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ABSTRACT A detailed quantitative kinetic model for the
polymerase chain reaction (PCR) is developed, which allows
us to predict the probability of replication of a DNA molecule
in terms of the physical parameters involved in the system.
The important issue of the determination of the number of
PCR cycles during which this probability can be considered to
be a constant is solved within the framework of the model. New
phenomena of multimodality and scaling behavior in the
distribution of the number of molecules after a given number
of PCR cycles are presented. The relevance of the model for
quantitative PCR is discussed, and a novel quantitative PCR
technique is proposed.

The polymerase chain reaction (PCR) is one of themost widely
used techniques in modern molecular biology. It was devised
(1) as a method for amplifying specific DNA sequences
(targets), and the scope of its applications stretches from
medicine (2), through in vitro evolution (3), to molecular
computers (4, 5). In spite of its ubiquity in biology, theoretical
discussions of PCR are rare. Although kinetic models of the
enzyme-mediated polymerization of single-stranded DNA
have been reported (6–10), none of them were applied to
model PCR, and only recently has a treatment of the rate of
mutations arising in PCR been considered (11, 12).
The main object of our study is the probability that one

molecule will be replicated in one PCR cycle, the so-called
efficiency p. In the second section we present a detailed kinetic
model of the polymerization and find p as a function of the
physical parameters of the system. This allows us to discuss the
range of validity of the assumption of constant probability of
replication, on which statistical considerations have been
based (11, 12). Within that range, we apply the theory of
branching processes in the third section, Statistical Analysis, to
show the existence of new phenomena: the probability density
function (pdf) of the number of molecules after a given number
of cycles of PCR displays scaling behavior, and under some
conditions, this pdf is multimodal. In the fourth section, a novel
method for quantitative PCR is presented, based on the
statistical considerations of the previous sections. In the final
section we summarize our work.
One cycle of PCR consists of three steps. (For a more

detailed account of the PCR technique see, e.g., ref. 13.) In the
denaturing step, the two strands of the parent DNA molecule
in solution are separated into single-stranded (ss) templates by
raising the temperature to about 958C to disrupt the hydrogen
bonds. In the annealing step, the solution is cooled down to
approximately 508C to allow the primers, present in a high
concentration, to hybridize with the ssDNA. The primers are
two (different) 20- to 30-nucleotide-long molecules which are
Watson–Crick complementary to the 39 f lanking extreme of
the templates. Once the primer-template heteroduplex is
formed, it acts as the initiation complex for the DNA polymer-

ase* to recognize and bind to. This step is crucial for the
specificity of the amplification: only those molecules that have
sequences complementary to the primers will be amplified.
The last step is a polymerization reaction, in which the solution
is heated to 728C, the optimal working temperature for Ther-
mus aquaticus (Taq) DNA polymerase. This enzyme catalyzes
the binding of complementary nucleotides to the template, in
the direction that goes from the primer to the other extreme.†
Notice that if this polymerization proceeded to its end, at the
end of the third step we would have twice as many DNA
molecules as we had at the beginning of step 1. These three
steps constitute one cycle of the PCR, which is usually 30 s to
2 min long. The cycles are repeated a number of times
(typically 30) by varying the temperature in the solution, in
such a way that the DNA molecules that were synthesized in
a given cycle are used as templates in the following one. In this
way one gets an extremely efficient amplification mechanism
for DNA.

