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The olivo-cerebellar network plays a key role in the organization
of vertebrate motor control. The oscillatory properties of inferior
olive (IO) neurons have been shown to provide timing signals for
motor coordination in which spatio-temporal coherent oscillatory
neuronal clusters control movement dynamics. Based on the neu-
ronal connectivity and electrophysiology of the olivo-cerebellar
network we have developed a general-purpose control approach,
which we refer to as a universal control system (UCS), capable of
dealing with a large number of actuator parameters in real time.
In this UCS, the imposed goal and the resultant feedback from the
actuators specify system properties. The goal is realized through
implementing an architecture that can regulate a large number of
parameters simultaneously by providing stimuli-modulated spatio-
temporal cluster dynamics.

The olivo-cerebellar system, one of the key neuronal circuits
in the brain, has been shown to provide highly coordinated

signals concerned with the temporal organization of movement
execution (1–3). This neuronal network involves inferior olive
(IO) neurons whose axons, the climbing fibers, terminate as
excitatory inputs onto Purkinje cells in the cerebellar cortex and
as en-passant collaterals onto the cerebellar nuclear neurons.
The Purkinje cells, in turn, exert a powerful synaptic inhibition
onto these cerebellar nuclear neurons (4). Much of the intrinsic
activity in this network is supported by autonomous subthreshold
membrane potential oscillations in IO neurons that display a
close-to 10-Hz frequency (5–7). Action potentials in IO neurons
occur at the depolarization apex of these oscillations (5).

To implement motor coordination via the olivo-cerebellar
system, the IO nucleus is organized such that the dendrites of the
IO neurons are electrotonically coupled (8, 9) via dendritic gap
junctions (10) and receive inhibitory feedback from the cere-
bellar nuclei (11–14). It was originally proposed that this inhib-
itory input produced a dynamic decoupling of the IO neurons
(9). This finding was later demonstrated to be correct by using
multiple electrode recordings at the cerebellar cortex (15). Thus,
the coupling serves to synchronize the oscillatory phase of IO
neurons whereas the return nuclear inhibition, by transiently
shunting dendritic coupling, controls cluster size and contour.
The interplay between these two processes provides the pattern
formation responsible for motor control via ‘‘cluster dynamics’’
in the IO (16). Such functional clusters have been demonstrated
in vitro by using voltage-dependent dye imaging of the IO
(16) and in vivo at the Purkinje cell layer by using multiple
electrode recordings (17, 18). The temporal dynamics of the
cluster activity have been shown to be directly correlated with
premotor temporal patterns of Purkinje cell activity during
motor execution (19).

The control complexity that the CNS must implement to
execute movements as simple as merely grasping an object
requires the simultaneous activation of 50 key muscles with over
1015 possible combinations (2). A digital control system attempt-
ing optimal combination of such a large set of variables at a real
time of 1 KHz would require a 106 GHz clock rate; thus, even
with present day computers, a simple movement will result in
computational overload.

By contrast, the olivo-cerebellar system works with a radically
different strategy. To avoid a huge computational overload, IO
cells fire in a noncontinuous burst with a frequency not exceed-
ing 10 Hz and control groups, rather than individual neurons.
Their activity is reflected in physiological tremor and underlies
the noncontinuous nature of motor execution (1). At the same
time, to smooth the movement discontinuities, the lower timing
rate demands recurrent upgrade compensation every 100 ms.
This timing is implemented through the dynamic activation of
nucleo-cerebellar inhibitory feedback onto IO cells by modulat-
ing electrotonic coupling during their oscillatory phase. Thus,
movement control implements synchronized time-step activa-
tion of different muscles, or synergistic muscle groups.

Accordingly, the system can be viewed as a set of phase-
coherent oscillatory clusters where their spatial configuration
corresponds to a particular movement (set of muscular activa-
tion) and where ongoing cluster dynamics ‘‘choose’’ the optimal
configuration for the next time step. Note that such internal
representation of the parameter space provides a high degree of
resilience in the system. Indeed, the controller can rapidly
rearrange the cluster distribution and execute the required
action in the presence of unit damage. From this perspective, the
olivo-cerebellar controller does not compute; rather, it deals
with analog signals and represents the parameters under control
(muscles) as space-time patterns (motor patterns).

Methods and Results
We have developed a general-purpose control model, which we
refer to as a universal control system (UCS). Using cluster
control principles, the UCS reproduces the key features of the
motor control dynamics of the olivo-cerebellar system in an
electronic circuit. The circuit has four component: (i) parameter
processing units (chips) that emulate IO neuron electrophysiol-
ogy, (ii) a coupling controller, that emulate the inhibitory
cerebellar nuclear function, (iii) a motor intention pattern input
representing the motor strategy to be implemented, and (iv) an
actuator system that implements motor command tactics. The
UCS also includes internal and external feedback loops.

