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Abstract

Oscillatory activity plays a critical role in regulating biological processes at levels ranging from subcellular, cellular, and
network to the whole organism, and often involves a large number of interacting elements. We shed light on this issue by
introducing a novel approach called partial Granger causality to reliably reveal interaction patterns in multivariate data with
exogenous inputs and latent variables in the frequency domain. The method is extensively tested with toy models, and
successfully applied to experimental datasets, including (1) gene microarray data of HeLa cell cycle; (2) in vivo multi-
electrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of a sheep; and (3) in vivo LFPs
recorded from distributed sites in the right hemisphere of a macaque monkey.
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Introduction

Recently, as reviewed in [1], many novel approaches in molecular

biology have been invented to improve the bulk-scale methods that

measure average values for a population of genes or proteins and

mask their dynamical activities which are critical for the function of

cells [2–4]. In neurophysiology, there is a long history of analyzing

neural dynamics by recording at the single neuron, neuronal

network and brain area levels. Based upon such experimental data,

how to explore the network structure of genes, proteins, neurons, etc,

is one of the most important issues in Systems Biology. In the

literature, there exist two closely related approaches (see for example

[5–8]): Bayesian modeling and Granger causality analysis. The

appealing properties of the Granger causality approach are: (1) the

flow of time is explicitly used to define causal relationships; (2) there is

a frequency decomposition that reveals the frequency at which two

units or variables interact with each other.

In the current paper we concentrate on the Granger causality

approach. The concept of Granger causality, originally introduced

by Wiener [9] and later formalized by Granger [10], has played an

important role in investigating the relationship among stationary

time series. Specifically, given two time series, if the variance of the

prediction error for the second time series at the present time is

reduced by including past measurements from the first time series

in the (non)linear regression model, then the first time series can be

said to cause the second time series. Geweke’s decomposition of a

vector autoregressive process [11] led to a set of causality measures

which have a spectral representation and make the interpretation

more informative and useful [12].

We first develop a novel approach to calculate Granger

causality: partial Granger causality, both in the time and the

frequency domain, aiming to deal with the case that the data

recorded has latent variables. Employing toy models we compare

our approach with partial directed coherence (PDC), which is used

to detect direct influences in multivariate time series [13]. It is

shown that partial Granger causality is able to reveal the right

causal relationship whereas PDC fails (see Figure 1). The simple

reason is that our decomposition relies on the Kolmogrov

equation, but PDC type of approach lacks this property. As a

consequence, the results in the frequency domain decomposition

could be in conflict with the results in the time domain.

After validating the approach we then apply it to three sets of

experimental data. The first data set is microarray data from the

IkB-NF-kB circuit in HeLa cell [14]. Although the data has been

widely analyzed in the literature, no results in the frequency

domain have been reported. Our approach reveals three basic

frequencies in the circuit. The first one with a period of 16 hours is

the HeLa cycle time. The second one with a period of 4 hours has

been reported in the past by other analysis methods [2–3]. Finally,

the third frequency feature has a period of around 10 hours and

has been observed in other gene networks, such as the P53

network [1]. Our causality analysis further reveals how these genes

interact with each other at the three identified frequencies in the

IkB-NF-kB circuit. The second data set consists of multi-electrode

array recordings from the inferotemporal cortex (IT) of a sheep

performing a stimulus discrimination task. Five channels are used

in our analysis to illustrate the application of our approach. The

third set of data is recorded with transcortical bipolar electrodes

from 15 distributed sites in the right hemisphere of a monkey

trained to perform a visuomotor task. In comparison with the

results obtained from the conditional Granger causality analysis,

an additional interaction between two areas is found.

Results

Toy Model
To illustrate the frequency decomposition of the partial Granger

causality introduced here, we first consider a toy model with
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exogenous inputs and latent variables (see Methods section). In this

model 5 simultaneously generated time series are defined by the

equations

x1 tð Þ~0:95
ffiffiffi
2
p

x1 t{1ð Þ{0:9025x1 t{2ð Þze1 tð Þza1e6 tð Þz

b1e7 t{1ð Þzc1e7 t{2ð Þ

x2 tð Þ~0:5x1 t{2ð Þze2 tð Þza2e6 tð Þzb2e7 t{1ð Þzc2e7 t{2ð Þ

x3 tð Þ~{0:4x1 t{3ð Þze3 tð Þza3e6 tð Þzb3e7 t{1ð Þzc3e7 t{2ð Þ

x4 tð Þ~{0:5x1 t{2ð Þz0:25
ffiffiffi
2
p

x4 t{1ð Þz0:25
ffiffiffi
2
p

x5 t{1ð Þz

e4 tð Þza4e6 tð Þzb4e7 t{1ð Þzc4e7 t{2ð Þ

x5 tð Þ~{0:25
ffiffiffi
2
p

x4 t{1ð Þz0:25
ffiffiffi
2
p

x5 t{1ð Þze5 tð Þza5e6 tð Þz

b5e7 t{1ð Þzc5e7 t{2ð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
where ei(t),i = 1,2,…7 are zero-mean uncorrelated processes with

