities in elas-

ticity by large tensions or by prior periods of prestress in-

dicates that the mechanical stress acted to break up the

inhomogeneities. Note that for all the bilayer systems at both

temperatures, a few vesicles (,10% of cases) exhibited small

discrete jumps in apparent area (Fig. 1 E) once they became

dehydrated after long periods in the microscope chamber.

Although usually not detected in the optical images, the

jumps in apparent area were most likely due to incorporation
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of small membrane blebs. Prestressing the vesicles at

;1 mN/m for long times was found to eliminate the area

jumps.

The elastic moduli (KA) derived from the area-stretch re-

sponses of the prestressed vesicles are listed in Table 1 and

plotted in Fig. 2, demonstrating that the addition of CHOL to

bilayers made with both SOPC and DOPC markedly in-

creases their resistance to area stretch. For example, the ad-

dition of 50 mol % CHOL to SOPC bilayers produced a

sixfold increase in elastic modulus from KA ;290 mN/m to

;1980 mN/m at 15�C, and adding 50 mol % CHOL to

DOPC bilayers produced a nearly threefold increase in the

modulus from KA ;300 mN/m to ;890 mN/m at 15�C. Still

larger values were obtained for 1:1 SM/CHOL vesicles,

reaching KA ;3320 mN/m at 15�C. Moreover, diluting the

ratio of CHOL to phospholipid in 1:1 PC/CHOL bilayers by

addition of SM reduced the elastic moduli, as shown by the

results for vesicles made with 1:1:1 PC/SM/CHOL. On the

other hand, concomitant to the increase of acyl chain inter-

actions with CHOL, increasing the fraction of CHOL from

1:1:1 to 1:1:2 in SOPC/SM/CHOL bilayers produced even

larger values for the elastic moduli than the moduli of the

binary SOPC/CHOL vesicles (Table 1). Significantly, as seen

in Fig. 2, increasing temperature from 15�C to 32–35�C

reduced the elastic moduli of the SOPC/CHOL, SOPC/

SM/CHOL, and SM/CHOL bilayers by ;50%. However, the

elastic moduli of DOPC/CHOL and prestressed DOPC/SM/

CHOL bilayers were little affected by the increase in tem-

perature.

Rupture tension

Listed in Table 1 and plotted in Fig. 3 A, the strengths of PC

bilayers were found to increase significantly with the incor-

poration of CHOL. For example, at 15�C, sL increased from

;12 mN/m for SOPC to ;26 mN/m for 1:1 SOPC/CHOL

and from ;10 mN/m for DOPC to ;19 mN/m for 1:1

DOPC/CHOL. The values of rupture tensions decreased with

increasing temperature for all of the phospholipid/CHOL

systems. Of the mixed systems, the strongest vesicles at both

low and high temperatures were clearly the SM/CHOL ves-

icles (e.g., ;33 mN/m at 15�C), followed by SOPC/CHOL

then DOPC/CHOL. Likewise, bilayers made from the 1:1:1

ternary systems with SOPC/SM/CHOL were much stronger

(;21 mN/m at 15�C) than those containing DOPC/SM/

CHOL (;15 mN/m at 15�C). Paralleling the effect of in-

creased CHOL content on elastic moduli, the rupture tensions

for 1:1:2 SOPC/SM/CHOL vesicles were larger than those of

1:1:1 SOPC/SM/CHOL vesicles, exhibiting strengths com-

parable to 1:1 SOPC/CHOL vesicles.

Even though the membrane strengths plotted in Fig. 3 A
represent loading at one stress rate Ds/Dt (rs ¼ 2 mN/m/s),

rupture tensions were measured at three or more stress rates

spanning a range from 0.05 to . 50 mN/m/s for all phos-

pholipid/CHOL vesicle systems (see data in the Appendix).

Between 0.05 and 5 mN/m/s, the lysis tensions sL exhibited

weak stress-rate dependences, increasing by only 20%–25%.