Parameter-Processing Units. The electrical properties of IO neu-
rons have been mathematically modeled previously by using a
Van der Pole oscillator (20). Here, we present a second model
of the IO neurons that is functionally equivalent to the previous
model but provides a better fit with the experimental data, as
well as a faster response to a stimulus. This model generates
oscillations by appropriate parameter choice. The robust sub-
threshold oscillations of each unit emerge from Andronov–Hopf
bifurcation, in the first subthreshold state. The oscillatory signal
goes to the second (suprathreshold) state, which hovers up and
down relative to action potential threshold. When reaching
threshold at the peak of a subthreshold oscillation, the unit
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generates a spike. The timing of the spiking is thus determined
by the subthreshold oscillations. Depending on the values of the
control parameters, the model qualitatively reproduces the
spontaneous and stimuli-induced oscillations observed in IO
neurons (5). These properties can be described by a mathemat-
ical model comprising a set of four nonlinear differential
equations:

�Na

du
dt

� f�u� � v;

dv
dt

� u � �z � ICa� � INa;

dz
d�kt�

� f�z� � w;

dw
d�kt�

� �Ca�z � ICa � Iext);

[1]

where the variables z and w are responsible for the subthreshold
oscillations and low-threshold (Ca2�-dependent) spiking, and
the variables u and v describe the higher-threshold (Na�-
dependent) spiking. The parameters �Ca and �Na control the
oscillation time scales; ICa and INa drive the depolarization level
of the two blocks; ƒ is a cubic shape nonlinearity, ƒ(x) � x (x �
a)(1 � x); and the parameter k sets a relative time scale between
the two blocks. For a particular choice of parameters (�Na �
0.001; �Ca � 0.02; k � 10; ICa � 0.01; INa � �0.59; a � 0.01), the
model displays oscillations with the maximum spiking frequency
(one spike per period) (20). Iext has non-zero value only when the
intention template is activated.

A Hardwired UCS. Based on the above mathematical model, a set
of hybrid electronic IO chips was designed and manufactured.
Each chip (Fig. 1A) serves as a parameter-processing unit.
Specifically, each chip comprises five emitter follower circuits
and two field-effect transistor-driven multivibrators and is ca-
pable of generating subthreshold oscillations and two distinct
firing levels corresponding to the low-threshold and high-
threshold spikes (5). On reaching a specified potential (at the
peak of an oscillation), the system generates spikes (Fig. 1B).

These chips were then assembled into a network based on the
general connectivity of the olivo-cerebellar system. A set of
chips, wired together in a rectangular grid, form the processing
unit component of the UCS.

The UCS reproduces the key features of the olivo-cerebellar
system as follows: (i) The UCS comprises parameter-processing
units that are robust oscillators generating spikes with precise
timing, �. (ii) Coupling among processing units provides phase
synchronization among units. Such coupling is influenced by
inhibitory feedback resulting in variable clustering of units. (iii)
The UCS has an effective phase-resetting mechanism that drives
different cluster configurations at a rapid time scale (��). The
system reconfigures clusters on feedback signals from the exe-
cution system.

We expected that the ‘‘computing’’ power of the UCS could
be substantially higher than that of a digital computer. Using a
computer model of the UCS, we found that, given N parameters
to be controlled, the UCS must have at least N chips such that
a given chip will be associated with, and monitor, a given control
parameter. The model also indicated that a chip could hold the
specific phase that controls the state of a given parameter by
mapping phase values onto possible values of the parameter.

In this context, if M represents the number of levels of phase
that could be resolved by the system, then, at the timing interval,
�, the UCS would ‘‘resolve’’ MN possible combinations of dif-

ferent parameter states. In terms of digital processing the upper
limit of the UCS computing power would be:

P��� �
MN

�
. [2]

In the olivo-cerebellar system, the precision of spike synchrony
at the Purkinje cells innervated by an IO cluster is on the order
of 1 ms (21). By ‘‘clusters,’’ we mean groups of neighboring
neurons that demonstrate phase-coherent oscillation. Thus, the
number of possible states for a 100-ms period can be estimated
as M � 100 if we implement the biological parameters.

Note, however, that, in the UCS, the timing window can be
substantially decreased to the energetic limits of the constituent
materials. Eq. 2 gives only the upper limit for the UCS. Within
any particular template of activity, the number of possible states
will be smaller and will depend on the particular task the
template is required to accomplish. (Compared with a digital
system, this template resembles the limits that a particular
operating system or algorithm imposes on the speed of
calculations.)

