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In 1997, Jarzynski proved a remarkable equality that allows one to
compute the equilibrium free-energy difference �F between two
states from the probability distribution of the nonequilibrium work W
done on the system to switch between the states, e��F�kT � �e�W�kT�,
[Jarzynski, C. (1997) Phys. Rev. Lett. 87, 2690–2693]. The Jarzynski
equality provides a powerful free-energy difference estimator from a
set of N irreversible experiments and is closely related to free-energy
perturbation, a common computational technique for estimating
free-energy differences. Despite the many applications of the Jarzyn-
ski estimator, its behavior is only poorly understood. In this article we
derive the large N limit for the Jarzynski estimator bias, variance, and
mean square error that is correct for arbitrary perturbations. We then
analyze the properties of the Jarzynski estimator for all N when the
probability distribution of work values is Gaussian, as occurs, for
example, in the near-equilibrium regime. This allows us to quantita-
tively compare it to two other free-energy difference estimators: the
mean work estimator and the fluctuation–dissipation theorem esti-
mator. We show that, for near-equilibrium switching, the Jarzynski
estimator is always superior to the mean work estimator and is even
superior to the fluctuation–dissipation estimator for small N. The
Jarzynski-estimator bias is shown to be the dominant source of error
in many cases. Our expression for the bias is used to develop a
bias-corrected Jarzynski free-energy difference estimator in the near-
equilibrium regime.

Accurate measurement and calculation of free-energy differ-
ences is central to our understanding of biological, chemical,

and physical molecular processes. A common method of estimating
the free-energy difference �F � FB � FA between two states, A and
B, of a classical system in contact with a heat reservoir is to perturb
the system to induce a transition between these states. The average
work done in such a perturbation satisfies �W� � �F, where equality
holds if and only if the perturbation is infinitely slow. An average
of the work values obtained by any finite time experiment or
simulation therefore overestimates the true �F. Until recently,
recovering the equilibrium free energy from trajectories arbitrarily
far from equilibrium was therefore thought to be impossible.

In 1997, however, Jarzynski (1, 2) proved an identity that relates
the probability distribution of nonequilibrium work values with the
equilibrium free-energy difference between the two states:

e���F � �e��W� [1]

where � � (kT)�1. On the left-hand side of this equation is an
exponential of the equilibrium free-energy difference, and the
right-hand side is an exponentially weighted average over an infinite
number of nonequilibrium work trajectories, all started from the
same initial equilibrium state. Although the second law of ther-
modynamics requires that the average work over all possible
trajectories be greater than the free-energy difference, the work for
an individual trajectory will occasionally be less (3). The Jarzynski
average heavily weights these rare trajectories at the tail of the work
distribution in order to recover �F. The Jarzynski equality is closely
related to other recent advances in the theory of nonequilibrium
statistical mechanics (4–7).

A recent single-molecule manipulation experiment verified the
Jarzynski equality (8). A single folded RNA molecule was mechan-
ically unfolded both reversibly and irreversibly, and the Jarzynski
equality was used to obtain the free-energy change of the system (as
estimated by the reversible work values) from the irreversible
trajectories. This experiment was done at constant temperature and
pressure, and therefore the Jarzynski equality was cast in terms of
the Gibb’s free energy �G rather than the Helmholtz free energy
�F. A two-state model describing and justifying the outcome of
these experiments was proposed recently (9). The Jarzynski equal-
ity can be applied at any point along the pulling trajectory, making
it possible to reconstruct the entire free-energy profile of the
molecule along the pulling coordinate (10).

The free-energy perturbation technique uses an identical aver-
aging procedure to estimate free-energy differences but obtains the
work values computationally (11–13). If a system is perturbed
infinitely quickly from state A with Hamiltonian HA to state B with
Hamiltonian HB such that its configuration, x�, remains unchanged,
then the work that must be performed is HB(x�) � HA(x�). The
Jarzynski relation is correct for arbitrary perturbation speeds, and
thus we can recover the free-energy difference by averaging these
work values over the equilibrium ensemble of configurations of
state A (1):

e���F � �e���HB�HA��A � �
x�

PA�x��exp{���HB�x�� � HA�x��	}.