Shown in the Appendix for phospholipid/CHOL systems,

and previously for fluid PC bilayers with chain lengths from

13 to 22 carbons (40), the weak stress-rate regime follows

a transcendental relation predicted by a kinetic theory for

hole nucleation in tense fluid films (40,42), i.e., sb=sL �
ð5=2Þ logeðsL=sbÞ � loge½ðrs=ðno

hsbÞ�: The weak stress-rate

dependence arises from a reciprocal dependence on tension

in the Arrhenius factor, i.e., exp(�sb/s), which charac-

terizes the kinetic frequency of failure nrup(1/time) under

stress. Relatively insensitive to the frequency-scale prefactor

no
h; the principal parameter determining membrane strength is

the thermal tension scale sb derived from the ratio of the

activation energy to the thermal energy kBT. The thermal

tension scale characterizes the magnitude of the energy bar-

rier that impedes the opening of an unstable hole and its

susceptibility to the application of membrane stress (see

Appendix). Supporting the validity of a single stress-rate

assay at 2 mN/m/s, the lysis tensions obtained at 15�C are

shown in Fig. 3 B to correlate closely with the values of sb

obtained from fitting the kinetic model for rupture to the

stress-rate dependence of the measurements. As shown by

the values in Fig. 3 B, the rupture tensions at 2 mN/m/s were a

small fraction (;0.1) of the tension scales sb for all systems,

demonstrating the enormity of the activation barriers that

sustain membrane cohesion.

FIGURE 2 Average lipid area-stretch moduli KA measured at 15�C and

32–33�C for SOPC, 1:1 DOPC/CHOL, 1:1 SOPC/CHOL, 1:1 SM/CHOL,

1:1:1 DOPC/SM/CHOL, and 1:1:1 SOPC/SM/CHOL bilayers. Fifty to

eighty vesicles were tested for each system and temperature (means 6 SD

given in Table 1). The elastic moduli for the ternary 1:1:1 DOPC/SM/CHOL

and 1:1:1 SOPC/SM/CHOL systems at 15�C represent vesicles subjected to

prestress followed by continuous loading (Fig. 1). Also plotted for compar-

ison as discussed in the text are results for 1:1:2 SOPC/SM/CHOL vesicles.
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Water permeability

Fig. 4 A shows an example of water filtration from a 1:1:1

SOPC/SM/CHOL vesicle after transfer to a hyperosmotic

environment at 15�C. Water filtration across the CHOL-

containing bilayers was very slow and thus unaffected by

unstirred layers (38). Demonstrated by the curve superposed

in Fig. 4 A, the integrated transport expression described in

the Materials and Methods section was fit to each time course

of vesicle dehydration by optimal choice of the filtration rate

kw. With the initial values for vesicle area, volume, and in-

side/outside solution osmolarities, the coefficient Pw for bi-

layer water permeability was computed from the filtration

rate kw using the equation given in the Materials and Methods

section. The values of Pw measured at 15�C, 30�C, and 35�C

are listed in Table 1 and plotted in Fig. 3 B, demonstrating the

significant effect of temperature on bilayer transport prop-

erties. Also significant, the values for Pw exhibited a hierar-

chy spanning two orders of magnitude, with the largest being

DOPC (;26 mm/s) . SOPC (;20 mm/s) . 1:1 DOPC/

CHOL (;6 mm/s) . 1:1:1 DOPC/SM/CHOL (;3.4 mm/s)

. 1:1 SOPC/CHOL (;1.5 mm/s)ffi 1:1:1 SOPC/CHOL (;1

mm/s) . 1:1 SM/CHOL (0.4 mm/s) taking values at 15�C,

which emphasizes the major impact of CHOL on bilayer

permeability for all of the phospholipids.

DISCUSSION

Elasticity of bilayers that contain raft
microdomain-forming lipids

The elastic stretch responses of bilayers containing a single-

fluid phase PC or 1:1 binary mixtures of phospholipid/CHOL

all followed smooth, slightly nonlinear tension versus lipid-

area dilation relationships both at low (15�C) and high (32–

35�C) temperatures. By comparison, abrupt downward

breaks in the slope of this relationship were observed in the

stretch responses of both 1:1:1 ternary PC/SM/CHOL sys-

tems at 15�C if not first subjected to long periods of prestress.