identical variances, aie6is the exogenous input, and the term

bie7(t21)+cie7(t22) represents the influence of latent variables.

Author Summary

When predicting the structure of a network (a gene
network, a protein network, a metabolic network or a
neuronal network) based upon simultaneously recorded
multi-variable temporal data, a major tool is either the
Bayesian network or the Granger causality. We focused on
the Granger causality, and it has become increasingly
important in recent years because of the huge body of
temporal data available in, for example, molecular biology
(microarray gene data) and physiology (multi-electrode
array recordings of multi-neurons). However, all methods
of estimating the Granger causality tend to ignore latent
variables, which are ubiquitous in experimental data. Here,
we have developed a method that can eliminate the
influence of latent variables in predicting the network
structure. The method is then extended to the frequency
domain. The ability of the method to eliminate the
influence of latent variables is extensively verified in toy
models and then applied to a gene circuit, a neuronal
network, and a network of brain areas. Both in the time
and frequency domains, our approach can be used to
detect a network structure when multi-dimensional
temporal data are available.

Figure 1. Frequency decomposition. Comparison of the frequency decomposition of all 20 kinds of relationships between the partial Granger
causality (PGC) and PDC for data in Example 1 with ai,U[0,1], bi = 2, ci = 5, i = 1,…5. Upper panels are the results of PGC, and bottom panels are the
results of PDC.
doi:10.1371/journal.pcbi.1000087.g001

Uncovering Interactions in Frequency Domain
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From the model, one can see that x1(t) is a direct source to x2(t),

x3(t), and x4(t), x4(t) and x5(t) share a feedback loop, and there is no

direct connection between x1(t) and x5(t). We perform a simulation

of this system with ai,U[0,1], bi = 2, ci = 5, i = 1,…5 (we

extensively tested our approach in other more general cases of

ai, bi, ci, see [13]) to generate a data set of 2000 data points with a

sample rate of 200 Hz. Figure 2A illustrates the traces of 5 time

series. It is obvious that the system is stationary. The network

structure is depicted in Figure 2B. Figure 2C is the comparison

between our partial Granger causality F(1) and the conditional

Granger causality F(2) [15]. It is clearly shown that our partial

Granger causality outperforms the conditional Granger causality.

The values of the conditional Granger causality are all very small

due to the latent variables and common inputs, while the correct

structure is revealed via the partial Granger causality. In

particular, the interaction 4R5 is not identified by the conditional

causality, but it is correctly revealed in our partial Granger

causality approach.

Figure 2D presents a comparison between the time domain

partial Granger causality and the frequency domain partial

Granger causality. Blue line is the value of the partial Granger

causality for all 20 kinds of relationship calculated in the time

domain. Red line is the summation (integration) of the partial

Granger causality for frequencies in the range of [2p,p]. As

expected, Figure 2D demonstrates that the decomposition in the

frequency domain fits very well with the partial Granger causality

in the time domain.

As mentioned before, PDC has been used in the literature to

reveal the causal relationship in the frequency domain [13].

However, it lacks a theoretical foundation. Figure 1 is the detailed

comparison of the causality in the frequency domain of all 20 kinds

of relationship between the partial Granger causality (PGC) and

PDC. The upper panels are the results obtained from the PGC in the

frequency domain. It is easy to see that there are direct causal drives

from 1 to 2, 3 and 4, and a feedback between 5 and 4. Most

importantly it is consistent with the results in the time domain. The

bottom panels are the results obtained from PDC. It is evident that

the causality for almost all relationship is significant, in contradiction

with the results in the time domain. In addition to the exampled

considered here, more extensive testing of the PGC has been carried

out and comparison made with existing approaches (see Text S1).

Next we apply PGC to the experimental data.

