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ABSTRACT We use Voiculescu’s free probability theory
to prove the existence of prime factors, hence answering a
longstanding problem in the theory of von Neumann algebras.

In a series of papers, Murray and von Neumann (1–5) intro-
duced and studied certain algebras of Hilbert space operators,
also known as rings of operators. They are now known as ‘‘von
Neumann algebras.’’
A von Neumann algebra is a strong-operator closed self-

adjoint subalgebra of the algebra of all bounded linear trans-
formations on a Hilbert space. Factors are von Neumann
algebras whose centers consist of scalar multiples of the
identity. They are the building blocks from which all the von
Neumann algebras are built. Themost elementary factors, type
In factors, are isomorphic to the algebra Mn of all n 3 n
complex matrices. One of the basic constructions with factors
(producing other factors) is that of forming the tensor product.
For factors of type In, Mp R Mq is isomorphic to Mpq. Of
course, no such tensor decomposition of Mp is possible pre-
cisely when p is a prime. The theory of tensor decompositions
of factors of type In is little more than the theory of factoring
integers into their prime components.
Murray and von Neumann (1) classified factors by means of

a relative dimension function. Finite factors are those for which
this dimension function has a finite range. For finite factors,
this dimension function gives rise to a (unique, when normal-
ized) tracial state. In general, a von Neumann algebra admit-
ting a faithful normal trace is said to be finite. Infinite-
dimensional finite factors are called factors of type II1. They
are ‘‘continuous’’ matrix algebras. Murray and von Neumann
(2) spoke of ‘‘continuous dimensionality’’ in their factors of
type II1. In a parallel manner, when we study tensor products
of factors of type II1 and their tensor-product decompositions,
we may speak of decomposition into ‘‘continuous primes.’’
Factors of type II1 tensored with one another (as vonNeumann
algebras) produce, again, factors of type II1. Each factor of
type II1 may be decomposed as the tensor product of Mn and
a factor of type II1 for each n in N. In a sense, the ‘‘discrete
primes’’ (that is, 2, 3, 5, . . .) are not significant in the theory
of decomposition into ‘‘continuous primes.’’ The first question
of the theory of such decompositions has to be that of the
existence of a continuous prime: Is there a factor of type II1 that
is not (isomorphic to) the tensor product of two factors of type
II1? This problem and some related problems, concerning the
basic structure of factors, have been asked and studied by many
people (see, e.g., refs. 6 and 7, pp. 4.4.12 and 4.4.45). Popa (6)
proves that there are prime factors of type II1 with a nonsep-
arable predual. The separable case remained open. In this
paper, we shall answer this question affirmatively.
We describe below, briefly, a basic construction of factors of

type II1 by using regular representations of discrete groups.
Our main result states that certain factors arising from free
groups are prime. An outline of the proof follows the state-
ment. We end with some open questions.

Main Result

There are two main classes of examples of von Neumann
algebras introduced by Murray and von Neumann (1, 3). One
is obtained from the ‘‘group-measure space construction’’; the
other is based on regular representations of a (discrete) group
G (with unit e). The second class is the one needed in this
paper. A brief description of that class follows.
The Hilbert space * is l2(G) (with its usual inner product).

We assume thatG is countable so that* is separable. For each
g in G, let Lg denote the left translation of functions in l2(G)
by g21. Then g 3 Lg is a faithful unitary representation of G
on *. Let +G be the von Neumann algebra generated by
{Lg:g [ G}. Similarly, let Rg be the right translation by g on
l2(G) and 5G be the von Neumann algebra generated by
{Rg:g [ G}. Then the commutant +9G of +G is equal to 5G

and 59G 5 +G. The function ug that is 1 at the group element
g and 0 elsewhere is a cyclic trace vector for +G (and 5G). In
general,+G and5G are finite vonNeumann algebras. They are
factors (of type II1) precisely when each conjugacy class in G
(other than that of e) is infinite. In this case, we say that G is
an infinite conjugacy class (i.c.c.) group.
Specific examples of such II1 factors result from choosing for

G any of the free groups Fn on n generators (n $ 2), or the
permutation group P of integers Z (consisting of those per-
mutations that leave fixed all but a finite subset of Z). Murray
and von Neumann (3) prove that +Fn and +P are not p
isomorphic to each other (a deep result). A factor is hyperfinite
if it is the ultraweak closure of the ascending union of a family
of finite-dimensional self-adjoint subalgebras. In fact,+P is the
unique hyperfinite factor of type II1; it is contained in any
factor of type II1; and the tensor product of the hyperfinite II1
factor with itself is p isomorphic to itself. Now we state our
main theorem.
MAIN THEOREM. The free group factor +Fn associated with the

free group on n ($2) generators is prime, i.e., it is not isomorphic
to the tensor product of any two factors of type II1.
We prove this result with the aid of Voiculescu’s free

probability theory (8–10) (especially, his recently introduced
concept of free entropy) and some geometrical methods for
estimating free entropies. We refer to ref. 10 for the basics of
free probability theory.
Let } be a von Neumann algebra with a normal faithful

trace t, X1, . . . , Xn be self-adjoint elements in}. As analogues
of classical entropy and of Fisher’s information measure,
Voiculescu (8) introduced free entropy x(X1, . . . , Xn).
Roughly speaking, x(X1, . . . , Xn) is the limit of certain
normalized measurement of all self-adjoint matrices that ap-
proximate X1, . . . , Xn in joint distributions as the dimension
of the matrices tends to infinity. We list some properties of free
entropy in the following lemma.
LEMMA 1. Let X1, . . . , Xn, n $ 1, be self-adjoint elements in