This result was known long before the Jarzynski equality was
proven, and we can view it as the Jarzynski equality in the limit of
infinitely fast switching.

The Jarzynski equality therefore has many applications, but
unfortunately the properties of the Jarzynski free-energy estimator

�F̂J�N� � � ��1ln��
i

N

e��Wi�
are largely unknown. How good is the Jarzynski estimator? If we
sample from a given work distribution P(W) a total of N times (by
unfolding an RNA molecule N times, for example), then how close
will our final free-energy difference estimate be to the true �F? It
is well known that the Jarzynski estimator is biased for finite N,
meaning that the estimator has a systematic error. This bias can be
the dominant source of error in estimating the free-energy differ-
ence, but the magnitude of the bias is generally unknown.

The Near-Equilibrium Regime and Free-Energy
Difference Estimators
There are three common free-energy difference estimators that can
be obtained from a set of N trajectories: the mean work estimator

Abbreviations: FD, fluctuation–dissipation; MSE, mean square error.

See commentary on page 12537.

¶To whom correspondence should be addressed. E-mail: carlos@alice.berkeley.edu.

© 2003 by The National Academy of Sciences of the USA

12564–12569 � PNAS � October 28, 2003 � vol. 100 � no. 22 www.pnas.org�cgi�doi�10.1073�pnas.1635159100



�F̂MW, the fluctuation–dissipation (FD) theorem estimator �F̂FD,
and the Jarzynski estimator �F̂J

�F̂MW � �W�N �
1
N�

i

N

Wi

�F̂FD � �W�N �
1
2

��̂W
2 �

1
N�

i

N

Wi �
�

2
1

N � 1�
i

N

�Wi � �W�N�2

�F̂J � �
1
�

ln�e��W�N � �
1
�

ln�1
N�

i

N

e��Wi�
[2]

�. . .�N in these equations denotes an experimental average over N
trajectories, and �F̂ represents an estimator of �F. The connection
between these three estimators can be elucidated by writing Jar-
zynski’s equality as a sum over the cumulants of the original work
distribution (14):

�F � �
n�1



�n����n�1

n!
. [3]

The first four cumulants are

�1 � �W� �3 � ��W � �W��3�
[4]

�2 � ��W � �W��2� � �W
2 �4 � ��W � �W��4� � 3�W

4 .

Note that the mean work estimator �F̂MW is just an estimate of the
first term on the right side of the cumulant expansion in Eq. 3 and
is valid when the perturbation is done reversibly. The FD estimator
�F̂FD is simply an estimate of the first two terms of the cumulant
expansion and is valid when the perturbation is done close to
equilibrium.

The near-equilibrium regime is defined in this article as the
regime in which the perturbation is sufficiently slow for the prob-
ability distribution of work P(W) to be Gaussian. It is important to
note that, although being close to equilibrium requires a Gaussian
work distribution, the inverse is not true. For example, a bead
dragged through water by a Hookean spring has a Gaussian work
distribution regardless of how fast the perturbation is done (15).
The ‘‘near-equilibrium’’ results derived in this article therefore may
be relevant even when the perturbation pulls the system far from
equilibrium.

The near-equilibrium regime is important because the results are
not model-dependent; any system perturbed slowly will have a
Gaussian work distribution. In addition, the behavior of the Jar-
zynski estimator in this regime is a first-order estimate of the
behavior in any regime. A Gaussian distribution has the unique
property among probability distributions that only a finite number
of its cumulants are nonzero. Specifically, only the first two cumu-
lants are nonzero, and Eq. 3 shows that, in this regime, �F � �W�
� (1�2)��W

2 . The following important equality therefore holds in
the near-equilibrium regime (16):

W� dis � �W� � �F �
1
2

��w
2 . [5]

We have defined the dissipated work as the difference between the
work and the equilibrium free-energy difference: Wdis � W � �F.
Eq. 5 is one manifestation of the FD theorem (17) and suggests the
particular expression given for the FD estimator in Eq. 2. In the
near-equilibrium regime the variance of the work distribution
yields, via the FD relation, an estimate of the dissipated work and
hence of the expected overestimate inherent in the mean work
estimator.