Kinetic Model

We will represent the last two steps of a typical cycle of PCR
by means of a kinetic model. Our species will be the primers
(pr, of length Lp nucleotides), the single-stranded DNA (ss,
consisting of Lp 1 N nucleotides), the heteroduplexes (hi,
formed by one complete ss and the partially assembled com-
plementary strand consisting of the primer and the next i
nucleotides), the nucleotides (n, which will be considered
identical), the polymerase (q), and the heteroduplexes hi with
the polymerase attached to them (qhi). Denoting by k2j21 and
k2j the forward and backward chemical reaction rates, the
chemical equations are

Other recognizable species might be present in the chain
reaction. This can occur because of substitutions, additions, or
deletions of nucleotides by the polymerase, or because of the
presence of sequence-dependent structures. These will not be
taken into account in our model, for the sake of simplicity.
Assuming that the effects of inhomogeneities in density and
temperature are irrelevant, it is well known that Eqs. 1 lead to
a corresponding system of first-order nonlinear differential
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Abbreviation: pdf, probability density function.
*Polymerases are interesting pieces of machinery (14). They are
responsible for the duplication of genetic information (DNA poly-
merases) and its transcription into RNA (RNA polymerases).
†The DNA is a polar molecule, and the polymerase can attach new
nucleotides only to the 39 end of the molecule that is being extended.
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equations for the concentrations of the different species as
functions of time, which we are not going to write here (see, for
example, ref. 15). In the above reactions, one should assign a
given duration to step 2 and another to step 3. For the sake of
simplicity, however, we shall consider both step 2 and step 3 as
running simultaneously in the simulations to be presented
below. This is a mild simplification which does not alter the
conclusions to be drawn.
The definition of the efficiency (or probability of replica-

tion) p implies that it is simply the ratio between the number
of ss molecules that were completely replicated at the end of
a given cycle and the initial number of ss molecules in that
cycle:

p~t! 5
@hN#~t! 1 @qhN#~t!

@ss#~0!
. [2]

Fig. 1 shows plots of the probability of replication p as a
function of time t (which is to be interpreted as the duration
of step 3 in a typical PCR cycle), for different polymerization
lengths N. Since to the best of our knowledge the chemical
reaction constants ks have not been measured for Taq poly-
merase, we have assumed some values for these constants to
exemplify the principal characteristics of our model. It should
be stressed, however, that the equivalent to some of these
constants have been measured for other polymerases such as
T4 phage DNA polymerase (6), T7 phage DNA polymerase
(7), and Escherichia coli DNA polymerase I (Klenow frag-
ment) (8–10). The values of the chemical reaction constants k
and the initial conditions used in the simulation of Eqs. 1 are
detailed in the legend to Fig. 1. The main features of the curves
in Fig. 1 can be quantitatively understood. It can be observed
that the larger N, the flatter the behavior at small times.
Indeed it can be shown from the dynamic equations that p ;
t(2N11)y3 for t sufficiently small. The time at which p has
reached about half its asymptotic value, as well as the width of
the rise-time, can be estimated from a further simplification of
our model. Assuming that the time constants associated with
the backwards reactions in Eqs. 1 are large enough, and that
the concentration of primers, polymerase, and nucleotides are
sufficiently large that their relative concentrations can be
considered as constants (or more precisely as slowly varying
parameters) during the process, we can rewrite the reaction as

ssO°

pr
2 k1

h0O°

q
2 k3

qh0O°

n
2 k5

qh1 . . .O°

n
2 k5

qhN. [3]

The time t needed for this reaction to be completed is simply
the sum of the times corresponding to each link of the chain,
t 5 tk1 1 tk3 1 tk5,11 . . .1 tk5,N, where tk1 and tk3 are the times
associated with the first two reactions in Eq. 3, and tk5, j is the
time associated with the reaction qhj21

n
2k

53 qhj. These ts are
independent, exponentially distributed random variables,
whose mean values are ^tk1& 5 (k1[pr])21, ^tk3& 5 (k3[q])21,
and ^tk5, j& 5 (k5[n])21. Therefore, it can be readily seen that
the mean and the standard deviation of t are