Demonstrated by the left panels in Fig. 1, B and C, and de-

scribed in the Results section, the slopes of the elastic stretch

responses for unprestressed ternary lipid/CHOL vesicles

TABLE 1 Elasticity, strength, and water permeability measurements

KA 6 SD (mN/m) sLysis 6 SD (mN/m) Pw 6 SD (mm/s)

System 15�C 32–35�C 15�C 32–35�C 15�C 30�C 35�C

One component

DOPC 310 6 20 — 10 6 3 — 25.9 6 3.1 56 6 9 70 6 6

SOPC 290 6 6 290 6 17 12 6 3 — 19.7 6 3.3 34 6 7 44.6 6 6

1:1 Binary

DOPC/CHOL 890 6 64 870 6 141 19 6 4 16 6 2 5.8 6 0.6 — —

SOPC/CHOL 1985 6 330 1130 6 110 26 6 3 21 6 3 1.5 6 0.2 6.4 6 1.3 12.3 6 3

SM/CHOL 3327 6 276 2193 6 209 33 6 4 26 6 5 0.36 6 0.1 3.9 6 1 5.9 6 2

1:1:1 Ternary

DOPC/SM/CHOL 655 6 128 610 6 61 15 6 3 11.9 6 3 3.4 6 0.6 9.3 6 1.2 19.1 6 5

SOPC/SM/CHOL 1725 6 300 880 6 130 21.2 6 3 16.7 6 3 1.2 6 0.1 4.3 6 0.3 8.9 6 1.4

1:1:2 Ternary

SOPC/SM/CHOL 2188 6 331 1377 6 172 26 6 3 — 1.5 6 0.2 — 4.8 6 0.8

FIGURE 3 (A) Lysis tensions sL measured under con-

tinuous loading at 2 mN/m/s are plotted for temperatures

of 15�C and 32–33�C for SOPC, 1:1 DOPC/CHOL, 1:1

SOPC/CHOL, 1:1 SM/CHOL, 1:1:1 DOPC/SM/CHOL,

and 1:1:1 and 1:1:2 SOPC/SM/CHOL. Results for single-

component SOPC and DOPC vesicles are plotted at 15�C.

Fifty to eighty vesicles were tested for each system and

temperature (means 6 SD given in Table 1). Because

membrane rupture is governed by kinetics, measurements

of rupture tension have an inherent standard deviation

(typically ;10�15%). However, the standard errors (stan-

dard error ¼ standard deviation/n1/2) in the measurements

are smaller than the size of symbols in A for n ;50–80,

which characterize the statistical uncertainties in the most

frequent rupture events described by the nucleation theory

given in the Appendix. (B) The lysis tensions obtained at

15�C are shown to correlate precisely with the values for

thermal tension scale sb from fitting the kinetic model for

rupture (as shown in the Appendix) to the stress-rate

dependence of rupture tension.
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were 30%–50% greater at the low tensions preceding a

discontinuity than at high tensions above the discontinuity.

Yet, when raised to 32–33�C or subjected to long periods of

prestress (;1 mN/m) at the low temperature, the disconti-

nuity in the elastic response disappeared. Elimination of the

discontinuity in stretch resistance after long periods of pre-

stress (or application of large tensions) suggests that me-

chanical stress acts to relieve some type of frustration in the

microdomain structure produced during vesicle formation.

Of related interest, downward breaks in the elastic responses

of vesicles to tension have also been reported by Tierney et al.

(44) for mixtures of dipalmitoylphosphatidylcholine (DPPC)

and CHOL or ergosterol at low temperature. These authors

attributed the discontinuous elastic response to disruption of

a solid-like network of liquid-ordered and gel phases, pro-

ducing a continuous liquid-ordered phase plus unconnected

gel domains.

Driven to reach larger tensions by fast loading (i.e., sL

;15–20 mN/m at ;10 mN/m/s vis à vis sL ;10–12 mN/m

at ;1 mN/m/s), the elastic responses of highly stretched PC

bilayers expose a distinct curvature that agrees with predic-

tions of a simple polymer theory introduced previously to

describe the surface pressure of fluid acyl chains (35).

