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INTRODUCTION
We congratulate Drs. Kang and Schafer (KS henceforth) for a careful and thought-provoking
contribution to the literature regarding the so-called “double robustness” property, a topic that
still engenders some confusion and disagreement. The authors’ approach of focusing on the
simplest situation of estimation of the population mean μ of a response y when y is not observed
on all subjects according to a missing at random (MAR) mechanism (equivalently, estimation
of the mean of a potential outcome in a causal model under the assumption of no unmeasured
confounders) is commendable, as the fundamental issues can be explored without the
distractions of the messier notation and considerations required in more complicated settings.
Indeed, as the article demonstrates, this simple setting is sufficient to highlight a number of
key points.

As noted eloquently by Molenberghs (2005), in regard to how such missing data/causal
inference problems are best addressed, two “schools” may be identified: the “likelihood-
oriented” school and the “weighting-based” school. As we have emphasized previously
(Davidian, Tsiatis and Leon, 2005), we prefer to view inference from the vantage point of semi-
parametric theory, focusing on the assumptions embedded in the statistical models leading to
different “types” of estimators (i.e., “likelihood-oriented” or “weighting-based”) rather than
on the forms of the estimators themselves. In this discussion, we hope to complement the
presentation of the authors by elaborating on this point of view.

Throughout, we use the same notation as in the paper.

SEMIPARAMETRIC THEORY PERSPECTIVE
As demonstrated by Robins, Rotnitzky and Zhao (1994) and Tsiatis (2006), exploiting the
relationship between so-called influence functions and estimators is a fruitful approach to
studying and contrasting the (large-sample) properties of estimators for parameters of interest
in a statistical model. We remind the reader that a statistical model is a class of densities that
could have generated the observed data. Our presentation here is for scalar parameters such as
μ, but generalizes readily to vector-valued parameters. If one restricts attention to estimators
that are regular (i.e., not “pathological”; see Davidian, Tsiatis and Leon, 2005, page 263 and
Tsiatis 2006, pages 26–27), then, for a parameter μ in a parametric or semiparametric statistical
model, an estimator μ̂ for μ based on independent and identically distributed observed data zi,
i = 1, …, n, is said to be asymptotically linear if it satisfies
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(1)

for ϕ(z) with E{ϕ(z)} = 0 and E {ϕ2(z)} < ∞, where μ0 is the true value of μ generating the data,
and expectation is with respect to the true distribution of z. The function ϕ(z) is the influence
function of the estimator μ̂. A regular, asymptotically linear estimator with influence function
ϕ(z) is consistent and asymptotically normal with asymptotic variance E{ϕ2(z)}. Thus, there
is an inextricable connection between estimators and influence functions in that the asymptotic
behavior of an estimator is fully determined by its influence function, so that it suffices to focus
on the influence function when discussing an estimator’s properties. Many of the estimators
discussed by KS are regular and asymptotically linear; in the sequel, we refer to regular and
asymptotically linear estimators as simply “estimators.”

We capitalize on this connection by considering the problem of estimating μ in the setting in
KS in terms of statistical models that may be assumed for the observed data, from which
influence functions corresponding to estimators valid under the assumed models may be
derived. In the situation studied by KS, the “full” data that would ideally be observed are (t, x,
y); however, as y is unobserved for some subjects, the observed data available for analysis are
z = (t, x, ty). As noted by KS, the MAR assumption states that y and t are conditionally
independent given x; for example, P (t = 1|y, x) = P (t = 1|x). Under this assumption, all joint
densities for the observed data have the form

(2)

where p(y|x) is the density of y given x, p(t|x) is the density of t given x, and p(x) is the marginal
density of x. Let p0(z) be the density in the class of densities of form (2) generating the observed
data (the true joint density).

One may posit different statistical models by making different assumptions on the components
of (2). We focus on three such models:

I. Make no assumptions on the forms of p(x) or p(t|x), leaving these entirely unspecified.
Make a specific assumption on p(y|x), namely, that E(y|x) = m(x, β) for some given
function m(x, β) depending on parameters β (p × 1). Denote the class of densities
satisfying these assumptions as .