^t& 5
1

k1@pr#
1

1
k3@q#

1 N
1

k5@n#
, [4]

st 5 S 1
k1
2@pr#2

1
1

k3
2@q#2

1 N
1

k5
2@n#2D

1/2

, [5]

where we used that the variance of an exponentially distributed
random variable is the square of its mean. ^t& and st can be
used as estimates of mean rise-time and the rise-time width
about the mean for the complete reaction. These estimates are
shown in Fig. 1. The abscissa of the solid square on each curve
corresponds to the value predicted by Eq. 4, and the arrow-
heads indicate the values of ^t& 6 st. It can be safely concluded
that Eqs. 4 and 5, computed from the simplified chain reactions
of Eq. 3, are good estimates of the mean rise-time and the
rise-time width corresponding to the full set of reactions.
The last important feature to be extracted from Fig. 1 is the

tendency of p(t) towards an asymptote p`, which corresponds
to the equilibrium of the chemical system. This value is of
importance in PCR, and thus it is worth computing it in terms
of the parameters of our model. The detailed balance equi-
librium conditions for the reactions of Eqs. 1 demand that
[ss]eqy[h0]eq5 k2/(k1[pr]eq)[ a1, [hi]eqy[qhi]eq5 k4y(k3[q]eq)
[ a3 (for 0 # i # N 2 1), [qhi]eqy([qhi11]eq) 5 k6y(k5[n]eq)
[ a5 (for 0 # i # N 2 1) and [hN]eqy[qhN]eq 5 k8y(k7[q]eq)
[ a7. On using Eq. 2 and the conservation relation [ss](t) 1
•i50
N {[hi](t) 1 [qhi](t)} 5 [ss](0), one obtains that

p` 5
1 1 a7

1 1 a7 1 a1a3a5
N 1

a3 1 1
a5 2 1

~a5
N11 2 a5!

. [6]

For the purpose of computing p` one should know the values
of [pr]eq, [n]eq, and [q]eq. As an approximation to these values
one can use the initial values of these species at the beginning
of the cycle. This approximation will be excellent if these initial
concentrations are sufficiently large. The values of p` (com-
puted under this approximation) corresponding to the condi-
tions of the simulations of Fig. 1 are 0.87 for N 5 1 and 0.85
for N 5 10 and N 5 45, in perfect agreement with the
complete simulation. It is interesting to notice that from direct
measurements of p(t) a wealth of information on the rate
constants involved in the polymerization reactions can be
inferred using Eqs. 4–6.
Of utmost importance in applications of PCR is the number

of cycles of PCR during which the amplifying process is
exponential. As will be discussed later on, the mean number of
molecules ^Nk11& at cycle k 1 1 is related to the mean number
of molecules ^Nk& at cycle k by the relation ^Nk11& 5 (1 1
pk)^Nk&, where pk is the efficiency during the kth cycle.
Therefore the rate of growth will be exponential only when pk
is independent of k. During how many cycles can the system
maintain pk constant? The answer can be found if we think that
during these cycles, both the concentration of primers and
nucleotides will also be decreasing exponentially, and there-
fore their concentration at cycle k will be [pr]k 5 [pr]0 2 (1 1
p)k[ss]0 and [n]k 5 [n]0 2 (1 1 p)kN[ss]0. The mean rise-time
and rise-time width for p at cycle k, ^t&k and st,k, will be given
by Eqs. 4 and 5, with [pr] and [n] replaced by [pr]k and [n]k,

FIG. 1. Probability of replication p(t) as a function of time t, for
different template lengths N (in number of nucleotides without
including the primers) arising from a numerical simulation of Eqs. 1,
with parameters: k1 5 109 M21zs21, k2 5 1022 s21, k3 5 107 M21zs21,
k4 5 1023 s21, k5 5 107 M21zs21, k6 5 15 s21, k7 5 109 M21zs21, k8
5 1021 s21, [pr](0) 5 1026 M, [n](0) 5 1025 M, [q](0) 5 1026 M,
[ss](0) 5 10211 M. The square and arrowheads indicate, respectively,
the mean rise-time and rise-time width as predicted by the simplified
model of Eqs. 3.
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respectively. If the time for the reaction is t, then the maximum
number of cycles n during which pk can be considered constant
will be given, to a first approximation, by the n that verifies that
^t&n 1 st,n 5 t. This imposes an equation for n that can be
solved numerically. An approximation to this solution is