Formulated in terms of the area strain (E. Evans and B. A.

Smith, unpublished), s(ae) ¼ 2Po½1 � g(ae,uc)/g(0, uc)�,
the model for tension-area response of PC lipids depends

on a scale factor Po that defines the monolayer surface

pressure at zero tension and a dimensionless function, g(ae,

uc), that characterizes the nonlinear strain dependence of the

surface pressure. In addition to the surface pressure scale Po,

the elastic-stretch response involves a geometric parameter,

uc (,1), that characterizes the extent of lipid area con-

densation at zero tension relative to a state of maximum

condensation (uc ¼ 1). Although difficult to distinguish ex-

perimentally, different analytical expressions can be derived

for g(ae, uc) depending on how the lipid chains are modeled.

As one example, the theory for freely jointed polymer chains

yields the following expressions for the dimensionless sur-

face pressure and elastic modulus: g(ae, uc) ¼ ½(3 1 3ae �
2uc)/(1 1 ae�uc)�/(1 1 ae)

3 and KA ¼ 2Po f3 1 uc/½(1 �
uc)(3 � 2uc)�g.

In earlier measurements the data for elastic stretch of PC

bilayers loaded at ;1 mN/m/s were cut off by low rupture

tensions and could be fit only by straight lines, as shown for a

SOPC vesicle in Fig. 5 of Rawicz et al. (35), which resulted

in values of KA ;240 mN/m for SOPC and ;250 mN/m

for DOPC (35). On the other hand, when SOPC and DOPC

vesicles were stretched at tension rates of 10–100 mN/m/s,

the measurements after correction for fluctuations overlayed

precisely with the earlier tests in the regime of low tension but

then revealed a prominent curvature as tensions continued to

well above 10 mN/m. Low order polynomial (quadratic or

cubic) fits to the full range of tensions for the SOPC and

DOPC bilayers subjected to fast loading yield values of KA

;290 6 6 mN/m and 310 6 20 mN/m, respectively. Most

relevant here, with the improved video image analysis and

corrections for thermal-bending fluctuations, it has been

possible to account for the impact of curvature on the elastic

stretch moduli of the phospholipid/CHOL systems since

these bilayers break at large tensions even when loaded at

;1 mN/m/s (producing data sets containing several hundred

points, as illustrated in Fig. 1). Consequently, although con-

sistent with earlier studies demonstrating the major impact of

CHOL on elasticity, the more precise measurements of area

stretch with phospholipid/CHOL bilayers now yield elastic

moduli that are twofold larger than those published in earlier

reports (33,45). Interestingly, the larger moduli obtained for

phospholipid/CHOL bilayers are closer in value to the area

elastic moduli computed from recent atom-scale models

of bilayers with similar constituents (46).

In regard to formation of domain structure, the nearest-

neighbor interactions with CHOL work against the entropic

elasticity of PC and SM acyl chains to condense the areas per

molecule in these phospholipid/CHOL systems, as documented

FIGURE 4 (A) Example of osmotic filtration from a

1:1:1 SOPC/SM/CHOL vesicle measured at 15�C after

transfer from 205 mOsm solution to 236 mOsm. Super-

posed is the single parameter fit of the transport equation

defined by the filtration rate kW, which yields the coeffi-

cient PW for water permeability. (B) Water permeabilities

PW 6 SD measured at 15�C, 30�C, and 35�C for DOPC,

SOPC, 1:1 SM/CHOL, 1:1 SOPC/CHOL, 1:1:1 DOPC/

SM/CHOL, and 1:1:1 SOPC/SM/CHOL; 10–20 vesicles

were tested for each system and temperature. Also plotted

for comparison are water permeabilities for 1:1 DOPC/

CHOL and 1:1:2 SOPC/SM/CHOL vesicles measured at

15�C.
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by NMR measurements of lipid chain order parameters

(29,47–49). Furthermore, thermodynamic analysis of the

elastic stretch responses measured for PC/CHOL bilayers

shows that the interaction enthalpies for SOPC/CHOL and

DOPC/CHOL interactions correlate with the measurements

of elastic moduli (B. A. Smith and E. Evans, unpublished).