The Jarzynski equality can be expressed in terms of the dissipated
work without reference to �F: 1 � �e��Wdis�. In the near-equilibrium
regime the probability distribution of dissipated work P(Wdis) is a
Gaussian with mean W� dis and variance �W

2 � 2W� dis�� (see Eq. 5).
Fig. 1 plots this Gaussian P(Wdis) for W� dis of 0.5, 1, 2, and 4 kT. As
W� dis increases, the distribution becomes broader. The rare trajec-
tories with negative dissipated work are those heavily weighted by
the Jarzynski average, thus it is important to know how efficiently
these trajectories are sampled. The probability of observing a
trajectory with negative dissipated work is

P�Wdis � 0� ��
�


0

P(Wdis)dWdis �
1
2

�1 � erf��W� dis�2�	 .

This is a sharply decreasing function of W� dis, implying that the
efficiency of sampling falls rapidly with increasing W� dis.

The Jarzynski equality states that e���F � �e��W� �
�e��WP(W)dW, so the contribution to the estimate of a given part
of the probability distribution is e��WP(W). In the case of Gaussian
P(W), e��WP(W) is another Gaussian distribution with the same
variance �W

2 � 2W� dis��, but a mean given by W� � ��W
2 � (�F �

Fig. 1. Gaussian probability distributions P(Wdis � W � �F) of dissipated work
in the near-equilibrium regime for W� dis  �Wdis� of 0.5, 1, 2, and 4 kT. As W� dis

increases, the variance of the work distribution increases (�W
2 � 2W� dis��), but

P(Wdis � 0) decreases.

Fig. 2. Estimating �F from N � 20 near-equilibrium work values in the case of
W� dis � 4 kT. The histogram plots �F̂J(N � 20) � �F for 100,000 different estimates
of �F, each obtained by a Jarzynski average of 20 work values sampled from a
Gaussian work distribution (solid line). The dashed line corresponds to the con-
tribution of the region to the average, e��WP(W). The dotted line is the bias
(mean error): BJ(N � 20) � ��F̂J (N � 20)� � �F � 1.07 kT.
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W� dis) � 2W� dis � �F � W� dis (see Fig. 2). The most important part
of the work distribution to sample therefore is the region

Wdis � �W� dis � �W � �W� dis � �2W� dis��.

Fig. 2 plots, for the case of W� dis � 4 kT, the probability distribution
of dissipated work P(Wdis) as well as the weighted probability
distribution e��Wdis P(Wdis).

There are three important properties associated with any esti-
mator of the free-energy difference:

Bias B�N� � ��F̂�N�� � �F

Variance �2�N� � ���F̂�N� � ��F̂�N���2�

Mean Square Error �MSE� MSE�N� � ���F̂�N� � �F�2�

� �2�N� 	 B2�N�. [6]
The bias is simply the difference between the expectation value of
the estimator and the true �F and therefore represents a systematic
error. The expectation value of an estimator can be expressed by
averaging over M free-energy estimates (each obtained from a set
of N work values), and letting M 3 
:

��F̂�N�� � lim
M3


1
M �

k�1

M

�F̂k�N�. [7]

The standard measure for the quality of an estimator is the MSE,
which is a combination of the statistical error associated with �2(N)
and the systematic error associated with B(N). If the bias is zero,
then ��F̂� � �F, and Eq. 6 shows that MSE(N) � �2(N).