Figure 2. Simulation results. (A) Traces of the time series we considered in Example 1 when ai,U[0,1], bi = 2, ci = 5, i = 1,…5. x2,x3,x4 and x5 are shifted
upward for visualization purpose. (B) The causality structure is plotted. (C) Comparison of the partial Granger causality F(1) and the conditional Granger
causality F(2) when ai,U[0,1]. It is obvious that F(2) fails to pick up the correct relationship while the inferred relationship from F(1) is consistent with the true
structure (B). (D) Comparison of the partial Granger causality in the time domain and frequency domain when ai,U[0,1], i = 1,…5 in Example 1. The blue
line represents the case of time domain, and the red line is the integral of the frequency domain in the interval [2p, p].
doi:10.1371/journal.pcbi.1000087.g002

Uncovering Interactions in Frequency Domain
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NF-kB: A Tri-Frequency Circuit
We applied partial causality analysis to HeLa cell cycle gene

expression data collected by Whitfield et al. (2002) [14]. These

data contain three complete cell cycles, i.e., 48 time points

distributed at intervals of 1 h, where the HeLa cell cycle is 16 h.

This data can be downloaded at http://genome-www.stanford.

edu/Human-CellCycle/Hela/. At each time point, there are three

or four replicates for each gene selected.

The NF-kB, a stress-regulated transcription factor belonging to

the Rel family, plays a pivotal role in the control of inflammatory

and innate responses. NF-kB activation has been related to

multiple aspects of tumorigenesis, including the control of cell

proliferation and migration, cell cycle progression and apoptosis.

Whereas only limited information is available regarding the direct

involvement of NF-kB in cell-cycle regulation, it was also found

that the levels of NF-kB activation are linked to signaling that

controls cell-cycle progression in HeLa cells.

Here we applied pairwise Granger causality method and partial

Granger causality (PGC) methods based on a sliding-window VAR

model. We only applied both methods to one typical gene

modules, which is regulated by 2 transcription factors, namely:

nuclear factor-kB (NF-kB) in the context of cell cycle progression

of transformed HeLa cells. In Figure 3A, we plotted the original

data and fitted VAR model (dotted lines). The obtained results of

Granger causality in the time domain are depicted in Figure 3B

(pairwise Granger causality) and in Figure 3C (PGC).

Our gene expression analysis (Figure 3) indicates that the

activation of NF-kB correlates with increased activity of IKKa, a

natural repressor of IkB -dependent inhibition of NF-kB. As

presented in Figure 3B, for the causal network of NF-kB module

based on pairwise Granger causality analysis, there are directional

connections between IKKa, NEMO and IkB, and also bidirec-

tional connections between IKKa, IkB and NF-kB. Here only the

causality that is significant is shown, and the magnitude of the

causality and the confidence interval are presented along the

arrows. Figure 3C shows the causal network of NF-kB module

based on partial Granger causality analysis presented in this paper.

Four directional causality connections are preserved and two are

Figure 3. Results for microarray data. (A) Gene expression profile plot of actual data and fitted data by AR model to the NF-kB, NEMO, IKKa, Iand
kB genes. A network is composed based on calculated time domain causality for gene module NF-kB, which contains NF-kB, NEMO, IKKa, and IkB
genes. (B) is constructed based on pairwise Granger causality method, and (C) is constructed based on PGC method. According to the confidence
interval, two connections become insignificant after partial influence is taken into account. (D) Power spectrum density (PSD) for IKKa, NEMO, IkB,
and NF-kB genes. There is only one frequency at 16 hours in IKKa, but there are two prominent frequencies for NEMO, IkB, and NF-kB at 16 hours
and 4 hours. (E) Frequency domain causality for IKKa, NEMO, IkB, and NF-kB genes.
doi:10.1371/journal.pcbi.1000087.g003

Uncovering Interactions in Frequency Domain
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eliminated after partial causality analysis is applied. As reported by

experimental data, the activity of NF-kB is tightly regulated by its

interaction with inhibitory IkB proteins. Activation of NF-kB is

achieved through the action of a family of serine/threonine k

(IKK). The IKK contains two catalytic subunits (IKKa and

IKKb) and a regulatory/adapter protein NEMO (also known as

IKKc). The causality analysis of NF-kB moduai le presents the

activation progression of NF-kB, and it also depicts the causal

effect of each gene during the transcription progression. The

results indicate that NF-kB transcription factor participates

(directly or indirectly) in the control of a complex pattern of

HeLa cell cycle regulators in a bidirectional fashion.