Thus, characterizing the hierarchy of phospholipid-CHOL

interactions, the values of KA for the binary phospholipid/

CHOL systems at 15�C were arrayed in the order SM/CHOL

(;3300 mN/m) . SOPC/CHOL (;1980 mN/m) . DOPC/

CHOL (;890 mN/m).

Unlike the two 18-carbon chains of SOPC and DOPC,

brain SM contains a short saturated chain of sphingosine and

a second chain formed primarily by either a saturated fatty

acid or a long monounsaturated nervonic acid (C24:1). Also,

the nervonic acid is expected to interact with CHOL much

like a saturated hydrocarbon chain due to the relatively deep

position of its double bond between carbons 15 and 16

(49,50). Hence, by avoiding an interaction between the ste-

roid nucleus of CHOL and a cis double bond as would likely

occur with oleoyl chains (C18:1), the energy of the SM-

CHOL interaction is expected to be significantly greater than

the energy of the SOPC-CHOL interaction (51–55). Ac-

counting for the higher interaction energy, lipids with one or

more saturated acyl chains (SM and SOPC) experience

stronger van der Waals attraction to CHOL than do lipids

with unsaturated (e.g., C18:1) chains. Concomitantly,

increases in the distance between a saturated acyl chain and

CHOL, as would occur with an increase in temperature, can

markedly weaken this interaction. Thus, this weakening

could account for the large temperature effect on the elastic

moduli of the binary SM/CHOL, SOPC/CHOL, and ternary

SOPC/SM/CHOL bilayers. By comparison, lipids such as

DOPC containing symmetric C18:1 chains are likely to ex-

perience weaker van der Waals attraction to CHOL (51–55).

Even so, the increased elastic resistance to area stretch of

DOPC/CHOL bilayers compared to DOPC bilayers shows

clearly that the interaction energy is not negligible. Consis-

tent with the phase behavior deduced from other techniques

(28,29), the competition between SM and PCs for CHOL

most likely accounts for the differential effects of temperature

on the elastic stretch moduli for the ternary 1:1:1 DOPC/SM/

CHOL and 1:1:1 SOPC/SM/CHOL bilayers (Fig. 2).

Impact of stress on morphological evidence for
domain structure

For all the bilayer systems tested at low (15�C) and high

(33�C) temperatures, the small initial suction (;10 N/m2 ¼
100 mAtm) used to capture each vesicle was sufficient to

pressurize the vesicle segment outside the pipette into an

optically perfect spherical shape. By comparison, in optical

microfluorescence images (28,56–57), unstressed 1:1:1 PC/

SM/CHOL vesicles have shown irregular morphologies at

temperatures below 30�C that, over time, often formed large

spherical ‘‘bulges’’. These bulges were not apparent in the

shapes of the vesicles tested in our experiments (although the

shapes of free SM/CHOL and PC/SM/CHOL vesicles were

much less spherical and showed much slower fluctuations

than for pure PC vesicles). The appearance and enlargement

of bulges on raft microdomain-forming lipid vesicles have

been attributed to a stress discontinuity along the domain

boundaries (28,56–57). Modeled by a ‘‘line tension’’ g (en-

ergy/length), the stress discontinuity at a domain boundary

enables fluid domains with different mean curvatures to co-

exist in mechanical equilibrium. Incorporating other impor-

tant aspects of membrane curvature elasticity, a recent

detailed study of the vesicle shape mechanics (57) has shown

that the magnitude of the line tensions in raft-containing lipid

vesicles are small, with values ;1 pN. From simple first-

order mechanics for a small spherical bulge on a large vesicle

(radius Rv), it is easy to show that the aspect ratio for bulge

height hd divided by the base radius rd of the bulge depends on

the ratio of line tension to the level of vesicle pressurization

P, i.e., hd=rd � g=ðPR2
vÞ:Hence, for line tensions of ;1 pN, a

small level of pressurization P ; 10 N/m2 is sufficient to

reduce mm-size bulges on GUVs to below optical resolution

(i.e., hd/rd , 0.1), which is consistent with the optically

smooth spheres seen outside pipettes in our experiments.