The Jarzynski estimator �F̂J(N) � ���1 ln�e��W�N is biased for
all finite N as a result of the nonlinear averaging. By ‘‘biased’’ we
mean that the difference ��F̂J(N)� � �F  BJ(N) is nonzero. This
difference is caused by the imperfect sampling of the work distri-
bution when only a finite number of trajectories are averaged. The
presence of a bias is most obvious in the limiting case of a single
trajectory being sampled (N � 1). In this case, the Jarzynski
estimator is simply the work value measured because �F̂J(N � 1) �
���1 ln e��W � W. The expectation value of the Jarzynski
estimator in this case is therefore ��F̂J(N � 1)� � �W� � �F �
W� dis � �F, yielding a bias of BJ(N � 1) � W� dis.

Fig. 2 plots a histogram of �F̂J(N � 20) � �F for near-
equilibrium switching assuming W� dis � 4 kT. The dotted line is the
bias, or mean error, of the Jarzynski estimator: BJ(N � 20) �
��F̂J(N � 20)� � �F � 1.07 kT. The variance of the estimator is the
squared deviation about BJ (N � 20), whereas the MSEJ is the
squared deviation about zero error (corresponding to the actual
free-energy difference).

The Jarzynski Estimator in the Large N Limit
In this section we consider the behavior of the Jarzynski estimator
in the large N limit for perturbations arbitrarily far from equilib-
rium. These results were derived independently by Zuckerman and
Woolf (18). As shown previously, the Jarzynski bias BJ starts at
BJ(N � 1) � W� dis. It then falls monotonically with increasing N (19)
and approaches zero in the limit of infinite N. Assuming that the
variance Var(e��W) is finite, the central limit theorem guarantees
that, for sufficiently large N, the random variable Y � �e��W�N will
be normally distributed with mean Y� � e���F and variance �Y

2 �
Var(e��W)�N. We perform a linear expansion of ln (Y) around
Y � Y� :

�F̂J � �
1
��ln�Y� � 	

�Y � Y� �

Y�
�

�Y � Y� �2

2!Y� 2 	
2�Y � Y� �3

3!Y� 3 � · · ·�
��F̂J� � �F 	

Var�e��W�

2�e�2��FN
	 · · ·

BJ�N� �
Var�e��W�

2�e�2��FN
�

Var�e��Wdis�

2�N
.

[8]

This expression yields the bias for any well behaved [finite
Var(e��Wdis)] work distribution for N �� Var(e��Wdis) or equiva-
lently for BJ(N) �� kT.

To obtain the variance of the Jarzynski estimator (as defined in
Eq. 6) in the limit of large N, we once again expand ln (Y) about Y �
Y� and obtain

�J
2�N� �

Var�e��Wdis)
�2N

�
2BJ�N�

�
. [9]

We see that, for large N and under very general conditions, there
exists a simple relationship between the bias and variance of the
Jarzynski estimator.

The MSE is simply a combination of the bias and variance of the
estimator: MSEJ(N) � �J

2(N) � BJ
2(N). The large N limit is defined

as N �� Var(e��Wdis), so Eq. 9 gives �J
2(N)�� BJ

2(N). This implies
that MSEJ � �J

2, making the variance the dominant source of noise
in the large N limit.

Near-Equilibrium Regime
For the remainder of the article we focus on probability distribu-
tions of work that is Gaussian. This is always the case for pertur-
bations done close to equilibrium but can also be true for pertur-
bations far from equilibrium. If P(W) is Gaussian, then the mean
�W� � �F � W� dis and variance �W

2 � 2W� dis�� have a simple
relationship (Eq. 5).

Bias. Knowing the magnitude of the Jarzynski bias in the large N
limit is useful, but in this limit, as shown above, the bias is not a
significant source of error. In addition, we will show that the large
N limit is often inaccessible by any experimental or computational
strategy. More important therefore is the behavior of the bias for
modest N, where the bias can be the dominant source of error for
any technique using the Jarzynski estimator to recover a free-
energy difference. Wood et al. (20) performed a linear expansion
to prove that for small variance �W

2 , the bias is BJ(N) � ��W
2 �2N.