Interunit Synchronization and Time Binding. As with IO neurons,
where electrotonic coupling leads to phase synchronization,
resistive coupling between IO chips demonstrates similar prop-
erties. This finding is demonstrated by using a circuit comprising
two chips as shown in Fig. 2. In this circuit, when a subthreshold
oscillation in the processing units (IO1 and IO2) reaches thresh-
old, a spike is generated (red spike). The logical timing blocks
generate a pulse of duration � in response to each spike. These
pulses then enter the logic element (coupling controller), which
performs an AND function, and the durations of the pulses are
summed. This new pulse is then used to control coupling

Fig. 1. (A) Hybrid microchip hardware model of IO neuron. (B) Oscillations
generated by the hardware model at the maximum spike frequency .
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between the processing units. Here, the logical timing blocks
generated LOW (0) pulses so the output of the logic element
leads to decoupling. When the processing units fire asynchro-
nously, as in this example, the decoupling period is ��. An
arbitrary value simulation of this circuit is shown in Fig. 2 B and
C. Coupling [d(t)] between two units [u1(t) and u2(t)] is shown
in Fig. 2B, and unit output is shown in Fig. 2C. Note that, in the
absence of action potentials, coupling increases and the two units
fire synchronously. Because synchrony is not perfect, through the
feedback circuit, this firing tends to reduce coupling. The units
are not strongly coupled again until the processing units return
to the subthreshold state.

Cluster Control Architecture. At the next step, the activity of the N
parameter-processing unit activity is integrated into the dynam-
ics of the UCS by using the principles of cluster control archi-
tecture. Because the units (chips) are locally coupled, an indi-
vidual unit can influence its neighboring units directly. The
coupling inhibitory feedback signal generated as a function of
spiking activity in one unit will thus directly influence the unit
itself, and its neighbors (Fig. 2). Local groups of units that are
directly coupled and have the same oscillatory phase form
clusters. Using such clusters, the system is capable of maintaining
local oscillatory coherence and can tune neighboring unit phase.
This parallel processing feature is significant when groups of

chips control certain parameters or closely linked groups of
parameters. The global coherence of many clusters determines
a particular execution (output) pattern. Such coherence is
determined by signals returning via the internal feedback loop
(chip activity to the coupling controller) and by feedback from
the actuator system.

This template is illustrated in Fig. 3, which includes a motor
intention pattern (Fig. 3A) and a schematic representation of an
UCS (Fig. 3B). The UCS comprises a coupling controller and a
layer of N processing units (chips) that can be organized into
clusters. For clarity, only one example cluster is shown. This
cluster comprises a central unit linked to four units by spike-
controlled, variable coupling connections.

The intention pattern projects to the processing units both
directly and indirectly (through the coupling controller). The
direct projection acts to reset oscillatory phase in individual
units. Signals through the coupling controller act to inhibit the
interunit coupling according to the intention pattern. The color
of each pixel (Fig. 3A) in the intention pattern encodes an action
potential for the indirect pathway and the phase magnitude
(from �� to ��) of an oscillatory reset signal for the direct

Fig. 2. Spike-controlled coupling circuit and simulation. In this example,
processing units (IO1 and IO2) are resistively coupled. Their output controls the
resistive coupling via feedback through a logical timing block and a logic
element. Each time a unit generates a spike (red spike), the timing block
generates a pulse with duration �. The logic element performs an AND
function, summing the duration of the pulses from the timing block set. When
the units fire asynchronously, the summed pulse is ��, as indicated in A. A
simulation of this circuit shows coupling [d(t)] between the two units (B) and
unit output [u1(t), u2(t)] (C). Note that, in the absence of spikes, coupling
increases, and the two units fire synchronously. Feedback from the spikes,
when their synchrony is not perfect, tends to uncouple the units. The units are
not strongly coupled again until the units return to the subthreshold state.

Fig. 3. Schematic representation of UCS architecture. A motor intention
pattern (A) and the components of the UCS (N processing units, coupling
controller and actuator system; B) are shown with their connections. The color
of each pixel in the intention pattern encodes for the corresponding process-
ing unit an inner product of the required oscillatory phase (�� to ��) (to the
coupling controlled) and the magnitude of an oscillatory reset signal (directly
to the processing unit layer) (A). The processing units may be organized into
clusters. An example cluster comprising a central unit linked to four units by
spike-controlled, variable coupling connections is shown. In addition to the
intention pattern, the coupling controller receives feedback from the pro-
cessing unit layer (internal feedback loop). This is the same signal that leaves
the UCS to stimulate the actuator system. Note that, in addition to input from
the intention pattern and coupling controller, the processing units receive
feedback from the actuator system (external feedback loop).
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pathway. The latter is specified in units of depolarizing current
(Iext) in the system of equations in Eqs. 1.