As discussed in the Methods section, the Granger causality is

consistent in both time and frequency domains. However, it may

be more convenient to decompose the time domain causality into

its frequency content, such that the profile connections can be

examined under a specific frequency. Figure 3D presents the

power spectrum plot for four genes. The power of the four genes

concentrates on three specific frequencies f1 = 0.061, f2 = 0.011,

and f3 = 0.22 h21. Then partial frequency causality in the

frequency domain is calculated.

It is interesting to see that the peak of IKKaRNEMO is around

16 hours, which implies that the HeLa cell cycle is originated from

the driving of IKKa. The peak causality of NEMORIkB is at

10 hours. Although the power at 10-hour frequency is less that the

other two, it is consistently presented in all genes. To the best of

our knowledge, it seems there are no direct reports on the 10-hour

frequency of the NF-kB circuit. However, it is reported in, for

example, the p53 circuit (see Figure 1A in [1]). The important role

played by NF-kB to regulate the p53 circuit has been reported in

[16]. The second peak of NEMORIkB locates at around 4-hour

frequency and PSD is very significant in both NEMO and IkB.

This frequency is reported in, for example, Figure 2 in [3]. From

our analysis, we conclude that the 4-hour frequency is generated

from NEMO, but it is absent in IKKa. It would be interesting to

test this experimentally and single out its functional meaning.

Furthermore, the driving from IkB to NF-kB is mainly at 16-hour

frequency and its harmonic (8-hour) frequency. Finally the

feedback from NF-kB to IkB is less frequency specific.

Intra-Network Data: Theta-Frequency Circuit
The experimental data set is the local field potential (LFP) data

that was collected from the inferotemporal cortex in left and right

hemisphere of the sheep. Multi-electrode array recordings

consisted of 64 channels in each hemisphere and individual

electrodes were fabricated from tungsten wires (125m diam.)

sharpened to a tip smaller than 1 m and insulated with epoxylite.

The sampling frequency for the LFPs was 2000 Hz. The sheep

were trained to perform an operant discrimination task in which

different pairs of sheep faces were presented and a correct panel-

press response elicited a food reward [17–21].

Inferior temporal (IT) cortex is considered to be the highest

processing stage along the ventral pathway in the visual system. It

is implicated in such higher cognitive functions as categorization

and memory formation. fMRI study has reported that ventral

temporal regions of primates can be differently activated by

different visual stimuli, such as faces, houses and other objects

[22]. Recently both spikes and local field potentials have been

found to be selective to a variety of stimuli and they are tolerant to

retinal position and size [23].

Much of current studies are based on either neuroimaging or

single unit recording techniques. fMRI can accurately locate the

brain regions that are active during a visual task but its temporal

resolution is poor. Single unit recordings provide direct detailed

neuronal information but it is unable to investigate large neuronal

ensembles. We use multi-electrode array that consists of up to 128

electrodes and make recordings in sheep IT cortex in both brain

hemispheres while animals performed discrimination tasks be-

tween pairs of faces and objects (see Figure 4A).

To see the spatial power distribution on the recording array, the

electrodes with increased theta power were arranged by the

latency of each channel. Figure 4B shows the theta (3–10 Hz)

power distribution on the electrode array. The activation of theta

power for face stimuli is concentrated within the latency of 300–

350 ms. The activated regions include part of the left hemisphere

and nearly the whole area of the right hemisphere. The activation

region for object presentation is similar in terms of its

topographical positions on the array but the stimulus elicited a

major activation starting at 200 ms in the left hemisphere which is

followed by right hemisphere activation at 250 ms. The sequential

activation is also observed for face stimuli in other recording

sessions. Assuming that LFP carries input signals from lower brain

areas, synchronized theta wave may represent a parallel input into

IT while the sequence of theta waves with different latencies may

reflect a traveling wave within the recorded region.

It is preferable that all links between distinct pairs of channels

(64 channels) be found. However, even with the data size we have

at the moment (10 seconds recordings with a sample rate of

2 K Hz), fitting a 64 dimensional model is somewhat problematic.

Hence, here we only select five channels to demonstrate the

application of our approach and will publish the biological results

elsewhere. The links revealed in our approach could be thought of

as ‘functional’ interactions between five channels, as defined in the

fMRI literature [24]. In fact, the limited data analyzed aligns well

with the setup of the current paper: it contains the exogenous input

(see below) and latent variables (due to unrecorded inputs and the

fact that we only choose five channels).

