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ABSTRACT The Ising problem consists in finding the
analytical solution of the partition function of a lattice once
the interaction geometry among its elements is specified. No
general analytical solution is available for this problem,
except for the one-dimensional case. Using site-specific ther-
modynamics, it is shown that the partition function for ligand
binding to a two-dimensional lattice can be obtained from
those of one-dimensional lattices with known solution. The
complexity of the lattice is reduced recursively by application
of a contact transformation that involves a relatively small
number of steps. The transformation implemented in a com-
puter code solves the partition function of the lattice by
operating on the connectivity matrix of the graph associated
with it. This provides a powerful new approach to the Ising
problem, and enables a systematic analysis of two-
dimensional lattices that model many biologically relevant
phenomena. Application of this approach to finite two-
dimensional lattices with positive cooperativity indicates that
the binding capacity per site diverges as Na (N 5 number of
sites in the lattice) and experiences a phase-transition-like
discontinuity in the thermodynamic limit N3 `. The zeroes
of the partition function tend to distribute on a slightly
distorted unit circle in complex plane and approach the
positive real axis already for a 535 square lattice. When the
lattice has negative cooperativity, its properties mimic those
of a system composed of two classes of independent sites with
the apparent population of low-affinity binding sites increas-
ing with the size of the lattice, thereby accounting for a
phenomenon encountered in many ligand-receptor interac-
tions.

Ising lattices with nearest-neighbor interactions have long been
used to model cooperative transitions. Originally developed to
understand the properties of ferromagnets (1), these lattices
have also found myriad applications in polymer statistics (2),
ligand binding and condensation (3), helix–coil transitions (4,
5), protein folding (6), molecular recognition (7), and gel-f luid
transitions of lipid membranes (8). A fascinating aspect of Ising
lattices, which has enticed outstanding theoretical chemists
and physicists over the past 70 years, stems from the contrast
between the simplicity of the underlying assumptions and the
extraordinary complexity of the combinatorics involved. The
Ising problem consists in finding the analytical solution of the
partition function of a lattice once the interaction geometry
among its elements is specified. Presently, this problem re-
mains one of the toughest unsolved puzzles of statistical
thermodynamics (9). Any significant contribution made to-
ward solution of the Ising problem would broaden our basic
understanding of cooperative transitions in physics, chemistry,
and biology.
Exact analytical solutions of the Ising problem are available

for the one-dimensional case and for certain two-dimensional

cases with symmetry properties in the thermodynamic limit of
an infinite number of elements. The solution in the one-
dimensional case poses no mathematical difficulties and is
obtained using the celebrated method of the transfer matrix
(10). In the two-dimensional case with symmetry related
elements two such matrices must be defined, one for each
dimension, and the solution emerges from a monumental
sequence of mathematical transformations (11, 12). No solu-
tion is available for the three-dimensional Ising problem and,
even in the two-dimensional case, the method based on the
transfer matrix cannot be exploited in general (9). Hence,
there is much need for alternative methods of approach to the
Ising problem, especially in those cases where the lattice is
finite, lacks symmetry, and has an arbitrary interaction geom-
etry. These lattices are most relevant in biology because they
can model molecular recognition and protein folding (6, 7),
ligand binding to nucleic acids or to receptors on the cell
membrane (13), protein–lipid interactions on a membrane (8),
as well as related site-specific effects (14).
Ideally, one would like to have a systematic method that

derives the partition function of the lattice from the connec-
tivity matrix of the graph associated with it. A brute force
approach that exhausts all possible configurations of the lattice
has been used (7, 15), but is severely limited by computing
power. For a lattice composed of N elements, existing in two
possible states, this approach must calculate each of the 2N
terms in the partition function. The task becomes rapidly
unrealistic for N. 20 (7). In this study we introduce a method
based on site-specific thermodynamics (14) that simplifies
considerably the combinatorics of the Ising problem.