n 5 minH log11p`S @n#0
@ss#0N

2
1

@ss#0k5~t 2 k3
21@q#21!D ,

log11p`S @pr#0
@ss#0

2
1

@ss#0k1~t 2 k3
21@q# 2 1!DJ , [7]

where logb indicates logarithm to the base b. Notice that as t
becomes larger, the value of n predicted in Eq. 7 tends to a
constant independent of t, given by the number of cycles that
it takes to deplete the solution of nucleotides or primers,
whichever is exhausted first. Although it might be unrealistic
for the conditions used in molecular biology, it is interesting to
notice that if the nucleotides are the first species to be
exhausted, then most of the heteroduplexes will cease to
polymerize before reaching the end, with the outcome that
there will hardly be any complete double helix formed: in this
case the net amplification factor will be close to zero. Fig. 2
shows the efficiency pk at cycle k as a function of the number
of cycles, for different times of polymerization andN5 45 (the
other parameters are as in Fig. 1), obtained by the integration
of the reactions of Eq. 1. In this simulation we concatenated
cycles, assuming a perfect melting step, which was done by
hand by setting [ss]k11(0) in the cycle k 1 1 equal to [ss]k(0)
1 [hN]k(t) 1 [qhN]k(t) of the previous cycle and [hi]k11(0) 5
[qhi]k11(0) 5 0 (0 # i # N). The dynamics of pr and n, on the
other hand, was followed exactly. It is clear from Fig. 2 that
there is a regime for which pk is roughly constant, and that the
extent of this regime tends to decrease with t. The values of n
predicted by the condition ^t&n 1 st,n 5 t are 13 for t 5 0.8
s and 15 for t 5 2.0 s (slightly overestimated by Eq. 7, whose
integer part yields 14 for t5 0.8 s and 15 for t5 2.0 s), in rough
agreement with the values of about 12 and 14, respectively,
obtained from Fig. 2.
At this point a few important considerations are in order.

The fraction 1 2 p of molecules whose replication was
incomplete will give rise to incomplete complementary single
strands. Only when these incomplete replicas are close to
completion will they be able to bind a primer in the next cycle,
and thus be replicated. Therefore the efficiency p defined in
Eq. 2 is an underestimation, since hN21, hN22,. . ., hN2j as well
as qhN21, qhN22,. . ., qhN2j (for some j , Lp, where Lp is the
length of the primers) will be part of the pool of templates in
subsequent cycles. However, the dominant process will be the
replication of the complete strand, which justifies the compu-
tation of p as in Eq. 2. There is another issue that needs some
discussion. All the complementary strands arising from both
complete and incomplete replication of a template can anneal

to that template in subsequent cycles, and therefore can act
effectively as primers. Strictly speaking, at any given cycle k $
1 there will be a pool of primers of different lengths. An
estimate of the concentration of ‘‘primers’’ arising from in-
complete replication at cycle k is ((1 2 p)yp)(1 1 p)k[ss](0).
This amount is always smaller than the concentration (1 1
p)k[ss](0) of completely replicated single strands which act
also as potential ‘‘primers.’’ As long as the concentration of
incomplete replicas remain much smaller than the concentra-
tion of primers [pr], Eqs. 1 will constitute a good approxima-
tion to the PCR process. Recall now that n (see Eq. 7) is equal
or smaller than the number of cycles required for the concen-
tration of primers [pr] to match the concentration of com-
pletely replicated single-stranded molecules. It follows that the
approximation given by Eqs. 1 will break down only after the
number of PCR cycles is bigger than n, and therefore our basic
conclusions, contained in Eqs. 4–7, are not altered.