Unfortunately, this estimate is only valid for �W
2 � 2W� dis�� �� (kT)2,

excluding almost all situations of interest. For example, if W� dis � 5
kT, then at 50 sampled trajectories the above estimate yields a bias
of only 0.1 kT, when in fact computational sampling from a
Gaussian work distribution shows that the bias is �1 kT, i.e., 10
times larger. An improved estimate of the bias for larger W� dis and
modest N is therefore highly desirable.

In the near-equilibrium regime, a log–log plot of the numerically
calculated small N bias is approximately linear in N (see Fig. 3). This
power law behavior of the bias at small N has been noted before and
may be true even for systems perturbed far from equilibrium (21).
We showed in The Near-Equilibrium Regime and Free-Energy
Difference Estimators that BJ(N � 1) � W� dis, implying that for
small N the bias can be approximated as

BJ�N� 	
W� dis

N
 . [10]

Systems with larger W� dis have a bias that falls off more slowly,
meaning that 
 is a decreasing function of W� dis. To determine an
accurate approximation for 
(W� dis), we consider the limit of
large N.

In the near-equilibrium regime P(W) is Gaussian and our large
N results (see Eq. 8) can be evaluated immediately:

BJ�N� � ��F̂J� � �F �
�e�2�W

2 �1�

2�N
�

�e2�W� dis�1)
2�N

. [11]

As a consistency check, it is worth noting that, in the limit of small
�W

2 , our bias estimate reduces to the estimate of Wood et al. BJ(N) �
��W

2 �2N. For small �W
2 , the large N limit occurs immediately, thus

making the bias fall off as 1�N for all N. The first order term in our
expansion of the bias has the form (e2�W� dis � 1)�N, which means that
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it is expected to be dominant if N �� (e2�W� dis � 1). We will therefore
assume that the small N limit intersects the large N limit at NC �
C(e2�W� dis � 1):

BJ(NC) �
W� dis

NC

 �

�e2�W� dis � 1�

2�NC
�

1
2�C

. [12]

C �� 1 is a constant that defines how small the bias must be before
the large N limit is reached.

Fig. 3 plots BJ(N) for W� dis of 0.5, 1, 2, 4, 8, 16, 32, and 64 kT. The
data points (circles) correspond to the numerically calculated bias
averaged over 150,000 sets of N trajectories, and the dashed lines
were obtained by assuming that the bias follows Eq. 10 in the small
N regime and Eq. 11 in the large N regime (we have assumed C �
15). The single free parameter C defines the intersection point for
the two regimes and completely specifies all eight curves. The fit is
quite good, although for W� dis �� kT the bias initially falls more
quickly than what would be predicted (see Eq. 13), leading to an
average error of �20%. In addition, the computed bias smoothly
interpolates between the two regimes at N � NC, thus falling below
the crossing point of the estimated bias (especially for larger W� dis).
Note that we used our analytic expression for the bias in the large
N regime to determine the behavior of the bias for small N. This
seems to work well despite the fact that the large N limit is often
impossible to reach. For example, in the case of W� dis � 64 kT, the
large N limit does not begin until N � 1057 work trajectories have
been sampled. Most applications therefore fall in the small N
regime.

Eq. 12 can be used to solve for 
 (W� dis), the rate at which the bias
falls to zero in the small N regime:


 �
ln�2�CW� dis]

ln[CVar�e��Wdis)]
�

ln�2�CW� dis]

ln�C�e2�W� dis�1)]
. [13]

Fig. 3B plots 
 as a function W� dis assuming that C � 15. We see that
the bias falls off more slowly as W� dis increases, and that 1 � 
 � 0.
The bias for small W� dis falls off approximately as 1�N, whereas
W� dis � 5 kT yields, via Eq. 13, a value of 
 � 0.4. It is important
to be aware of the unexpectedly slow fall of the Jarzynski bias to
avoid underestimating the bias and error in many applications
(8, 22).

