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The Long Terminal Repeat Is Not a Major Determinant of the
Cellular Tropism of Human Immunodeficiency Virus Type 1
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The long terminal repeats (LTRs) of human immunodeficiency virus type 1 (HIV-1) strains from the central
nervous systems of four patients with AIDS and of an HIV-1 isolate which is highly macrophage-tropic were
isolated by using the polymerase chain reaction. In transient transfection assays, these LTRs demonstrated no
significant difference in basal or stimulated levels of transcription in any of a variety of cell lines tested,
compared with expression directed from the LTR of a T-lymphocyte-tropic strain of HIV-1. Chimeric viruses
were created with the LTRs of the macrophage-tropic and brain-derived viruses ligated to the viral backbone
from a T-lymphocyte-tropic strain. No change in cellular tropism was demonstrated with these chimeric
viruses. Thus, unlike the LTRs of some murine retroviruses, the LTR of HIV-1 does not appear to play a major
role in determining cellular tropism.

Human immunodeficiency virus type 1 (HIV-1) infects a
variety of cell types both in cell culture and in vivo (7, 14, 22,
29, 35). The CD4-positive T lymphocyte and the monocyte/
macrophage appear to be the major targets for HIV-1 in vivo
(7, 29). Although the CD4-positive T lymphocyte may be the
major reservoir for HIV-1 in the bloodstream (29), the
monocyte/macrophage is thought to be the primary tissue
reservoir (7, 22). The monocyte/macrophage is also the
predominant cell type infected in the central nervous system
(7, 35).

It has recently been demonstrated that strains of HIV-1
exist which exhibit a specific tropism for either T lympho-
cytes or monocyte/macrophages (5-7, 14). Many of the
macrophage-tropic strains have been isolated from the cen-
tral nervous system (5, 7, 14). Understanding the molecular
mechanisms which determine the cellular tropism of HIV-1
strains would be helpful in elucidating the pathogenesis of
HIV-1 infection (11). Because a variety of murine retrovi-
ruses appear to exhibit cellular tropism on the basis of
specific alterations in their long terminal repeats (LTRs) (4,
12, 26), we investigated whether the LTR of HIV-1 was
involved in determining cellular tropism.
To examine the role of the LTR in transcriptional control,

plasmids were constructed with the LTRs of different HIV-1
isolates placed upstream of the bacterial chloramphenicol
acetyltransferase (CAT) gene. For this purpose, a macro-
phage-tropic HIV-1 isolate (Ba-L) (7) (kindly provided by
Mikulas Popovic) was grown on primary human macro-
phages, and genomic DNA was isolated by using standard
methods (2). The 3' LTR of Ba-L was amplified, from
nucleotides 9009 to 9686, by using a polymerase chain
reaction as previously described (21). After amplification
and gel purification, this segment of the Ba-L genome was
digested with KpnI and HindlIl. This DNA fragment, con-
taining Ba-L LTRs, was then introduced into a plasmid
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(SP65; Promega, Madison, Wis.) upstream of the CAT gene,
which was cut from a previously described HIV CAT
plasmid (19) and introduced into SP65 from the HindIlI to
the BamHI sites.
Because the vast majority of cells infected in the central

nervous system by HIV-1 are monocyte/macrophages (7,
35), brain tissue from patients who have died from HIV-1-
related disease should be an excellent source of macrophage-
tropic strains in vivo. We therefore prepared genomic DNA
from the brain tissue obtained at autopsy from four HIV-1-
infected individuals. By using the above-cited polymerase
chain reaction technique, we were able to amplify and isolate
LTRs from all four brain samples. They were cloned (KpnI
to HindlIl), as well, into the CAT-containing plasmid, up-
stream of the CAT gene. Because there may be multiple
strains of HIV-1 in the tissues of infected individuals and in
macrophage cultures of the uncloned Ba-L isolate (6), at
least two independent clones from each sample were char-
acterized in detail.
These plasmids were then sequenced by using a chain

termination method (Sequenase; United States Biochemical
Corp., Cleveland, Ohio) (28). The LTRs differed from each
other and from the sequence of the R7 derivative of the
HXB2 LTR (15), which was also sequenced in the above
plasmid construct, by 2 to 4%. This is in accordance with the
findings for other LTRs from various HIV-1 isolates (17). No
mutations in the defined regulatory motifs of the HIV-1 LTR
were demonstrated (27). Most nucleotide differences clus-
tered in the region of the LTR upstream of the last AP-1
binding site (nucleotides -445 to -365) and between the
postulated NFAT-1 binding site and the nuclear factor-KB
enhancer motifs (nucleotides -201 to -106) in the U3
region. No mutations were noted in the putative negative
regulatory element or downstream of the TATA box (data
not shown). The individual clones from brain samples or the
Ba-L-infected macrophages differed from one another by
only a few nucleotides, which were located within nonregu-
latory domains (data not shown).
To determine whether the various cloned LTRs exhibited