The Contact Transformation

We will deal specifically with the problem of ligand binding to
a finite two-dimensional lattice composed of N sites. This
problem is formally equivalent to the spin transitions of a
ferromagnet under the influence of an external field (16) and
cannot be handled in terms of the Onsager–Kaufman solution
(11, 12), which applies to infinite lattices in the absence of
external field. Each site of the lattice can be free or bound to
the ligand, whose concentration in solution is x. The equilib-
rium binding constant K for the free3 bound transition of the
site is assumed to be the same for all sites and, therefore, the
partition function of the lattice can be cast in terms of a scaled
concentration, or activity variable v 5 Kx (14). When nearest-
neighbor sites in the lattice are in contact, they are coupled
according to the lattice–gas interaction rule (3, 14). This rule
states that the two neighbor sites in contact experience an
interaction when they are both bound. The strength of the
interaction is quantified by the dimensionless parameter s,
which is bound from 0 to `. The value of s signals the presence
of positive cooperativity (s . 1), negative cooperativity (s ,
1), or absence of cooperativity (s 5 1). Physically, s is theThe publication costs of this article were defrayed in part by page charge
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equilibrium constant for the dismutation reaction involving
two pairs of neighboring sites, each pair being in contact

F E 1 E F 5 E E 1 F F , [1]

where E denotes a site free and F denotes a site bound. The
partition function for a simple lattice composed of two sites in
contact is therefore

C 5 1 1 2v 1 sv2 [2]

The first term is contributed by the fully unligated form of the
lattice, which is used as reference; the second term refers to the
two equivalent configurations with one site bound; and the
third term refers to the doubly ligated configuration, where the
sites interact according to the lattice–gas rule.
A consequence of the lattice–gas rule is that keeping a site

free is equivalent to eliminating that site from the lattice. This
elimination principle expresses the fact that a given site in the
lattice can influence other sites only when it is bound. When
a site is free, all sites in contact with it behave as though the
site were not present. Though somewhat obvious, the elimi-
nation principle has unexpectedly profound consequences, one
of which is given below.
It follows from site-specific thermodynamics (14) that the

partition function C of an Ising lattice can be written as

C 5 0Cj 1
1Cjv. [3]

0Cj denotes the first-order contracted partition function con-
taining all possible ligated configurations of the other sites
when site j is free and 1Cj is the analogous term containing all
configurations with site j bound. For a lattice composed of N
sites,C is a polynomial of degreeN in v and contains 2N terms,
half of which define 0Cj, whereas the other half define 1Cj. The
term contracted reflects the reduction in the degree of the
polynomial defining the partition function due to fixing a
particular site, or set of sites, in a given ligated state. Eq. 3
holds for any site j. Each first-order contracted partition
function can itself be expressed in terms of second-order
contracted partition functions by considering the ligation
states of a second site i as follows:

0Cj 5
00Cij 1

10Cijv [4a]

1Cj 5
01Cij 1

11Cijsv. [4b]

00Cij denotes the second-order contracted partition function
containing all configurations of the other sites when sites i and
j are free, 01Cij is the analogous term containing all configu-
rations with sites i free and j bound, and so forth for the other
terms. Eq. 4 holds for any two sites i Þ j. The factor s in Eq.
4b must appear if the two sites i and j are in contact. Hence,
the partition function of the lattice can be written in terms of
contracted forms over two sites in contact by substituting Eq.
4 into Eq. 3, so that

C 5 00Cij 1 ~01Cij 1
10Cij!v 1 11Cijsv2. [5]

Consider now another lattice that differs from the original one
only in that the contact between sites i and j has been removed.
The partition function for this lattice is evidently

C9 5 00C9ij 1 ~01C9ij 1
10C9ij!v 1 11C9ijv

2

5 00Cij 1 ~01Cij 1
10Cij!v 1 11Cijv

2 [6]

and differs from Eq. 5 only because s does not appear in the
factor of the last term of the second-order expansion. Fixing
the ligation state of sites i and j produces contracted partition
functions that do not depend on the contact between these
sites. Simple transformations involving Eqs. 4–6 yield

C 5 sC9 1 ~s 2 1!~00Cij 2
0Ci 2

0Cj!. [7]

The partition function of the original lattice, C, can be
expressed in terms of those of simpler lattices obtained by
deleting the contact between two sites, C9, and either or both
sites, 0Ci, 0Cj, and 00Cij. The elimination principle and recur-
sive application of the contact transformation embodied by Eq.
7 reduce C to elementary partition functions with known
analytical solution. This result, which applies to any Ising
lattice, provides a powerful new tool for tackling the Ising
problem both analytically and computationally.
As a simple application of the contact transformation we

derive the partition function of a one-dimensional ring from
that of linear lattices. If C is the partition function of the ring
of N sites, then C9 is the partition function of a perturbed ring
where the contact between two neighbor sites, i and j, has been
removed. This perturbed ring is de facto a linear lattice of N
sites where sites i and j are the end sites. 00Cij is the contracted
partition function of the ring with the sites in contact i and j
free. By virtue of the elimination principle, this is equivalent
to the partition function of a linear lattice of N 2 2 sites.
Similar arguments prove that 0Ci and 0Cj are the partition
functions of a linear lattice of N 2 1 sites. Let N 5 3 for the
sake of simplicity. Then,

C9 5 1 1 3v 1 ~1 1 2s!v2 1 s2v3 [8a]

00Cij 5 1 1 v [8b]

0Ci 5
0Cj 5 1 1 2v 1 sv2. [8c]

Hence,

C 5 1 1 3v 1 3sv2 1 s3v3, [9]

which is, in fact, the partition function of the ring of three sites.