Rupture strength

It is well known that bilayers composed of CHOL and

phospholipids with saturated acyl chains are much stronger

than the single-component fluid PC bilayers (33,45). Com-

mensurate with this view, the lysis tensions measured here for

FIGURE 5 Lysis tensions sL measured at 15�C are plotted as functions of

the bending elasticity parameter KA h2
hc computed with the elastic-stretch

moduli from Fig. 2 (Table 1) and values of hydrocarbon thickness in Table 2.

Also included are data obtained previously for thin (diC13:0, diC18:2) and

thick (diC22:1) PC bilayers (40). The dotted line connecting the data for the

fluid PC bilayers indicates the correlation to bending elasticity expected for

hydrophilic pores lined with rounded edges.
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binary SM/CHOL and SOPC/CHOL as well as ternary 1:1:1

SOPC/SM/CHOL vesicles were found to be at least two- to

threefold larger than for single-component SOPC bilayers.

Less well appreciated, yet consistent with an appreciable

energy of interaction, the addition of CHOL was found here

to also significantly strengthen bilayers composed of sym-

metrically unsaturated DOPC (e.g., at 15�C, sL increased

from ;10 mN/m for DOPC to 19 mN/m for 1:1 DOPC/

CHOL). The rupture tensions for all the phospholipid/CHOL

bilayer systems (Fig. 3 A) were found to decrease by ;20%

as the temperature was increased from 15�C to 33�C.

The possible connection between bilayer strength and

elasticity (in particular, the area compressibility 1/KA) has

been suggested for some time (33,45). The underlying con-

cept is that the formation of a ‘‘rupture pore’’ in a bilayer

involves significant elastic deformation of the lipid mono-

layers. However, when corrected for thermal-bending fluc-

tuations, there is little variation between measurements of the

area elastic moduli for different fluid phase PC bilayers (35)

while at the same time the rupture tensions vary significantly

in a manner that depends strongly on chain length (40).

Supporting the paradigm that pores in PC bilayers are

rounded and lined with lipid headgroups to reduce exposure

of hydrocarbon to water, the rupture strengths of fluid PC

bilayers appear to correlate with the square of the elastic-

bending moduli (40). Since the bending modulus scales

as the product of area-stretch modulus and square of the

deformable-hydrocarbon thickness, i.e., ;KAh2
hc (35), the

elastic-stretch moduli measured at 15�C (Fig. 2) and values

of the deformable hydrocarbon thicknesses hhc derived from

x-ray measurements (listed in Table 2) were used to char-

acterize the bending stiffnesses of all the lipid and lipid/

CHOL systems. Fig. 5 shows the comparison between rup-

ture tensions and bending stiffnesses measured in this study

along with the data reported previously for other fluid PC

bilayers (40). As seen in Fig. 5, the phospholipid/CHOL

systems depart significantly from the strong dependence on

bending stiffnesses exhibited by the strengths of single-

component PC bilayers.

Water permeability

Similar to the impact of CHOL on elastic moduli and rupture

strengths, addition of CHOL to bilayers made from PC lipids

dramatically reduced the permeability of vesicles to water in

our tests, as found in earlier work (45,58). Limited mainly by

the small solubility of water in the hydrocarbon interior

(43,59), bilayer permeability is expected to depend strongly

on the creation of ‘‘free volume’’ in the hydrocarbon region

driven by thermal fluctuations in acyl chain packing. Even

though PC bilayers have nearly the same lipid-area-stretch

moduli, the free volume is expected to increase exponentially

with increase in the reduced temperature relative to the gel-

liquid crystalline phase transition, which seems to account for

the variations in PC bilayer permeability associated with

different chain lengths and levels of unsaturation (38).

However, the results in Fig. 6 show a distinct correlation

between water permeability and area compressibility for the

binary and ternary phospholipid/CHOL systems that differs

significantly from the single-component PC bilayers. Perhaps

accounting for correlation among the CHOL-containing

systems, recent molecular simulations have demonstrated

that the free volume in phospholipid/CHOL bilayers in-

creases with increase in the area compressibility (60,61).