The partial Granger causality in the time domain is shown in

Figure 4C. The complete causal relationship is presented in

Figure 4D. In Figure 4E, the partial Granger causality in the

frequency domain is depicted. We conclude that the interaction

between these channels is in the theta band. For example, the

frequency decomposition corresponding to the peak (1R4) in

Figure 4C in the time domain has a peak around 10 Hz. Although

there are activities in the power spectral density in the gamma

band for the five channels (not shown), we have not observed any

interactions between these five channels.

Inter-Network Data: Beta- and Gamma-Frequency Circuit
We refer the reader to [15] for details of the experiment. Briefly,

the LFP data were collected when the monkey performed a GO/

NO-GO visual pattern discrimination task. The presence of

oscillatory field potential activity in the beta (14–30 Hz) frequency

range was reported in the sensorimotor cortex during the

prestimulus period.

It is pointed out in [15] that if only pairwise Granger causality is

applied, the connectivity structure is as depicted in Figure 5A.

Using the conditional Granger causality, the causal relationship

between the primary somatosensory (S1) and one of the inferior

posterior parietal sites (in area 7a) is eliminated, a result predicted

from anatomical considerations. Applying the partial Granger

causality in the time domain, we obtain the results as shown in

Figure 5B, where the actual values and the confidence intervals are

depicted. 7b is another inferior posterior parietal site and M1 is the

primary motor site. It is clearly seen that there are six causal

relationships, i.e., S1RM1, 7bRM1, 7bRS1, 7bR7a, S1R7b,

and finally 7aR7b. Figure 5C is the Granger causality in the

frequency domain. According to Figure 5B, we see that there are

Uncovering Interactions in Frequency Domain

PLoS Computational Biology | www.ploscompbiol.org 5 May 2008 | Volume 4 | Issue 5 | e1000087



six pairs which have significant Granger causality. The first five

have been reported in the literature and are in the Beta band (10–

30) Hz. The final one, 7aR7b, has a peak at a high frequency (the

super Gamma band). It has been reported in the literature that the

nervous systems use different frequency bands to communicate

with each other [25].

Methods

Partial Granger Causality: Time Domain
Consider a multiple stationary time series of dimension n, {Wt}.

The series has the following vector autoregressive representation

with the use of the lag operator L:

B Lð ÞWt~jt ð1Þ

where E(jt) = 0, var(jt) =S, an n6n matrix, and B is a polynomial

matrix of L. B(0) = In, In is an n6n identity matrix. Now suppose

that Wt has been decomposed into three vectors (measured

variables) Xt, Yt, and Zt with k, l, and m dimensions, respectively,

i.e., Wt = (Xt
T,Yt

T,Zt
T)T, where (.)T denotes matrix transposition.

Generally, the perturbation jt in Equation 1 can be represented

as a noise term et together with an exogenous term Et
x and a latent

variable term Lt
a1. Equation 1 can be rewritten as

B Lð ÞWt~Ex
t zetzLa

t ð2Þ

where the random vectors (Et
x,Lt

a) and et are independent. The

exogenous variable Et
x represents the environmental drive and is

typically present in any experimental setup. For example, all

neurons in the inferior temporal cortex receive inputs from lower

visual areas such as V1 and V2 and the incoming signal could be

represented as exogenous variables. The latent variable Lt
a is a

variable that cannot be measured in the experiment.

The vector autoregressive representation for W involving

three time series Xt (k dimensional vector), Yt (l dimensional

vector) and Zt (m dimensional vector) can be written in the

Figure 4. Results for sheep data. (A) Local field potential recorded from 64 channels. Time 0 is the starting point of stimuli. (B) Spatial-temporal
pattern of theta power distribution (2500 to 500 ms) across the recording array for one experimental session in response to face presentation.
Electrodes are arranged by the latency of the normalized theta power. The electrodes with increased power are marked by the filled colour on the
electrode grid in different time slots of 50 ms in the duration 100–400 ms. (C) Partial Granger causality of all possible relationships in time domain. (D)
The inferred structure from experimental data in the time domain. (E) The frequency decomposition of all possible relationship is consistent with the
structure inferred from time domain.
doi:10.1371/journal.pcbi.1000087.g004

Uncovering Interactions in Frequency Domain
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following way:

Xt~
X?
i~1

a1iXt{iz
X?
i~1

b1iYt{iz
X?
i~1

c1iZt{iz

e1t
�!z eE

1t

�!
zB1 Lð ÞeL

1t

�����!
Yt~

X?
i~1

d1iXt{iz
X?
i~1

e1iYt{iz
X?
i~1

f1iZt{iz

e2t
�!z eE

2t

�!
zB2 Lð ÞeL

2t

�����!
Zt~

X?
i~1

g1iXt{iz
X?
i~1

h1iYt{iz
X?
i~1

k1iZt{iz

e3t
�!z eE

3t

�!
zB3 Lð ÞeL

3t

�����!