} (with trace t), C be t(X12 1 z z z 1 Xn2)1/2 and R0 be max{iXji :
j 5 1, . . . , n}. Then
(i) (ref. 8; p. 2.2) x(X1, . . . , Xn) # n/2 log(2peC2n21);The publication costs of this article were defrayed in part by page charge
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(ii) (ref. 8, p. 4.5) x(X1) 5 ** logus 2 tudm1(s)dm1(t) 1 3/4 1
1/2 log 2p, where m1 is the (measure on the spectrum of X1
corresponding to the) distribution of X1;
(iii) (ref. 8; p. 5.4) x(X1, . . . , Xn) 5 x(X1) 1 z z z 1 x(Xn)

when X1, . . . , Xn are free random variables.
From the above lemma, we know that there are self-adjoint

elements X1, . . . , Xn in +Fn with finite free entropy such that
X1, . . . , Xn generate +Fn as a von Neumann algebra. In the
following, we shall prove that if} is not prime and X1, . . . , Xn,
n $ 2, generate} as a von Neumann algebra, then x(X1, . . . ,
Xn) 5 2`. Hence, +Fn is prime. In fact, we prove a slightly
stronger result in the following lemma.
LEMMA 2. Let} be a factor of type II1,51 and52 be mutually

commuting hyperfinite subfactors of }. Let P1, P2, . . . and Q1,
Q2, . . . be projections in} with trace 1/2 that generate} as a von
Neumann algebra. Suppose that P1, P2, . . . commute with51, Q1,
Q2, . . . commute with52. IfX1, . . . , Xn are self-adjoint elements
in} that generate} as a von Neumann algebra, then x(X1, . . . ,
Xn) 5 2`.
We give an outline of the proof here. The detailed argument

will appear elsewhere.
From the assumptions in Lemma 2, we know that, for any

positive v, there are projections P1, . . . , Pp and Q1, . . . , Qq in
}, p, q [ N, and self-adjoint polynomials w1, . . . , wn in the
noncommutative p polynomial ring C^x1, . . . , xp1q& such that

iXj 2 wj~P1, . . . ,Pp,Q1, . . . ,Qq!i2 , v, j 5 1, . . . ,n,

where i i2 is the trace norm (iXi22 5 t(X*X), X [ }).
From the definition of free entropy (8), we shall estimate

certain measurement of all (finite-dimensional) self-adjoint
matrices that approximate X1, . . . , Xn in joint distributions.
For technical reasons, we use the notion of ‘‘modified’’ free
entropy (9). More precisely, we estimate the free entropy of
X1, . . . , Xn in the presence of P1, . . . , Pp and Q1, . . . , Qq.
When self-adjoint elements A1, . . . , An in Mk approximate
X1, . . . , Xn in joint distributions, there are projections E1, . . . ,
Ep and F1, . . . , Fq inMk as well, corresponding to elements in
certain Grassmann manifolds, that approximate projections
P1, . . . , Pp andQ1, . . . , Qq (in}) in joint distributions. At the
same time, Aj are close (in trace-norm) to wj(E1, . . . , Ep,
F1, . . . , Fq).
From this observation, we are able to reduce the estimate of

the free entropy of X1, . . . , Xn to the volume estimate of the
image of the cartesian product of the Grassmann manifolds
under maps given by (noncommutative) polynomials w1, . . . ,
wn. Let k be the degree of the matrices that approximate Xj’s,
D be an upper bound of the first derivatives of wj’s in the
domain of the cartesian product of the Grassmann manifolds
and d be the dimension of the manifolds. By using Szarek’s
results (11) on nets in unitary groups and Grassmann mani-
folds, we have that

x~X1, . . . , Xn!
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where C is a universal constant, a 5 max{iXji2 1 1 : 1 # j #
n}, and G(z) is the classical G-function.

The assumptions that P1, P2, . . . commute with 51 and Q1,
Q2, . . . commute with 52 give restrictions on the dimensions
of the Grassmann manifolds. Hence, we can choose the
dimension d so that d(p 1 q)/k2 # v and d(p 1 q)/k2 log(CD
=p 1 q) # log(2C). From Stirling’s formula for the G-func-
tion, we have
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Choosing v arbitrarily small, we have x(X1, . . . , Xn) 5 2`.
Using classical vonNeumann algebra techniques, one can show

that if} is the tensor product of two factors of type II1 (i.e., not
prime), then } satisfies all the hypotheses of Lemma 2.

Open Problems

Some questions about decompositions into continuous primes,
analogous to simple facts about (discrete-)prime-factor de-
composition, and about continuous primes, themselves, come
instantly to mind:
1. Are there infinitely many (nonisomorphic) prime fac-

tors of type II1?
2. Is +F2 R̄ +F2 p isomorphic to +F2 R̄ +F2 R̄ +F2

(‘‘uniqueness’’ of prime decomposition)?
3. With } a factor of type II1, let p(}) be the set of

integers n for which there are prime factors }1, . . . , Mn, n [
N, of type II1 such that} > }1 R̄ z z z R̄ }n. If there is no such
n, let p(}) be {`}. Does p(}) contain only one number?
Finally, we propose the project of classifying all von Neu-

mann subalgebras of free group factors as an analogue of
Connes’s classification of von Neumann subalgebras of the
hyperfinite II1 factor (12), and ask a question suggested by
Lemma 2. Is the relative commutant of a nonatomic injective
(or abelian) von Neumann subalgebra of +Fn in +Fn always
injective?
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