Statistical Analysis

As seen above, the efficiency p can be assumed to be constant
for a number of cycles of PCR. The statistics of PCR can be
readily computed under this assumption. The basic element in
the analysis is the recursive relation that links the number of
replicates after cycle number n 1 1, Nn11 in terms of Nn,

Nn11 5 Nn 1 B~Nn;p!, [8]

where B(Nn;p) is a random variable whose distribution is
binomial with parameters Nn and p. The basis for this relation
is that at the (n 1 1)-th cycle there will be not only the Nn
molecules that were present at the previous cycle but also the
number of successful replication after Nn Bernoulli trials (16),
each one with probability p of success. The number of mole-
cules in the initial sample will be denoted by M0.
The first moments of Nn can be easily computed from Eq. 8:

mn ; ^Nn& 5 M0~1 1 p!n, [9]

sn
2 ; ^~Nn 2 mn!

2& 5 M0
1 2 p
1 1 p

@~1 1 p!2n 2 ~1 1 p!n#. [10]

Furthermore, using the theory of branching processes (17, 18),
a recursive relation between PnM0(k) (the probability that there
are kmolecules at cycle n, having started withM0 of them) and
Pn21
M0 (k) can be obtained

Pn
M0~k! 5 O

j5Fk2G

jmax S j
k 2 jDpk2j~1 2 p!2j2kPn21

M0 ~j!, [11]

(where jmax 5 min {M02n21, k}, and [k
2
] denotes the integer

part of k
2
), which when supplemented with the initial condition

P0M0(k) 5 dk,M0 allows us to compute Pn
M0(k) for any n. Fig. 3

shows the form of these probability functions for n 5 10 with
M0 5 1 in Fig. 3a, andM0 5 50 in Fig. 3b, and different values
of p. A remarkable resonance-like behavior can be observed in
the curve corresponding to p 5 0.9 and M0 5 1 (wavy curve
in Fig. 3a. This phenomenon originates in the discrete nature
of the process: if at the first cycle the system fails in replicating
the only original template, then the subsequent growth of the
population will be as if there were nine cycles instead of ten.
The other peaks correspond to the failure in replication in the
first two cycles, three cycles, etc. This trait is characteristic of
values of p between, say, 0.8 and 1. For smaller values of p the
function looks smoother. A common feature of the curves in
Fig. 3a is the existence of a power law regime in the region of
small Nn, whose origin will be discussed later on. The behavior
of the curves with M0 5 50 is simpler: they are basically
Gaussian curves, with a mean that increases with p and a

FIG. 2. Efficiency pk as a function of the cycle number k, for
different polymerization times. The length of the template is N 5 45;
the other parameters are as in Fig. 1.
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variance that first increases and then decreases with p (see Eqs.
9 and 10.
To understand the features described above, it is convenient

to use the formalism of generating functions (16). The gener-
ating function of PnM0(Nn) is simply gn,M0(s) 5 ^sNn&. Using Eq.
8, it is clear that g1,1 5 (1 2 p)s 1 ps2. It can be shown (17)
that for a branching process

gn,M0~s! 5 gn21,M0@g1,1~s!# 5 . . . 5 @g1,1
~n! ~s!#M0, [12]

where we have denoted by g1,1(n)(s) the nth composition of g1,1(s)
with itself, and used that g0,M0(s) 5 sM0 in the last equality. To
proceed, we use the formalism of characteristic functions. The
characteristic function fn,M0(v) of the distribution of Nn
having started with M0 molecules, which is by definition the
Fourier transform of PnM0(Nn) (ref. 16), is simply fn,M0(v) 5
gn,M0(e

iv). In terms of the characteristic functions, Eq. 12
implies that

fn,M0~v! 5 @fn,1~v!#M0. [13]