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

where eit
!,eL

it

!
,eL

it

!
are normally distributed random vectors and Bi(L)

is a polynomial matrix of L of appropriate size.

For simplicity of notation, let us define

ui tð Þ~eit
!zeE

it

!
zeL

it

!

i = 1,2,3. The noise covariance matrix for Equation 3 can be

represented as

S~

var u1tð Þ cov u1t,u2tð Þ cov u1t,u3tð Þ

cov u2t,u1tð Þ var u2tð Þ cov u2t,u3tð Þ

cov u3t,u1tð Þ cov u3t,u2tð Þ var u3tð Þ

2
664

3
775~

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

2
664

3
775

Following the idea of Granger causality, let us further consider two

time series Xt and Zt (to fit Xt and Zt in W exclusively using X and

Z) (due to Wald representation, latent variables can be represented

Figure 5. Results for monkey data. (A) Pairwise Granger causality of all possible relationships. (B) The partial Granger causality in the time domain.
(C) Frequency decomposition of all possible relationships. (D) The inferred structure from experimental data. The four areas in the brain are marked in
the upper trace and the detailed interactions are shown in the bottom trace. The dashed line indicates the additional interaction found using partial
Granger causality.
doi:10.1371/journal.pcbi.1000087.g005

Uncovering Interactions in Frequency Domain
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as the summation of normally distributed random inputs,

depending on history), the joint autoregressive representation for

Xt and Zt can be written as

Xt~
P?
i~1

a2iXt{iz
P?
i~1

c2iZt{iz e4t
�!z eE

4t

�!
zB4 Lð ÞeL

4t

�����!
Zt~

P?
i~1

b2iXt{iz
P?
i~1

d2iZt{iz e5t
�!z eE

5t

�!
zB5 Lð ÞeL

5t

�����!
8>>><
>>>: ð4Þ

The noise covariance matrix for Equation 4 can be represented as

S~
var u4tð Þ cov u4t,u5tð Þ
cov u5t,u4tð Þ var u5tð Þ

� �
~

S44 S45

S54 S55

� �

We have defined partial Granger causality in the time domain (see

Text S1), which reflects the causal influence from Y to X conditioned

on Z by eliminating the influence of common exogenous inputs and

latent variables. It has the following expression:

F
1ð Þ

Y?X Zj ~ln
S44{S45S{1

55 S54

�� ��
Sxx{SxzS

{1
zz Szx

�� ��
 !

ð5Þ

It is interesting to compare F(1) with the definition of the conditional

Granger causality F(2) defined by

F
2ð Þ

Y?X Zj ~ln
S44j j
Sxxj j

� �
ð6Þ

Note that the main difference between the conditional and the

partial Granger causality is that in the definition of the conditional

Granger causality, the effect of latent and exogenous variables is not

eliminated both in the denominator term |Sxx| and in the

numerator |S44|. In our definition of the partial Granger causality,

we use the conditional variance in both the denominator

|Sxx2SxzSzz
21Szx| and the numerator |S442S45S55

21S54|. As a

result, the effect of the latent and exogenous variables could be

eliminated. This was proven to be important as demonstrated

extensively in the Results section and in Text S1. Of particular

interest is that the definition of the partial Granger causality has a

transparent statistical meaning since it depends on a well-understood

notation: the conditional variance.

To deal with exogenous inputs and latent variables is one of the

central topics in statistics and, as one could expect, there is an

extensive literature on the topic. On page 353 in [26], for example,

the author has raised the issue and gone further on page 355 to

define the partial directed correlation. However, our approach is

completely different. First of all, the partial Granger causality is

based upon the definition of the conditional Granger causality,

which is proved to be one of the most widely used Granger

causality definition [27] in the literature. The statistical meaning is

transparent, as discussed in the paragraph above. Secondly, as also

mentioned above, we extend the time domain partial Granger

causality to the frequency domain in the next subsection, which is

one of the most appealing properties of the Granger causality.