The Algorithm

The result embodied by Eq. 7 can be implemented in a
computer code. Fig. 1 illustrates how this is done in practice for
the case of a 333 square lattice. The algorithm operates a
series of transformations on the connectivity matrix of the
lattice (17)
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[10]

The element cij of this symmetric matrix specifies the number
of contacts between sites i and j, whereas the sum of all
elements over the ith row or column gives the total number of
sites in contact with site i. The algorithm starts from the first
site in the sequence that has the largest number of contacts
(site 5). Among its neighbors (sites 2, 4, 6, 8), the first one in
the sequence that itself has the largest number of contacts is
then identified (site 2). At this point, Eq. 7 is applied to
eliminate the contact between these sites (sites 5 and 2). Four
lattices are generated in the first step, labeled from ‘‘1’’
through ‘‘4,’’ one for each term of Eq 7. Specifically, ‘‘1’’
denotes removal of the contact between the sites, ‘‘2’’ denotes
deletion of the two sites, ‘‘3’’ and ‘‘4’’ denote deletion of the
first and second site in the sequence. In the next step, the
algorithm is applied to each one of these lattices and the
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resulting lattices are labeled in the same way. Hence, lattices
‘‘11,’’ ‘‘12,’’ ‘‘13,’’ and ‘‘14’’ are generated from lattice ‘‘1.’’ The
algorithm produces a new generation of lattices at each step
and iterates until all connectivity matrices contain sites that
contact at most two neighbors. In this case, the associated
lattice is one-dimensional and its partition function is known
analytically. The terminal lattices are boxed in Fig. 1. The
partition function of the original 333 square lattice is the sum
over those of all boxed lattices, each multiplied by a proper
factor defined by the label. It follows from Eq 7 that ‘‘1’’
contributes a term s, ‘‘2’’ contributes (s 2 1), ‘‘3’’ and ‘‘4’’
contribute (1 2 s). For example, the term contributed by the
one-dimensional lattice ‘‘1314’’ to the partition function of the
333 square lattice is s2(1 2 s)2L1L32, where Ln denotes the
partition function of a linear lattice of n sites (14). The final
expression containing the contribution of all terminal one-
dimensional lattices is then converted by the symbolic alge-
braic language Mathematica into a polynomial expansion in
the independent variable v.
The advantage of the recursive algorithm over the brute

force approach is already perceived from Fig. 1. Solution of the
problem for the 333 square lattice requires handling 76
matrices, 58 of which define the partition function, as opposed
to 29 5 512 configurations in the brute force approach. The
algorithm based on the contact transformation scales as 2N,
like the brute force approach (see Fig. 2), but it does reduce
the number of terms in the partition function by more than
10-fold. This reduction is quite significant from a computa-
tional standpoint. Furthermore, the algorithm scales as 1.2N
for s 5 0 providing a substantial advantage over the brute

FIG. 2. Dependence of the logarithm (base 10) of the number of
terms, n, to define the partition function versus the number of sites, N,
in the lattice for the brute force approach (●) and the approach based
on Eq. 7 for finite s (E) and for s 5 0 (m). Continuous lines are the
best-fits of logn according to the expression logn 5 a 1 bN, with: (●)
a5 0, b5 log2; (E) a5 21.16 0.2, b5 0.296 0.01; (m) a5 20.366
0.06, b 5 0.087 6 0.002. Note how the method based on Eq. 7 scales
as 2N for finite s, but involves a number of terms about 13-fold smaller
compared with the brute force approach. For s 5 0, the method based
on Eq. 7 scales as 1.2N, thereby involving 1.7N fewer terms than the
brute force approach.

to these terms are listed at the top of the manifold. Boxed lattices-
contribute one-dimensional terms to the partition function of the 333
square lattice.