Variance. Once again it is helpful to consider the case of N � 1. The
variance of the Jarzynski estimator then is simply the variance of the
work distribution, �J

2(N � 1) � �W
2 � 2W� dis�� � 2BJ(N � 1)��. We

therefore see that, in both the large N and N � 1 limits, �J
2(N) �

2BJ(N)�� (see Eq. 9), a relationship that does not hold at inter-
mediate values of N. Nevertheless, for the regime W� dis � kT, a
procedure similar to that used for the bias yields the small N
approximation,

�J
2�N� 	

�W
2

N
v �
2W� dis

�N
v , [14]

where the best fit is obtained with Cv � 50 in Eq. 13 determining

. The fact that Cv � C means that the variance initially decays more
quickly than the bias and hence that �J

2 � 2BJ�� for small N. Fig.
4A plots �J

2(N) for W� dis of 0.5, 1, 2, 4, 8, 16, 32, and 64 kT, with the
small N approximation of Eq. 14 shown as a dashed line. For W� dis �
5 kT, the variance cannot be approximated accurately by a power
law and initially falls off faster than predicted by Eq. 13. The
behavior of the variance for small N and large W� dis is therefore an
area for future research, although in this regime the variance is not
a significant source of error.

MSE. The MSEJ(N) can be calculated by summing the variance of
the estimator with the square of the bias. A summary of the
properties of the Jarzynski estimator in the different regimes is
available in Table 1. In most regimes the error is dominated by
either the variance or bias of the Jarzynski estimator. Most appli-
cations are in the small N regime, where the bias is a significant (and
often dominant) source of noise.

The most complicated situation is W� dis � kT for small N, where
both the variance and bias must be taken into account. In the
near-equilibrium regime the MSEJ(N) is given by

MSEJ�N���J
2�N� 	 BJ

2�N� �
2W� dis

�N
v 	 
W� dis

N
 �2

. [15]

For simplicity, we will assume for now that a single compromise
value of C can be used to accurately describe the decay of both the
variance �J

2 and the bias BJ, making 
v � 
. In Fig. 4B we plotted
MSEJ (N) for W� dis of 0.5, 1, 2, 4, 8, 16, 32, and 64 kT. The dashed
line corresponds to Eq. 15 (assuming CM � 40) in the small N
regime and MSEJ � �J

2 in the large N regime (Eq. 9). The
expression for the variance used in Eq. 15 becomes invalid for W� dis
�� kT, but in this regime the variance is not a significant source of
error. Most of the overestimate of the error for W� dis �� kT is caused
by the overestimate of the bias in Eq. 10.

We can invert Eq. 15 for the MSEJ (N) to get N (MSEJ), the
number of trajectories that must be sampled to reach a given MSE:

N � 
 �W� dis

�1 	 �2MSEJ � 1�
1/
�W� dis�

. [16]

It can be shown that this expression for the number of trajectories
necessary to average over to obtain a given level of accuracy
increases exponentially with W� dis. This means that Jarzynski aver-

Fig. 3. (A) Jarzynski bias as a function of N for average dissipated work of 0.5,
1,2,4,8,16,32,and64kT.Eachcircle is theaverageof150,000setsofworkvalues,
each of size N (x axis). The dashed lines are the approximation derived in the text,
with C � 15 (see Eqs. 10 and 11). The bias initially falls off as a power law BJ(N) �
W� dis�N
, with the fall-off rate 
 being a function of W� dis. The horizontal dotted
line corresponds to the boundary between the small and large N regimes. (B) 
 as
a function of W� dis. The bias falls off more slowly for larger W� dis.
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aging becomes unwieldy for large molecular systems and is exper-
imentally impossible with macroscopic samples.