Partial Granger Causality: Frequency Domain
To drive the spectral decomposition of the time domain partial

Granger causality, we first multiply the matrix

P1~
Ik {S45S{1

55

0 Im

 !
ð7Þ

to both sides of Equation 4. The normalized equations are

represented as:
D11 Lð Þ D12 Lð Þ
D21 Lð Þ D22 Lð Þ

� �
Xt

Zt

� �
~

X �t
Y �t

� �
ð8Þ

with D11(0) = Ik, D22(0) = Im, D21(0) = 0, cov(Xt
*,Zt

*) = 0. We note

that var(Xt
*) = S442S45S55

21S54, var(Zt
*) = S55. For Equation 3, we

also multiply

P~P3
:P2 ð9Þ

where

P2~

Ik 0 {SxzS
{1
zz

0 Il {SyzS
{1
zz

0 0 Im

0
B@

1
CA ð10Þ

and

P3~

Ik 0 0

{ Sxy{SxzS
{1
zz Szy

� 	
Sxx{SxzS

{1
zz Szx

� 	
Il 0

0 0 Im

0
B@

1
CA ð11Þ

to both sides of Equation 3. The normalized equation of

Equation 3 becomes

B11 Lð Þ B12 Lð Þ B13 Lð Þ
B21 Lð Þ B22 Lð Þ B23 Lð Þ
B31 Lð Þ B32 Lð Þ B33 Lð Þ

0
B@

1
CA Xt

Yt

Zt

0
B@

1
CA~

ext

eyt

ezt

0
B@

1
CA ð12Þ

where ext, eyt, ezt are independent, and their variances being Ŝxx,

Ŝyy, Ŝzz with

ŜSzz~Szz

ŜSxx~Sxx{SxzS
{1
zz Szx

ŜSyy~Syy{SyzS
{1
zz Szy{

Syx{SyzS
{1
zz Szxð Þ Sxy{SxzS

{1
zz Szyð Þ

Sxx{SxzS
{1
zz Szxð Þ

8>>><
>>>:

After Fourier transforming Equation 8 and Equation 12, we can

rewrite these two equations in the following expression:

X lð Þ
Z lð Þ

� �
~

Gxx lð Þ Gxz lð Þ
Gzx lð Þ Gzz lð Þ

� �
X � lð Þ
Z� lð Þ

� �
ð13Þ

and

X lð Þ
Y lð Þ
Z lð Þ

0
B@

1
CA~

Hxx lð Þ Hxy lð Þ Hxz lð Þ
Hyx lð Þ Hyy lð Þ Hyz lð Þ
Hzx lð Þ Hzy lð Þ Hzz lð Þ

0
B@

1
CA Ex lð Þ

Ey lð Þ
Ez lð Þ

0
B@

1
CA ð14Þ

Noting that X(l) and Z(l) from Equation 13 are identical with that

from Equation 14, we thus have

X � lð Þ

Y lð Þ

Z� lð Þ

0
BB@

1
CCA~

Gxx lð Þ 0 Gxz lð Þ

0 1 0

Gzx lð Þ 0 Gzz lð Þ

0
BB@

1
CCA

{1

Hxx lð Þ Hxy lð Þ Hxz lð Þ

Hyx lð Þ Hyy lð Þ Hyz lð Þ

Hzx lð Þ Hzy lð Þ Hzz lð Þ

0
BB@

1
CCA

Ex lð Þ

Ey lð Þ

Ez lð Þ

0
BB@

1
CCA

~

Qxx lð Þ Qxy lð Þ Qxz lð Þ

Qyx lð Þ Qyy lð Þ Qyz lð Þ

Qzx lð Þ Qzy lð Þ Qzz lð Þ

0
BB@

1
CCA

Ex lð Þ

Ey lð Þ

Ez lð Þ

0
BB@

1
CCA

ð15Þ
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where Q(l) = G21(l)H(l). Now the power spectrum of X* is

Sx�x� lð Þ~Qxx lð ÞŜSxxQ0xx lð ÞzQxy lð ÞŜSyyQ0xy lð Þz

Qxz lð ÞŜSzzQ0xz lð Þ
ð16Þ

where (.)9 denotes the complex transformation and conjunction. In

light of the fact that Ŝxx =Sxx2SxzSzz
21Szx, the first term in

Equation 16 can be thought of as the intrinsic power after

eliminating exogenous inputs and latent variables and the remaining

two terms as the combined causal influence from Y mediated by Z.