TABLE 2 Bilayer thickness measurements

System hpp (nm) hhc � hpp � 1 (nm)

DOPC 3.64 6 0.1 2.64

SOPC 4.07 6 0.06 3.07

1:1 DOPC/CHOL ;4.0 6 0.1 ;3

1:1:1 DOPC/SM/CHOL 4.30 6 0.15 3.3

1:1:1 SOPC/SM/CHOL 4.45 6 0.07 3.45

1:1 SOPC/CHOL 4.24 6 0.05 3.24

1:1 SM/CHOL 4.55 6 0.06 3.55

Measurements of average bilayer peak-peak headgroup distances (hpp) in

multilamellar arrays at 20�C obtained by x-ray diffraction. Data for 1:1

SOPC/CHOL and 1:1:1 SOPC/SM/CHOL are from this study. Data for

DOPC, SOPC, 1:1:1 DOPC/SM/CHOL, and 1:1 SOPC/CHOL are taken

from Gandhavadi et al. (9), McIntosh et al. (34), and Rawicz et al. (35). For

1:1 DOPC/CHOL, an estimate of thickness was made by using the value of

hpp ¼ 3.8 nm measured previously for 2:1 DOPC/CHOL (9). A deformable

hydrocarbon thickness hhc was estimated for each system by subtracting

;1 nm for headgroup dimensions from the peak-peak headgroup separa-

tion.

FIGURE 6 Values of water permeability PW measured at 15�C are plotted

as functions of the area compressibility 1/KA as defined by the elastic-stretch

moduli at 15�C in Fig. 2 (Table 1). Also included are data for other fluid-PC

bilayers (taken from Rawicz et al. (35) and Olbrich et al. (38)). The dashed-

dotted line was added to highlight the correlation between permeability and

area compressibility among the phospholipid/CHOL systems.
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Most intriguing, a striking correlation was obtained be-

tween the logarithm of water permeability and the bilayer

lysis tension for all the single-component PC and phospho-

lipid/CHOL systems (Fig. 7). This outcome suggests that

fluctuations in acyl chain conformations not only regulate

water partitioning inside bilayers but are also an important

factor governing the rare defects that nucleate rupture pores.

As notable exceptions to the correlation in Fig. 7, the ternary

1:1:1 PC/SM/CHOL systems are of particular interest be-

cause they have been previously shown to contain micro-

domains (25–29). Surprisingly, these systems appear much

less permeable to water than predicted by their lysis tensions

(Fig. 7), seeming to rule out appreciable water leakage at

domain boundaries. Significantly, when the CHOL fraction is

increased, the ternary 1:1:2 SOPC/SM/CHOL system is seen

to also agree with the correlation between the logarithm of

permeability and lysis tension (falling just behind the data

point for 1:1 SOPC/CHOL in Fig. 7). Based on what we

know about the phase diagrams for ternary phospholipid/

CHOL systems (28,29), increasing the CHOL content from

1:1:1 PC/SM/CHOL to 1:1:2 PC/SM/CHOL would move

the system toward a single liquid-phase miscibility region,

leading to solubilization of the microdomain structure. Still,

the cause of deviations of the 1:1:1 PC/SM/CHOL systems

from the correlation shown in Fig. 7 are not clear since they

could arise from either anomalous reductions in the perme-

ability to water or in the lysis tensions or both.

CONCLUSION

The micromechanical tests described in this work show the

important role of PC, SM, and CHOL composition in de-

termining the elasticity, strength, and water permeability of

vesicle bilayers. In addition to PC hydrocarbon-chain un-

saturation, the mechanical-stress history and temperature are

important factors determining the strength and permeation

properties of the ternary bilayer systems shown in previous

studies to contain raft microdomains.