differing levels of function, the HIV-1 LTR CAT constructs
were transfected into a variety of cell lines by using a
DEAE-dextran method previously described (23). The levels
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FIG. 1. Transient transfections of HIV-1 LTR CAT constructs. (A) Jurkat cells; (B) U937 cells. Lanes 1, R7 LTR CAT, no treatment;
lanes 2, R7 LTR CAT treated with phorbol 12-myristate 13-acetate (50 ng/ml) and phytohemagglutinin (2 p,g/ml); lanes 3, R7 LTR CAT
cotransfected with SVTAT; lanes 4, Ba-L LTR CAT, no treatment; lanes 5, Ba-L LTR CAT treated with phorbol 12-myristate 13-acetate and
phytohemagglutinin; lanes 6, Ba-L LTR CAT cotransfected with SVTAT. The LTRs used in these constructs were amplified by using an
oligonucleotide encompassing nucleotides 9009 to 9030 (5'-CCTCAGGTACCTTTAAGACCA-3') as a sense primer and an antisense primer
including nucleotides 9665 to 9686 (5'-GAGGGATCTCTAGTTACCAG-3') on the HXB2 genome (17, 25). These represent extremely
conserved regions of the HIV-1 genome (17). Ten micrograms of the LTR CAT plasmids was transfected into 10' cells. Two micrograms of
the SVTAT plasmid was cotransfected in appropriate experiments. The quantity of protein used in the CAT assays was normalized to 70 pug
for U937 and 100 ,ug for Jurkat cells. The percent conversion of [14C]chloramphenicol was measured, and the data are represented as the
arithmetic mean of at least three transfections + the standard error of the mean from two plasmid preparations. The autoradiographs are
representative examples of these experiments.

of LTR-directed transcription were compared with those of
a CAT construct containing the LTR of the R7 derivative of
HXB2 (R7 LTR CAT). The HXB2 virus is a T-lymphocyte-
tropic HIV-1 clone which replicates poorly in macrophages
(6, 7). The R7 derivative of HXB2 has a deleted restriction
site, EcoRI, in the 3' sequences flanking the viral genome but
otherwise is indistinguishable from the original HXB2 clone
(15, 25).

A. Jurkat

The human T-cell line Jurkat (20) and the promonocytic
cell line U937 (32) were used as target cells to test the
efficiency of these LTR CAT constructs (Fig. 1 and 2). In
some cases, transfected cells were stimulated 24 h after
transfection with phytohemagglutinin (Sigma Chemical Co.,
St. Louis, Mo.) and phorbol 12-myristate 13-acetate (Sigma),
which stimulate LTR-driven transcription by generation of
active nuclear factor-KB (19). Cell lysates were harvested at

B. U937

EJ B1 EJBI
03 B2 o 62

MB4 MB4
LU R7 MR7~25 85

02010a
LU~~~~~~~~~~~~~~~~~~~~~~~~~~~~~U

0

Treatment: - PMA+ PHA - Treatment: PMA+ PHA
Cotransfection with _ + Cotransfection with _ +

TAT Plasmid: TAT Plasmid:
FIG. 2. Transient transfections of brain-derived LTR CAT constructs. (A) Jurkat cells; (B) U937 cells. The bar graphs represent the

percent conversion of ["4C]chloramphenicol presented as the arithmetic mean of at least three independent transfections plus the standard
error of the mean from at least two plasmid preparations. Bi, Brain 1 LTR; B2, brain 2 LTR; B3, brain 3 LTR; B4, brain 4 LTR; R7, R7 LTR.
PMA, Phorbol 12-myristate 13-acetate; PHA, phytohemagglutinin.
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FIG. 3. Viral growth curves of chimeric viruses. (A) U937 cells; (B) THP-1 cells; (C) H9 cells; (D) primary macrophages. Two hundred
nanograms of p24 antigen was used to infect cells with a variety of viruses. The p24 antigen level was measured in the supernatant at various
times. Bi LTR, B2 LTR, B3 LTR, B4 LTR, and Ba-L LTR are viruses with R7 HXB2 backbones and brain- or Ba-L-derived LTRs. Ba-L
and R7 viruses are nonchimeric virus strains.

44 h posttransfection, and the protein levels were normalized
by using the method of Bradford (3). CAT activity was
determined as previously described (10). Some cultures were
cotransfected with a plasmid, SVTAT, which contains the
HIV-1 transactivator gene, tat (1), under the control of the
simian virus 40 promoter (18).
As demonstrated in Fig. 1A (lanes 1 and 4) and B (lanes 1

and 4), the levels of baseline CAT activity did not differ
when driven by LTRs from R7 (T-lymphocyte-tropic) or
Ba-L (macrophage-tropic) in either the Jurkat or the U937
cell line. Furthermore, stimulation of these transfections by
using phytohemagglutinin plus phorbol 12-myristate 13-ace-
tate yielded no significant differences in activity (Fig. 1A and
B, lanes 2 and 5). The R7 and Ba-L LTR CAT constructs
were strongly transactivated by Tat in both cell lines (Fig.
1A and B, lanes 3 and 6). Further dilutions of the cell
extracts from the cultures of U937 cells cotransfected with
the Tat-producing plasmid, into the linear range for CAT
activity, demonstrated similar levels of transactivation of
both plasmids (data not shown). Transfections of the more
mature monocytic cell line THP-1 (33) also revealed no
significant differences in baseline or stimulated CAT activi-
ties between these plasmids (data not shown).