This interpretation leads immediately to the definition

fY?X Zj lð Þ~ln
Sx�x� lð Þj j

Qxx lð ÞŜSxxQ0xx lð Þ
�� �� ð17Þ

Note that according to Equation 8, the variance of X* equals

S442S45S55
21S54. By the Kolmogrov formula [28] for spectral

decompositions and under some mild conditions, the Granger

causality in the frequency domain and in the time domain measures

satisfies

FY?X Zj ~
1

2p

ðp

{p

fY?X Zj lð Þdl ð18Þ

The dependence of partial Granger causality on the coefficient of

VAR model is quite complex. Further discussion is presented in Text

S2.

Discussion

We have presented a study on the frequency decomposition for

the partial Granger causality. The time domain partial Granger

causality and its frequency domain decomposition are successfully

applied to toy models and experimental data.

Partial Granger Causality and Its Frequency Domain
Decomposition

In the literature various definitions of the Granger causality in

the frequency domain have been introduced. For more than three

time series, Kalminski and Blilowska [29] proposed a full multi-

variate spectral measure, called directed transfer function (DTF),

which is used to determine the directional influences between any

given pair of variables in a multivariate data set. Sameshima and

Baccala [30] introduced PDC to detect direct influence in

multivariate time series. Earlier, Geweke [11] has introduced the

conditional Granger causality to infer the original direct

relationship between multi-variable time series, as recently

reviewed in [15,27–28]. In [11] both a time domain measure,

consistent with that of Granger, and its frequency decomposition

were given. However, when the exogenous inputs or latent

variables are present, the conditional Granger causality fails to

identify the correct causal relationship while the partial Granger

causality we defined this paper remains robust against the

exogenous input and latent variables (see Figure 2), as pointed

out in Text S1. One of the key properties of the conditional

Granger causality of Geweke’s formulation is that the summation

of the Granger causality in the frequency domain equals the

Granger causality in the time domain. This is due to the

Kolmogrov equation for frequency decompositions. Both PDC

and DTF lack this property and the inferred structures could

simply be misleading. Here we follow the idea of Geweke’s

formulation and the partial Granger causality in the frequency

domain is given.

One of our aims of the current paper is to present a method to

correctly calculate the Granger causality when there are latent

variables and exogenous inputs. Our results on toy models have

demonstrated that the Granger causality defined here is robust

against latent variables and exogenous inputs, in comparison with

the quantities such as the conditional Granger causality etc. The

other aim is to demonstrate that an ad hoc definition of the causality

such as PDC in the frequency domain could be misleading. It

usually yields contradicting results between the time domain

Granger causality and the frequency domain Granger causality.

HeLa Gene Network
Due to the limitation of HeLa microarray data (sampling rate is

one hour), we are not able to assess the fast dynamical activity

which occurs at a minute scale. It is pointed out in [31] that there

are two pathways in NF-kB circuit: one is canonical (fast time

scale, minutes) and the other is non-canonical (slow time scale,

hours or days). The canonical pathway involves NEMO and is

faster than the non-canonical pathway which does not involve

NEMO. Our results contradict the above conclusion. The non-

canonical pathway does involve NEMO, although it exhibits a

slow dynamics. Of course, we do not exclude the possibility that

the causality between IKKa and NEMO is due to the crosstalk

between canonical and non-canonical pathways. However, one

thing is certain. The claim that ‘It is important to note that non-

canonical activation of NF-kB appears to lack highly dynamic

control’ [31] seems untrue. The NF-kB circuit clearly shows a tri-

frequency activity and the causality between each gene is strong or

significant.

Gamma, Beta, and Theta Rhythms
Gamma rhythms occur during persistent, self-sustained activity

and are a hallmark of cortical activity during sensory processing

and cognition. Beta oscillatory activity is often observed to be

synchronized between various parts of sensorimotor cortex. Theta-

frequency activity is observed during some short term memory

tasks and reflects the on-line state of the hippocampus; one of

readiness to process incoming signals [32]. In our data, although

theta wave is observable for most channels (see Figure 4B), they

are synchronous at around 300 ms, which is more or less the time

of the evolved field potential. In conclusion, there are different

frequencies in the recorded brain activity and their interactions

give rise to different cognitive functions.

Supporting Information

Text S1 Partial Granger causality: eliminating exogenous inputs

and latent variables.

Found at: doi:10.1371/journal.pcbi.1000087.s001 (0.50 MB PDF)

Text S2 A simple example in the frequency domain: dependence

of the Granger causality on model parameters.

Found at: doi:10.1371/journal.pcbi.1000087.s002 (0.04 MB PDF)
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