FIG. 1. Illustration of the algorithm based on Eq. 7 for the case of
a 333 square lattice. Sites are numbered as shown in the lattice at the
top. Lattices generated at each step are labeled from ‘‘1’’ to ‘‘4’’ based
on the terms at the right-hand site of Eq. 7. The proper factors coupled
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force approach in the study of ligand binding to a lattice with
overlapping sites (13). In this case, the partition function for a
10310 square lattice can be solved in a few hours (see Results),
whereas no computer can handle in a reasonable time frame
the 2100 configurations required by the brute force approach.
Finally, the most significant advantage of the method based on
Eq. 7 is that it dissects the partition function in terms of
elementary one-dimensional components. This brings impor-
tant new insight into the Ising problem and may be conducive
to an analytical solution in terms of the partition functions of
elementary one-dimensional lattices rather than individual
lattice configurations.

Results

The availability of the partition function enables the systematic
analysis of the cooperative properties of two-dimensional
lattices. The binding capacity per site is the binding analogue
of the heat capacity in thermal transitions and provides a direct
measure of cooperativity (14). This quantity is shown in Fig. 3
for two-dimensional square lattices up to 535 sites in the case
of positive cooperativity. The fundamental question is whether
the binding capacity per site undergoes a phase-transition-like
discontinuity in the two-dimensional case, as seen for the heat
capacity per spin in the ferromagnet (9). Increasing the
number of sites in the lattice, while keeping the interaction
constant the same, brings about an increase in cooperativity
signaled by a more peaked binding capacity. The maximum
value of the binding capacity per site, bmax, scales with the
number of sites according to the simple expression bmax ' Na,
as documented by the log–log plot in Fig. 4. This divergence
predicts the existence of a phase-transition-like discontinuity
in the thermodynamic limit N3 `, which echoes the classical
Onsager–Kaufman result for the heat capacity per spin (11,
12). As for the ferromagnet, this result is peculiar of the
two-dimensional case because in the one-dimensional case
bmax is independent of N in the thermodynamic limit.
It is remarkable that a basic property of two-dimensional

lattices, like the existence of a discontinuity for b in the
thermodynamic limit, can be predicted from the behavior of

finite lattices of relatively small size. The prediction is rein-
forced by the distribution of zeroes of the partition function
shown in Fig. 5. The zeroes for the 535 square lattice already
approach very closely the positive real axis on which the
partition function can vanish only if it is no longer analytical
(9). Upon a simple conformal mapping, the zeroes distribute
on a slightly distorted unit circle. A systematic analysis of
lattices of larger size will reveal if this distortion disappears in
the thermodynamic limit, which is the result predicted by the
Lee–Yang theorem in the case of temperature-driven phase
transitions for the ferromagnet (16).
When the lattice shows negative cooperativity, the algorithm

based on Eq. 7 enables the study of larger systems. The binding
capacity per site in the case s 5 0 is shown in Fig. 6 for square
lattices up to 10310 sites. This value of the interaction
parameter models the biologically relevant phenomenon of
ligand binding to overlapping sites, also known as the parking
problem (3). Binding to a given site prevents binding to
neighbor sites because of steric hindrance, as typically seen in
the interaction of ligands with nucleic acids and receptors on
the cell membrane (13, 18). In the range where this problem
can be approached with the brute force method (434 sites),
the lattice shows the expected negative cooperativity with a
binding capacity profile that is indistinguishable from that of
a system composed of multiple classes of independent sites. In
particular, the profile for the 434 lattice suggests the existence
of two dominant classes of sites, which are almost equally
populated. The algorithm based on Eq. 7 allows for an analysis
of this problem for larger lattices and reveals a different
behavior as N increases. The binding capacity profile remains
bimodal, but shows an important and unexpected property in
that it brings about a higher population of low-affinity binding
sites. This phenomenon is encountered in many ligand-
receptor interactions (19) and is typically interpreted by in-
voking the existence of two classes of receptors: one specific,
with high affinity and low population, the other nonspecific,
with low affinity and higher population. The results shown in

FIG. 3. Binding capacity per site b 5 d2 ln Cyd ln v2 for two-
dimensional lattices (from left to right: 535, 434, 333, 232, 131) with
s 5 10. The increase in b withN is conducive to a phase-transition-like
discontinuity in the thermodynamic limit N 3 `.