The characteristic function of the sum of M0 independent
random variables is simply the product of the characteristic
functions of each of them. Therefore, the physical interpreta-
tion of the last equation is that the amplification cascades
produced by each of the M0 original molecules proceed
independently, without interaction. From this observation and
the central limit theorem it follows that as the number of
molecules M0 becomes larger, the distribution of Nn tends to
a Gaussian. This explains the observed features of the pdfs of
Fig. 3b.
The behavior of the pdfs for finite M0 in the limit of n 3 `

is a little bit more interesting. In fact, it is clear from Eq. 13 that
it suffices to study the case M0 5 1, which we do next. We
should stress that our study of the asymptotically large n
regime does not aim at understanding the behavior of PCR
when infinitely many cycles are performed. In fact, we have
shown in the previous section that the efficiency can be
considered as constant only for a finite number of cycles.
Rather, the reason for studying this asymptotic regime is that
the convergence of the finite n case to the n 3 ` case is fast
enough that many of the features arising for finite n are well
explained by the study of asymptotically large n, most notably
the power law behavior of the low N regime of Fig. 3a. It
follows from Eq. 12 that gn,1(s) 5 g1,1[gn21,1(s)], which in
terms of the characteristic functions and of the explicit ex-
pression for g1,1(s) becomes

fn,1~v! 5 ~1 2 p!fn21,1~v! 1 p@fn21,1~v!#2. [14]

Given that we are going to consider the limit of n3 ` and ^Nn&
5 (1 1 p)n (see Eq. 9) diverges in this limit, it is convenient
to use the random variable Ñn 5 Nny^Nn&. Denote by un,1(v)
its characteristic function. It is easy to show that un,1(v) 5
fn,1(vy(1 1 p)n), which on using Eq. 14 yields

un,1~v! 5 ~1 2 p!un21,1S v

1 1 pD 1 pFun21,1S v

1 1 pDG
2

. [15]

Notice that Eq. 15 can be thought of as a dynamical system,
which maps the point zn to zn11 [ f(zn) 5 (1 2 p)zn 1 pzn2.
The function un,1(v) (2` # v # `) parametrizes a curve in
the complex plane. In fact, the initial condition M0 5 1
determines that u0,1(v) 5 eiv, which parametrizes the unit
circle z0. Subsequent applications of the map f(z) to z0 produce
the new curves z1, z2,. . ., which are parameterized respectively
by u1,1(v), u2,1(v),. . .. The study of the limiting behavior of the
pdf of Ñn is thus associated with the study of the invariant
curves of the map f. Notice that the map f has only two fixed
points, one at z 5 0 (stable) and one at z 5 1 (unstable). Upon
iteration, all the infinitesimally small straight lines with slope
l passing through the repelling point z 5 1 will generate a
curve Cl which is invariant under f, that is, f(Cl) 5 Cl. On the
other hand, for any z Þ 1 such that uzu # 1, uf(z)u , uzu.
Therefore the dynamics of this map brings all the points of z0
(except for z 5 1) to the origin. In the neighborhood of z 5
1, z0 is locally a straight line with slope l 5 `, which upon
evolution will become the invariant manifold C`. It follows
that z` coincides with C`, and u`,1 parameterizes the invariant
manifold of the map f, that crosses z 5 1 parallel to the
imaginary axis. Fig. 4a shows half the invariant manifold C`

corresponding to p 5 0.9 (the other half is its complex
conjugate), and on the same plot the imaginary part vs. the real
part of u15,1(v) (for positive v). To the level of resolution of the
figure no departures between the two curves are observed,
meaning that the pdf of the number of molecules at 15 PCR
cycles is well approximated by the limiting pdf.
This dynamical-system way of looking at the characteristic

function of Ñn is very useful to understand the power lawbehavior
of the pdfs of Nn. The argument goes as follows. Close to z 5 0
(or equivalently, for large values of v) the quadratic terms in Eq.
15 can be neglected, and the resulting approximate relation,
u`,1(v)5 (12 p)u`,1(vy(11 p)) accepts as a solution the ansatz
u`,1(v) ' A(lnv)vln(1 2 p)yln(1 1 p), where A(x) is in principle any
periodic function with period ln(1 1 p). The large v behavior of
the characteristic function u`,1(v) is then a power law, with
logarithmically periodic modulations. That this is so is shown
in Fig. 4b, where we have plotted the absolute value of u15,1(v)
for p 5 0.9. The power law corresponding to the predicted
scaling exponent of ln(1 2 p)yln(1 1 p) is shown as the
straight line close to the curve in the log–log plots of Fig. 4b.
The implication of these results for the pdfs can be readily
drawn. Recalling that the characteristic function and pdf are
related through a Fourier transform, and that the Fourier
transform of uvua (with an appropriate infrared cutoff) scales
as x2a21, we conclude that the pdf of Ñn should exhibit a
scaling of the form P`