II. Make no assumptions on the forms of p(x) or p(y|x). Make a specific assumption on
p(t|x) that P (t = 1|x) = E(t|x) = π(x, α) for some given function π(x, α) depending on
parameters α (s × 1). Here, we also require the assumption that P (t = 1|x) ≥ ε > 0 for
all x and some ε. Denote the class of densities satisfying these assumptions as .

III. Make no assumptions on the form of p(x), but make specific assumptions on p(y|x)
and p(t|x), namely, that E(y|x) = m(x, β) and P (t = 1|x) = E(t|x) = π(x, α) ≥ ε > 0 for
all x and some ε for given functions m(x, β) and p(x, α) depending on parameters β
and α. The class of densities satisfying these assumptions is .

All of I–III are semiparametric statistical models in that some aspects of p(z) are left
unspecified. Denote by m0(x) the true function E(y| x) and by π0(x) the true function P (t = 1|
x) = E(t|x) corresponding to the true density p0(z).

Semiparametric theory yields the form of all influence functions corresponding to estimators
for μ under each of the statistical models I–III. As discussed in Tsiatis (2006, page 52), loosely
speaking, a consistent and asymptotically normal estimator for μ in a statistical model has the
property that, for all p(z) in the class of densities defined by the model,
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, where  means convergence in distribution under the density
p(z), and σ2(p) is the asymptotic variance of μ̂ under p(z).

If model I is correct, then m0(x) = m(x, β) for some β, and it may be shown (e.g., Tsiatis,
2006, Section 4.5) that all estimators for μ have influence functions of the form

(3)

for arbitrary functions a(x) of x. If model II is correct, then π0(x) = π(x, α) for some α, and all
estimators for μ have influence functions of the form

(4)

for arbitrary h(x), which is well known from Robins, Rotnitzky and Zhao (1994). If model III
is correct, then m0(x) = m(x, β) and p0(x) = π(x, α) for some β and α, and influence functions
for estimators μ̂ have the form

(5)

for arbitrary a(x) and h(x). Depending on forms of m(x, β) as a function of β and π(x, α) as a
function of α, there will be restrictions on the forms of a(x) and h(x); see below.

We now consider estimators discussed by KS from the perspective of influence functions. The
regression estimator μ̂OLS in (7) of KS comes about naturally if one assumes model I is correct.
In terms of influence functions, μ̂OLS may be motivated by considering the influence function

(3) with a(x) = 0, as this leads to the estimator . In fact, although KS do not

discuss it, the “imputation estimator”  may be motivated
by taking a(x) = 1 in (3). Of course, in practice, β must be estimated. In general, (3) implies
that all estimators for μ that are consistent and asymptotically normal if model I is correct must
be asymptotically equivalent to an estimator of the form

(6)

where β is estimated by solving an estimating equation

. Because β is estimated, the influence
function of the estimator (6) with a particular ã(x) will not be exactly equal to (3) with a(x) =
ã(x); instead, it may be shown that the influence function of (6) is of form (3) with a(x) in (3)
equal to

(7)

where mβ (x, β) is the vector of partial derivatives of elements of m(x, β) with respect to β, and
β0 is such that m0(x) = m(x, β0).
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The IPW estimator μ̂IPW-POP in (3) of KS and its variants arise if one assumes model II. In
particular, μ̂IPW-POP can be motivated via the influence function (4) with h(x) = −μ. The
estimator μ̂IPW-NR in (4) of KS follows from (4) with h(x) = −E[y {1 − π(x)}]/E[{1 − π(x)}].
In fact, if one restricts h(x) in (4) to be a constant, then, using the fact that the expectation of
the square of (4) is the asymptotic variance of the estimator, one may find the “best” such
constant minimizing the variance as h(x) = −E[y {1 − π(x)}/π(x)]/E [{1 − π(x)}/π(x)]. An
estimator based on this idea was given in (10) of Lunceford and Davidian (2004, page 2943).
In general, as for model I, (4) implies that all estimators for μ that are consistent and
asymptotically normal if model II is correct must be asymptotically equivalent to an estimator
of the form

(8)

where α̂ is estimated by solving an equation of the form  for
some (s × 1) B(xi, α), almost always maximum likelihood for binary regression. As above,
because α is estimated, the influence function of (8) is equal to (4) with h(x) equal to

(9)

where πα (x, α) is the vector of partial derivatives of elements of π(x, α) with respect to α, and
α0 satisfies π0(x) = π(x, α0).