A common question in computational studies is whether a given
amount of computer time should be used to perform a few slow
runs (which therefore are close to equilibrium) or many fast runs
(which therefore are further from equilibrium) (18). The expression
for MSEJ (N) indicates that, as long as we are in the linear response

regime (where W� dis is proportional to the perturbation rate and
hence inversely proportional to the simulation time), a lower MSE
is always obtained by performing fewer runs with smaller W� dis.

Comparing Three Free-Energy Difference Estimators
We are now able to compare the quality of the three free-energy
estimators in the near-equilibrium regime(23):

MSEMW �
�W

2

N
	

�W
4

4
�

2W� dis

�N
	 W� dis

2

MSEFD �
�W

2

N
	

�W
4

2�N � 1�
�

2W� dis

�N
	

2W� dis
2

�N � 1�
[17]

MSEJ �
�W

2

N
 	
�W

4

4N2
 �
2W� dis

�N
 	
W� dis

2

N2
 .

These equations have several characteristics in common. The first
term is proportional to W� dis and falls off as either 1�N or 1�N
,
whereas the second term is proportional to W� dis

2 . The first term in
the MSEMW and MSEFD equations is the error associated with
estimating �W�. The second term in the MSEMW equation is the
contribution of the bias, whereas the second term in the MSEFD
equation is the error inherent in estimating �W

2 .
The square root of the three MSE functions is plotted as a

function of N in Fig. 5 for the case of W� dis � 2 kT. The behavior of
the MSE functions in this plot contains many general features. In
the near-equilibrium regime, the Jarzynski estimator is always
better than or equivalent to the mean work estimator. The errors
are equal for N � 1, when the two estimators are identical, but the
Jarzynski error then falls more quickly with increasing N. As W� dis
3 0, the Jarzynski average is essentially a linear average similar to
the mean work estimator, and the two estimators become identical.
For larger values of W� dis, the Jarzynski estimator quickly becomes
superior to the mean work estimator. For example, at the relatively
small dissipation of W� dis � 4 kT, we already have that MSEJ(N �
2) � MSEMW (N3 
) � W� dis

2 . This means that, for W� dis � 4 kT,
it is better to do a Jarzynski average of two work values than to take
the mean of an infinite number of work values. A simple conclusion
of this analysis is that the Jarzynski estimator is always better than
the mean work estimator for near-equilibrium switching.

The Jarzynski estimator is also superior to the unbiased FD
estimator for small N. This is perhaps surprising because we are

Fig. 4. Variance (A) and MSE (B) of the Jarzynski estimator in the near-
equilibrium regime for W� dis of 0.5, 1, 2, 4, 8, 16, 32, and 64 kT. Each point is the
average of 150,000 sets of work values, each of size N (x axis). Dashed lines are the
approximation derived in the text, with Cv � 50 for the variance curves and CM �
40 for the MSE curves. The boundary between small and large N is denoted by the
horizontal dotted line. The variance approximation in the small N regime is valid
only for W� dis � kT because, for W� dis �� kT, the small N variance does not follow
power lawbehavior. Inthis regimethevariance isnotasignificantsourceofnoise.

Fig. 5. Plot of the square root of the MSE for each of the three different
estimators in the case of near-equilibrium switching and W� dis � 2 kT. Each point
is the result of numerical calculation, and the dotted line is the theoretically
predicted error (Eq. 17). Note that the Jarzynski estimator is best for N � 16
despite the fact that we are considering the near-equilibrium regime where the
FD estimator is unbiased. The Jarzynski estimator is always superior to the mean
work estimator.