1 (Ñn) ; Ñn[2ln(1 2 p)yln(1 1 p) 2 1]. This
scaling law is shown as the straight lines close to the curves
plotted in log–log scale in Fig. 3a.

FIG. 3. (a) The pdf of the number of molecules after n 5 10 cycles and M0 5 1 of a branching process with constant efficiency p, in log–log
scale. Notice the multimodality for p5 0.9, and the power law regimes (straight lines). (b) Same as in a forM05 50 (linear scale). The multimodality
has disappeared even for p 5 0.99.
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In the following section we use some of the results presented
so far to analyze quantitative PCR.

Quantitative PCR

Although PCR is used mainly in a qualitative fashion, its
potential for becoming an important tool in nucleic acid
quantification in general (19), and in medical research in
particular (20), has become clear in recent years. By quanti-
tative PCR one means the use of the PCR to measure an
unknown initial number of molecules M0. A few techniques
have been developed to that effect in the past, but the most
widespread is probably the so-called competitive PCR (see,
e.g., ref. 21). In this technique, the target, whose initial
concentration is unknown, is amplified simultaneously with a
standard, which is f lanked by the same primers as the target
and whose initial concentration is known. The standard should
have a length different from that of the target, so that the two
can be resolved in an electrophoretic gel. The basic idea in
competitive PCR is that if the efficiencies of replication of the
target and the standard are the same then the ratio of the
concentration of target to that of the standard is constant in
the reaction. Measuring that ratio at cycle n (where presum-
ably we have enough concentration to use densitometric
measurements) we can solve for the initial concentration of
target. While this technique is very attractive, the basic as-
sumption (the equality of the efficiencies in both species) has
some drawbacks (22). Basically, the potential problems arise in
the dependence of the efficiency on the length of the DNA
molecule. The longer molecule will experience a decrease in
efficiency before the shorter one does, as predicted in Eq. 7.
In any case, the model presented here can be of use to assess
the validity of the assumptions that go into the basics of
competitive PCR.
In order for competitive PCR to work, the length of the

standards has to be within a narrow window: it has to be
sufficiently different from the length of the target molecules
(to be resolved in a gel) and sufficiently similar to it in order
for the equal efficiency assumption to work. The design of a
good standard requires some ingenuity, and it has to be done
on a case-by-case basis. In what follows we will present a design
for measuringM0 without the need of a standard. Suppose we
measure the concentration of a given DNA molecule after a
number of PCR cycles on a sample whoseM0 is unknown. One
might think that if we repeated the same measurement for a
reasonable number of times (say around 100 times, given that
PCR equipment with capacity for 96 vials is not uncommon),
so as to measure the mean value and the variance of the
concentration across that number of experiments, we would
have two equations (Eqs. 9 and 10) that can be solved for the
two unknowns p and M0. However, it can be shown that this
procedure always yields two possible solutions for p and M0,
and there is no possible way, a priori, of choosing the right one.
The reason for this is that for M0 bigger than a few hundreds