APPENDIX

It is well established from studies of voltage-dependent conductance fluc-

tuations in planar bilayers that small pore-like defects appear frequently in

membranes and quickly collapse. Likewise, as recognized many years ago

(62), the dielectric breakdown of a thin fluid film requires the creation of an

extremely rare pore that is mechanically unstable under the film tension. By

analogy to cavity formation in a three-dimensional fluid, the energetic barrier

characterizing this metastable event is derived from the maximum in the total

energy needed to create the pore structure minus the mechanical work

contributed by the tension times increase in area of the membrane. Given a

constant energy per perimeter length of the pore (‘‘edge energy’’ e), the

energy barrier for a circular hole is approximated by Ehole � pe2/s, with the

area of the critical-size hole defined by �@Ehole/@s � p(e/s)2. Because

the energy barrier is usually very large, thermal activation is needed to assist

nucleation of an unstable pore. Based on the classical Kramers-Smoluchowski

theory for kinetics in overdamped (Brownian) systems, the frequency of pore

nucleation nrup(s) is shown to be dominated by a tension-dependent

Arrhenius factor, exp½�(pe2/kBT)/s�, which defines the thermal scale for

rupture tension, sb¼ pe2/kBT. The frequency for pore nucleation involves a

prefactor (attempt rate) no
h proportional to the ratio of sb to the viscous

coefficient for damping of hole excitations and a modest dependence on

tension (40) as expressed by

nrupðsÞ � n
o

hðs=sbÞ1=2
expð�sb=sÞ

FIGURE 7 Values of water permeability PW measured at 15�C are plotted

versus the lysis tensions sL measured at 15�C.

FIGURE 8 Stress-rate dependences of the lysis tensions measured at 15�C

for the ternary 1:1:1 PC/SM/CHOL plus binary 1:1 SM/CHOL and 1:1 PC/

CHOL vesicles. Here, the standard deviations in rupture tensions are added

to show the inherent widths in distributions of rupture events that arise from

the kinetics of membrane failure. As noted in the legend of Fig. 3, very small

standard errors in measurements represent the relevant statistical variations

that characterize the most frequent rupture events. (Even though similar in

form, the results for 1:1 DOPC/CHOL and 1:1:2 SOPC/SM/ CHOL vesicles

were left out of the figure for clarity.) The continuous dotted curves are fits of

the kinetic rupture model described in the Appendix to the most frequent

rupture tensions yielding the thermal tension scales sb correlated with the

single stress-rate measurements of lysis tension plotted in Fig. 3 B.
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If held at constant tension, the probability of membrane survival, S(t) ¼
exp½�

R
o/tnrup(y)dy�, is a simple exponential decay over time, S(t) ¼

exp½�nrup(s)t�, with the mean lifetime given by, trup ¼ 1/nrup(s). On the

other hand, when the membrane is subjected to a tension ramp, s ¼ rs t, the

frequency of rupture pore nucleation increases rapidly in time. At a fixed

stress rate rs, the probability of membrane survival to a particular level of

tension is found directly from the survival over time (40), S(s)¼ exp½�(1/rs)R
o/snrup(y)dy�, which predicts the following distribution (statistics) of

rupture tensions: p(s)¼ ½n(s)/rs�S(s). Although the form of this distribution

is easily computed numerically, what is most useful for experimental analysis

is the simple analytical expression that describes the ‘‘most frequent lysis’’

(MFL) tension sL as a function of stress rate. Defining membrane strength,

the MFL event is the maximum (peak) in the distribution, @p(s)/@s ¼ 0,

which relates the stress rate rs to the change (derivative) of lifetime (1/nrup)

with change in tension, i.e., 1/rs ¼ �@trup(s)/@sjMFL. Using the kinetic

model for the lifetime as a function of tension, trup(s)� (sb/s)1/2 exp(sb/s)/

nh
o, we obtain a transcendental expression relating lysis tension sL to the

stress rate, sb=sL � 5=2 logeðsL=sbÞ � loge½rs=ðno
hsbÞ�; as noted in the

text. The results plotted in Fig. 8 demonstrate that this equation closely

matches the stress-rate dependences of the lysis tensions measured for

ternary 1:1:1 PC/SM/CHOL and binary 1:1 SM/CHOL plus 1:1 PC/CHOL

vesicles. (For clarity, the results for 1:1 DOPC/CHOL and 1:1:2 SOPC/SM/

CHOL vesicles were left out of Fig. 8 because they overlap with the data for

1:1:1 SOPC/SM/CHOL.)
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