Table 1. Summary of the behavior of the Jarzynski estimator in
the different regimes considered in this article

Arbitrary perturbation Perturbations near equilibrium

Small N Large N Small N Large N

W� dis � kT W� dis �� kT All W� dis

Bias,
BJ(N)

? Var(e��Wdis)
2�N

W� dis

N


W� dis

N


e2�W� dis � 1
2�N

Variance,
�J

2 (N)
? 2BJ(N)

�

�W
2

N
v 
�
2BJ

�
� ? 
�

2BJ

�
� 2BJ(N)

�

MSE ? ��J
2(N) BJ

2(N) � �J
2(N) �BJ

2(N) ��J
2(N)

In the case of the bias we have 
 � ln[2�CW� dis]�ln[C(e2�W� dis � 1) with C � 15,
but for the variance 
V  
 (C � 50).
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considering the near-equilibrium regime, where the FD estimator
is unbiased. The FD estimator works poorly for small N because of
the inherent difficulty of estimating �W

2 from limited data. For
larger N the FD estimator is better than the Jarzynski estimator in
the near-equilibrium regime. For arbitrary perturbations the Jar-
zynski estimator is expected to be superior to the FD estimator for
all N, because the FD estimator will become biased.

Bias Correction
In this section we show that understanding the behavior of the bias
allows us to construct an improved Jarzynski free-energy difference
estimator. The most obvious bias correction is to use
W�̂ dis � �W� � �F̂J as an estimate of the dissipated work, thus
yielding B̂J1 � W�̂ dis�N
(W�̂ dis) as an estimate for the bias and making
the final estimator

�F̂J1 � �F̂J � B̂J1. [18]

This improves the estimator, but W�̂ dis � �W� � �F̂J is an underes-
timate of W� dis (because of the Jarzynski bias), and thus the bias
correction will generally be too small.

A first-order correction is therefore to use W�̂ dis2 � �W� � �F̂J �

W�̂ dis�N
(W�̂ dis), resulting in a final free-energy difference estimator of

�F̂J2 � �F̂J � B̂J2 B̂J2 � W�̂ dis2�N
�W�̂ dis2). [19]

The effect of using the bias-corrected estimator �F̂J2 in the near-
equilibrium regime for W� dis of 8, 16, 32, and 64 kT is shown in Fig.
6. Bias correction decreases the typical errors (�MSEJ), especially

for larger N and W� dis. The error improvement deteriorates for small
W� dis and large N, because the bias becomes overcorrected. In this
regime �F̂J1 has a lower error. Bias correction for W� dis � kT must
be done by using more sophisticated methods such as incorporating
a technique called block averaging with the bias correction pre-
sented above [typical decreases in error are 20% (unpublished
results)].

Conclusions
Although Jarzynski averaging is an important and widespread
technique for calculating free-energy differences, the behavior of
the estimator is poorly understood. In particular, the most common
method for estimating error is simply to examine the statistical error
among repeated experiments. This technique can fail dramatically
in the many situations where the bias is the dominant source of
error. In addition, a substantial amount of effort must be invested
before it can be determined whether a given strategy is practical.
This article provides a quantitative estimate for the number of work
trajectories that must be sampled to achieve a given MSE as a
function of the average dissipated work.

The comparison between the three free-energy estimators in the
near-equilibrium regime also leads to several concrete conclusions.
First, the mean work estimator should never be used, even for very
large systems with concomitantly large dissipated work. The Jar-
zynski estimator is expected to be optimal for systems that are
perturbed violently. Less expected, however, is that the Jarzynski
estimator should also be used in the near-equilibrium regime when
insufficient data are available to accurately estimate the variance
(which is necessary to use the FD estimator). This is often the case
because the near-equilibrium regime is only accessed by perturbing
the system slowly, thus requiring a large amount of computation.

A better understanding of the behavior of the Jarzynski estimator
will allow researchers to develop improved sampling and averaging
algorithms. As a preliminary step in that direction, we have shown
that a quantitative understanding of the behavior of the Jarzynski
estimator bias in the near-equilibrium regime makes it possible to
improve the estimator by correcting for the bias.

An obvious direction for future research is to determine how well
the methods presented here can be used to analyze the small N
behavior of the Jarzynski bias and variance for perturbations
arbitrarily far from equilibrium. Another important area of study is
the behavior of the Jarzynski estimator when the work is measured
in the presence of noise. The experimental realities of single-
molecule techniques imply that measurement noise will often be an
appreciable fraction of the desired signal.
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