When the constructs containing the LTRs obtained from
brain tissues or R7 were transfected into Jurkat and U937
cells, there were no significant differences in the unstimu-
lated or stimulated levels of CAT activity among them (Fig.
2). The brain-derived and R7 LTRs were also equally trans-
activated by Tat in both cell lines (Fig. 2).

In summary, when tested by transient transfection, the
LTRs from a macrophage-tropic virus and HIV-1-infected
brain tissue did not differ in transcription efficiency from
each other or from the LTR of a T-lymphocyte-tropic strain
in various cell types.
To further examine whether HIV-1 tropism might be

based on differences in the LTR, chimeric viruses were
constructed. A plasmid (pGEM3; Promega) containing the 3'
region of HXB2, from the BamHI site at position 8,474 to an
XbaI site in the 3' cellular flanking sequences, was partially
digested with HindIII, and the linearized plasmid was di-
gested with KpnI. This removed the U3 and R regions of the
3' LTR. The various LTRs from Ba-L and the brain tissues
were then ligated to the above plasmid at the KpnI and
HindlIl sites. This plasmid, with a substituted LTR, was
then digested with BamHI and XbaI, which cut at position
8,474 and outside the HXB2 genome, respectively. This
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BamHI-XbaI fragment was then ligated to a plasmid con-
taining the HXB2 genome from which the native BamHI-
XbaI fragment was removed. This procedure produced a
plasmid with an HXB2 backbone and a variant LTR (U3 and
R regions) in the 3' position. The replacements of the LTRs
were confirmed by sequence analyses. After transfection
into COS-1 cells (8) and one round of reverse transcription,
the U3 region of the viral RNA would be derived solely from
the 3' LTR of the provirus (34). This procedure, therefore,
yielded viruses with a U3 region containing all of the
recognized regulatory regions of the variant LTRs (27). This
was verified on one occasion by using PCR amplification,
cloning, and sequencing (data not shown).

Supernatants from these transfected COS-1 cells were
harvested, and p24 antigen levels were measured by using a
sensitive enzyme-linked immunosorbent assay (DuPont
Inc., Wilmington, Del.). Two hundred nanograms of p24
antigen of each chimeric virus was added to a variety of cell
lines (2 x 106 cells in 10 ml of RPMI 1640 plus 10% fetal calf
serum [Gibco Laboratories, Grand Island, N.Y.]). After an
overnight incubation, the cells were washed twice with
phosphate-buffered saline and resuspended in 10 ml of
complete RPMI 1640. p24 antigen production was measured
at various times after infection. The Ba-L isolate was also
used, at the same level of p24 antigen input, to infect these
cell lines (Fig. 3A, B, and C). The kinetics and levels of viral
growth in the T-cell line H9 (24) and in two monocytic lines,
U937 and THP-1, were virtually identical for each of the
chimeric viruses and for the R7 version of HXB2. Ba-L, by
contrast, did not grow in any of these three cell lines, as
monitored by p24 antigen production for up to 6 weeks (Fig.
3A, B, and C; data not shown). A lower input (20 ng of p24
antigen) of each viral chimera also revealed no differences in
growth kinetics in these cell lines, although U937 cells were
not infectable by using this viral input (data not shown).

Primary macrophages, isolated by adherence from the
blood of HIV-1 seronegative donors and maintained as
previously described (6), were also infected with the above
viruses (Fig. 3D). Neither the chimeric viruses nor the R7
virus grew in these cells. As has been previously demon-
strated (7), the Ba-L isolate grew well in these primary
human macrophages (Fig. 3D).

Chimeric viruses with a T-lymphocyte-tropic HIV-1 strain
backbone and various LTRs do not demonstrate significant
differences in cellular tropism compared with that of the
parent virus. Thus, the HIV-1 LTR does not appear to be a
major determinant of cellular tropism. This is in contradis-
tinction to the murine leukemia viruses, in which the LTR
may be responsible for differing tissue tropisms and patho-
genicities of various strains (4, 12, 26, 30). Recent data have
demonstrated that cellular tropism of HIV-1 is at least
partially determined at cell entry and involves variations in
the envelope glycoproteins (6, 13, 36).
Although we show here that the cellular tropism of HIV-1

is not determined by the LTR, others have indicated that
differences in the growth kinetics of various strains of HIV-1
may be mediated by sequence variations in control regions
of the LTR (9). Our approach, in which LTRs were directly
amplified and cloned from tissue infected in vivo, suggests
that the variations in the regulatory elements found when
comparing viral strains replicating in cell cultures (9) may be
rare in HIV-1-infected tissues. Use of portions of HIV-1
obtained without propagation in cell culture should be a
reliable methodology, because mutations or overgrowth by
minor viral populations has been noted in HIV-1 strains
propagated over time in vitro (16, 31).
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