Doubly robust (DR) estimators are estimators that are consistent and asymptotically normal
for models in  that is, under the assumptions of model I or model II. When the true
density , then the influence function of any such DR estimator must be equal
to (3) with a(x) = 1/π0(x) or, equivalently, equal to (4) with h(x) = −m0(x). Accordingly, when

, that is, both models have been specified correctly, all such DR estimators
will have the same asymptotic variance. This also implies that, if both models are correctly
specified, the asymptotic properties of the estimator do not depend on the methods used to
estimate β and α.

KS discuss strategies for constructing DR estimators, and they present several specific
examples: μ̂BC-OLS in their equation (8); the estimators below (8) using POP or NR weights,
which we denote as μ̂BC-POP and μ̂BC-NR, respectively; the estimator μ̂ WLS in their equation
(10); μ̂π-cov in their equation (12); and a version of μ̂π-cov equal to the estimator proposed by
Scharfstein, Rotnitzky and Robins (1999) and Bang and Robins (2005), which we denote as
μ̂ SRR. The results for these estimators under the “Correct-Correct” scenarios ( ) in
Tables 5–8 of KS are consistent with the asymptotic properties above. We note that μπ -cov is
not DR under  because of the additional assumption that the mean of y given π must
be equal to a linear combination of basis functions in p. Making this additional assumption
may not be unreasonable in practice; however, strictly speaking, it takes μπ -cov outside the
class of DR estimators discussed here, and hence we do not consider it in the remainder of this
section. However, μ̂SRR is still in this class.

KS suggest that a characteristic distinguishing the performance of DR estimators is whether
or not the estimator is within or outside the augmented inverse-probability weighted (AIPW)
class. We find this distinction artificial, as all of the above estimators μ̂BC-OLS, μ̂BC-POP,
μ̂BC-NR, μ̂WLS and μ̂SRR can be expressed in an AIPW form. Namely, all of these estimators are
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algebraically exactly of the form (8) with h̃(xi ) replaced by a term -γ ̂ - m(xi, β ̂), where
γ ̂BC-OLS = γ ̂WLS = γ ̂SRR = 0,

(10)

where we write π̂i = π(xi,α̂) and m ̂i = m(xi, β ̂) for brevity. For μ̂WLS and μ̂SRR, this identity follows

from the fact that , which for μ̂WLS holds because KS restrict to m(x, β) =
xT β, with x including a constant term. Thus, we contend that issues of performance under

 are not linked to whether or not a DR estimator is AIPW, but, rather, are a
consequence of forms of the influence functions of estimators under  or . In particular,
under model II, it follows that the above estimators have influence functions of the form (4)
with h(x) equal to (9) with h̃(x) = −{γ* + m(x, β*)}, where γ* and β* are the limits in probability
of γ ̂ and β ̂, respectively. Thus, features determining performance of these estimators when
model II is correct are how close γ* + m(x, β*) is to m0(x) and how α is estimated, where
maximum likelihood is the optimal choice. In fact, this perspective reveals that, for fixed m(x,
β), using ideas similar to those in Tan (2006), the optimal choice of γ ̂ is as in γ ̂BC-NR with ti (1
− π̂i)/π̂ replaced by .

Similarly, under model I, the influence functions of these estimators are of the form (3) with
a(x) equal to (7) with ã(x) = ψ1/π(x, α*) + ψ2, where α* is the limit in probability of α̂ and ψ1
= 1 and ψ2 = 0 for μ̂BC-OLS, μ̂WLS and μ̂SRR; ψ1 = 1/E{π0(x)/π(x, α*)} and ψ2 = 0 for μ̂BC-POP;
and ψ1 and ψ2 for μ̂BC-NR are more complicated expectations involving π0(x) and π(x, α*).
Thus, under model I, features determining performance of these estimators are the form of a~
(x) and how β is estimated through the choice of A(x, β).