(which is nonetheless a small number of molecules), the
distribution of Nn is Gaussian, and therefore determined only
by the mean and the variance, which give the above-mentioned
ambiguous answer.
Consider instead the following scheme. We prepare two sets

of samples S1 and S2, each with K identical preparations and
whose initial concentration of a given double-stranded DNA
molecule is unknown. We run (under conditions for which p
can be considered approximately constant from cycle to cycle)
n1 cycles of PCR on set S1, and n2 cycles on set S2, after which
we measure the number of molecules in every sample. The
averages n1 and n2 over the K preparations in S1 and S2, are
estimates of the ensemble averages mn1 and mn2 corresponding
to Eq. 9 for n 5 n1 and n 5 n2, respectively. We can use that
formula to compute m0 5 n12n2y(n1 2 n2) n2n1y(n1 2 n2) as an
estimate of the real M0 and r 5 n11y(n1 2 n2) n221y(n1 2 n2) 2 1
as an estimate of the real p. Of course these estimates make
sense only if a measure of the error involved in the method is
provided. It takes a simple calculation to show that

^m0& < M0; ^r& < p, [16]

and

sm0
2 ;

^~m0 2 ^m0&!2&
^m0&2

<
1
M0K

1 2 p
1 1 p

n1
2 1 n2

2

~n1 2 n2!2
, [17]

sr
2 ;

^~r 2 ^r&!2&

^r&2
<

1
M0K

1 2 p2

p2
2

~n1 2 n2!2
. [18]

In writing the last two equations we used Eq. 10. We tested
these expressions in a set of very simple numerical simulations,
whose details we are not going to report here except for saying
that the PCR amplification was represented by the cascade
given by Eq. 8. Under variations of all the parameters involved,
Eqs. 16–18 were in excellent agreement with the numerical
results. To get a flavor of the precision of the method
proposed, assume a simple example with M0 5 1000, p 5 0.8,
n1 5 10, n2 5 15, and K 5 50. Under these conditions the
above equations predict that the estimate ofM0 will be correct
within 0.5% (that is,65molecules) and that of p will be correct
within 0.1%! These estimates refer to the purely statistical
errors, and they will be fairly small under typical conditions. In
real experiments they have to be supplemented with the errors
involved in the measurement of the concentrations. If M0 and
p f luctuated from sample to sample (due to inevitable differ-
ences in their preparations), the fact that we are averaging over
K samples will screen these fluctuations. In this latter case,
Eqs. 16 will still be in agreement with the average M0 and p,
and Eqs. 17 and 18, which can be easily generalized to include
these fluctuations, will give their right order of magnitude.

FIG. 4. (a) The invariant manifold that crosses z 5 1 tangent to the unit disk, of the map zn11 5 (1 2 p)zn 1 pzn2 (with z in the complex plane),
for p 5 0.9. It is parametrized by u`,1(v). In the same plot the curve parametrized by u15,1(v) is shown; it cannot be resolved from the invariant
manifold. (b) Absolute value of u15,1(v) (solid line) and the predicted power law (broken line).
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Summary

We have presented a kinetic model for the PCR, which can be
the basis for a more accurate application of quantitative
techniques, as it provides a dynamical account of the proba-
bility of replication as a function of the physical parameters
involved. These include the rate constants of the different
reactions. Conversely, the model allows us to extract informa-
tion on these rates from direct measurements of p. From a
theoretical point of view, it can also be used in the description
of in vivo and in vitro enzymatic polymerization processes (23).
The statistical analysis of PCR under the assumption of
constant replication probability shows new interesting phe-
nomena. The scaling behavior of the pdf is an effect of the
recursivity of the process, whereas the multimodality is related
to failures in replication during the first cycles. Although the
latter is a phenomenon present only for a small number of
initial molecules, it is not far from actual experimental con-
ditions, and might be of relevance in quantitative applications.
Finally, we have used the statistical considerations of the

fourth section to devise a method for measuring the initial
number M0 of molecules in a sample (quantitative PCR).

Many of the ideas in this paper are the product of long and fruitful
discussions with P. Kaplan and M. Magnasco. The chemical-kinetics
simulations were written in the K language, created by M. Magnasco
and available at http:yytlon.rockefeller.edu. We thank A. Libchaber
and E. Mesri for a careful reading of the manuscript and useful
discussions, and an anonymous referee for helpful suggestions. Sup-
port from the Mathers Foundation is gratefully acknowledged.
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