FIG. 4. Effect of the number of sites N on the cooperativity of the
lattice, expressed by the maximum value of the binding capacity per
site shown in Fig. 3. In the two-dimensional case (●) (131, 232, 333,
434, 535) the log–log plot is linear and implies a divergence of bmax
according to Na (a 5 0.727 6 0.002). This is conducive to a phase-
transition-like discontinuity in the function b in the thermodynamic
limitN3 `. No such behavior is observed in the one-dimensional case
(E) (N5 1, 4, 9, 16, 25). The value of the interaction constant is s 5 10.
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Fig. 6 offer an alternative interpretation. If the receptors on
the cell membrane are modeled in terms of a two-dimensional
Ising lattice with overlapping sites (s 5 0), then one class of
sites suffices to explain the data in the limit of large N. The
asymmetric bimodal profile of the binding capacity is an
‘‘artifact’’ of the parking problem in two dimensions when the
number of sites becomes on the order of 100, which is certainly
a realistic value for practical applications. Interestingly, the
effect shown in Fig. 6 seems to saturate already for a lattice of
737 sites, indicating that the study of ‘‘small’’ lattices can be
revealing of the properties of ‘‘large’’ systems as seen for the
positively cooperative case (see Fig. 3).

Discussion

The contact transformation and the algorithm based on it
provide a powerful new approach to the Ising problem. This
method simplifies significantly the combinatorics of the prob-
lem and reveals how the complex behavior of two-dimensional
lattices emerges from the contribution of one-dimensional
lattices. Although themethod still scales exponentially with the
size of the system, it offers a significant reduction of the
number of terms defining the partition function and has
enabled a complete characterization of positively cooperative
ligand binding to two-dimensional lattices up to 535 sites. As
we have shown, these ‘‘small’’ lattices already encapsulate the
salient features of two-dimensional lattices of larger size and
provide unprecedented insight into ligand binding in two
dimensions. Lattices of up to 10310 sites can easily be studied
with this method for s 5 0, whereas the brute force approach
would hardly go beyond a 636 lattice even on a parallel
supercomputer. Extension of our method to the study of
three-dimensional lattices is also possible because the connec-
tivity matrix can be defined in any dimension.
An important implication of this method is that it offers a

systematic analysis of cooperativity at the global and site-
specific levels. We have illustrated some key features of the
global properties like the divergence of bmax in the thermody-
namic limit and the distribution of zeroes of the partition

function. The systematic method can be used to derive all
contracted forms of the partition function and hence the
behavior of the lattice at each separate site (14). This infor-
mation, which is absolutely crucial to models of ligand binding
and molecular recognition, can be obtained within a computer
time frame where the brute force approach would only provide
information on the partition function of the system and hence
its global properties. For example, the charged, polar, and
nonpolar contacts of an interface defining a protein–ligand
interaction can be modeled as sites of a two-dimensional Ising
lattice (7). This typically involves values ofN from 10 to 30, well
within the range of analysis of our method, but already at the
limits of current computational capabilities when using the
brute force approach. All of the transition modes (7, 14) of the
lattice can be computed from knowledge of the partition
function and its contracted forms leading to specific predic-
tions on the binding free energy for protein–ligand interaction,
as illustrated recently for the biologically relevant case of
hirudin binding to thrombin (7).
The availability of a systematic method for solving the

partition function of Ising lattices with arbitrary interaction
geometry among the sites makes it possible to use these lattices
as toy models for studying structure–function relations. In fact,
the topology of the lattice reflected by the connectivity matrix
associated with it encodes its cooperative properties. Struc-
tural perturbations of the lattice, like missing contacts or sites,
can be analyzed to unravel the effects on site-specific and
global binding properties. A detailed understanding of how
cooperativity is encoded in the structure of the lattice will
make it possible to predict the cooperative behavior of any
lattice from the connectivity matrix. The basic knowledge
arising from such a systematic analysis is likely to bring our
understanding of the Ising problem and cooperativity to an
entirely new level.

This work was supported in part by National Science Foundation
Research Grant DMB94-06103. E.D.C. is an Established Investigator
of the American Heart Association and Genentech.

FIG. 5. Distribution of zeroes of the partition function for s 5 100
for two-dimensional square lattices: (M) 232, (m) 333, (E) 434, (●)
535. Upon a conformal mapping, the zeroes tend to distribute on a
slightly distorted unit circle and rapidly approach the positive real axis
already for the 535 square lattice.

FIG. 6. Binding capacity per site b 5 d2 ln Cyd ln v2 for
two-dimensional lattices (from left to right: 434, 636, 737, 10310)
with s 5 0. The bimodal profile of the binding capacity becomes
increasingly asymmetric as N increases and mimics the behavior of a
system composed of two classes of sites, with the low affinity sites being
more populated. This behavior is typically seen in the interaction of
ligands with receptors on the cell membrane (19).
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