We may interpret some of the results in Tables 5, 6 and 8 of KS in light of these observations.
Under the “π -model Correct–y-model Incorrect” scenario ( ), μ̂BC-OLS, μ̂WLS and
μ̂SRR show some nontrivial differences in performance, which, from above, are likely
attributable to differences in m(x, β*). Under the “π -model Incorrect–y-model
Correct” ( ) all three estimators share the same ã(x) but use different methods to
estimate β, so that any differences are dictated entirely by the choice of A(x, β). The poor
performance of μ̂SRR can be understood from this perspective: “β” for this estimator is actually
β in the model m(x, β) used by the other two estimators concatenated by an additional element,
the coefficient of . The A(x, β) for μ̂SRR thus involves a design matrix that is unstable for
small π̂i, consistent with the comment of KS at the end of their Section 3.

In summary, we believe that studying the performance of estimators via their influence
functions can provide useful insights. Our preceding remarks refer to large-sample
performance, which depends directly on the influence function. Estimators with the same
influence function can exhibit different finite-sample properties. It may be possible via higher-
order expansions to gain an understanding of some of this behavior; to the best of our
knowledge, this is an open question.
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BOTH MODELS INCORRECT
The developments in the previous section are relevant in . Key themes of KS are
performance of DR and other estimators outside this class; that is, when both the models π(x,
α) and m(x, β) are incorrectly specified, and choice of estimator under these circumstances.

One way to study performance in this situation is through simulation. KS have devised a very
interesting and instructive specific simulation scenario that highlights some important features
of various estimators. In particular, the KS scenario emphasizes the difficulties encountered
with some of the DR estimators when π(xi, α̂) is small for some xi. Indeed, in our experience,
poor performance of DR and IPW estimators in practice can result from few small π(xi, α̂).
When there are small π(xi, α̂), as noted KS, responses are not observed for some portion of the
x space. Consequently, estimators like μ̂OLS rely on extrapolation into that part of the x space.
KS have constructed a scenario where failure to observe y in a portion of the x space can wreak
havoc on some estimators that make use of the π(xi, α̂) but has minimal impact on the quality
of extrapolations for these x based on m(x, β̂). One could equally well build a scenario where
the x for which y is unobserved are highly influential for the regression m(x, β) and hence could
result in deleterious performance of μ̂OLS. We thus reiterate the remark of KS that, although
simulations can be illuminating, they cannot yield broadly applicable conclusions.

Given this, we offer some thoughts on other strategies for deriving estimators that may have
some robustness properties under the foregoing conditions, that is, offer good performance
outside . One approach may be to search outside the class of DR estimators valid
under . For example, as suggested by the simulations of KS, estimators in the spirit
of μ̂π -cov, which impose additional assumptions rendering them DR in the strict sense only in
a subset of , may compensate for this restriction by yielding more robust performance
outside ; further study along these lines would be interesting. An alternative tactic
for searching outside  may be to consider the form of influence functions (5) for
estimators valid under . For instance, a “hybrid” estimator of the form

for δ small, may take advantage of the desirable properties of both μ^OLS and DR estimators.

A second possible strategy for identifying robust estimators arises from the following
observation. Consider the estimator

(11)

If π(xi ) = π(xi, α̂), then (11) yields one form of a DR estimator. If π(xi ) ≡ 1, then (11) results
in the imputation estimator. If π(xi ) = ∞, (11) reduces to μ̂OLS. This suggests that it may be
possible to develop estimators based on alternative choices of π(xi ) that may have good
robustness properties. For example, a method for obtaining estimators π(xi, α̂) that shrinks these
toward a common value may prove fruitful. The suggestion of KS to move away from logistic
regression models for π(xi, α) is in a similar spirit.

Finally, we note that yet another approach to developing estimators would be to start with the
premise that one make no parametric assumption on the forms of E(y|x) and E(t| x) beyond
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some mild smoothness conditions. Here, it is likely that first-order asymptotic theory, as in the
previous section, may no longer be applicable. It may be necessary to use higher-order
asymptotic theory to make progress in this direction; see, for example, Robins and van der
Vaart (2006).

CONCLUDING REMARKS
We again compliment the authors for their thoughtful and insightful article, and we appreciate
the opportunity to offer our perspectives on this important problem. We look forward to new
methodological developments that may overcome some of the challenges brought into focus
by KS in their article.
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