Neighboring units can be highly synchronized. Such synchro-
nization would provide coherence during a controlled state when
the goal is to trigger actuator activity, for example. Functional
f lexibility is provided when the units are decoupled. In this state,
they can either operate autonomously, to compensate for the
control discontinuity, or their phase may be reset according to
incoming stimuli. External feedback signals from the actuator
system directly ‘‘reports’’ the current state of the executing
system to the UCS via the IO chips. This input resets the phase
differences among clusters. In this case, they could reconfigure
themselves to be tuned for another motor intention pattern

Because synchronization of the processing units is tuned
through an internal feedback loop, the intention pattern sets only
a general control strategy as the system needs to use only the key
features of the input pattern. For example, in the motor intention
pattern shown in Fig. 3A, the system requires only pattern
contours separating units or groups of units with different
phases. Effective UCS function does not require that the inten-
tion pattern be perfectly implemented initially. Rather, specifi-
cation of the contours (borders) of the clusters is the critical
parameter. Thus, if some elements of a particular cluster in the
pattern were to fall out of synchronization with the rest of the
pattern, the performance of the system would not be affected.

The UCS processes both input from the intention template
and the executing system rapidly, updating the clusters on a time
scale of �. The UCS generates an optimal motor execution
pattern (Fig. 3B) for a given input signal and current state of the
executing system. Such a sequence of motor execution patterns
and unit output was obtained by an arbitrary value simulation
(Fig. 4). At t � 7.4, the UCS was stimulated with the motor
intention pattern shown in Fig. 3A. Before, and at the moment
of delivery of the motor intention pattern (stimulus, t � 7.4),
there is little coherence among the 400 processing units. After
delivery of the stimulus, the network organized itself into square
configurations of clusters corresponding to the stimulus (Fig.

3A). Note the increased synchronization of firing of individual
units after the stimulus was delivered (Fig. 4B).

As mentioned above, the UCS uses input from the actuator
system to reset the phase differences among clusters. This
actuator feedback returns directly to chip units. As shown in the
unit model (Eq. 2), a stimulus resets the unit’s oscillatory phase
to a value corresponding to the duration and magnitude of the
input signal. Thus, UCS network activation with an increased
magnitude intention pattern (Fig. 4 C and D) is associated with
increased level of intensity of the motor pattern, resulting in the
required synchronization between clusters. As shown in Fig. 4C,
delivery of the stimulus synchronizes all of the units (t � 7.4), and
the motor pattern is attained after the first cycle through the
processing units (t � 14.8). This result is also seen in the
near-synchronous firing of the individual units immediately after
delivery of the stimulus (Fig. 4D).

These results may be compared with pattern formation in the
gradient neural networks (e.g., Hopfield, ref. 22) where it is
necessary to define all possible N2 interunit connections for a
given pattern (Hebbian learning rule). By contrast, the UCS
needs to have only a few percent of this value modified, thus
avoiding possible overloads. In the chessboard pattern example,
a UCS composed of N � 400 units uses only �102 couplings from
1.6 � 104 possibilities, i.e., only a few percent.

Note also that the phase difference between the clusters is not
fixed, but depends on the initial (or previous) state of the system.
Thus, for a given stimulus, the UCS yields a pool of possible
cluster configurations. Because the system does not require a
fixed phase difference between clusters, the number of possible
patterns that are satisfactory for an imposed intention template
provides a pool of possible solutions. This result not only makes
the system robust with respect to the malfunctioning of one or
more individual oscillators, but also ensures a given level of
tolerance to external obstacles that are introduced to the system
as perturbations to the pattern of activity. In response to
perturbations, the UCS switches to another pattern from the

Fig. 4. Motor execution patterns and output of individual oscillator units. (A) Sequence of snapshots of the motor execution pattern before (t � 0) and after
delivery of the motor intention pattern. Note that at t � 0 and 7.4 there is little coherence among the processing units. After delivery of the stimulus (Stimulus
in B), the network organized itself into square configurations of clusters corresponding to the stimulus (intention pattern in Fig. 3A). Note the increased
synchronization of firing of individual units after the stimulus was delivered (B). Delivery of a higher intensity stimulus synchronized unit phase (t � 7.4, C) and
firing (D). The motor execution pattern resembled the motor intention pattern after only one iteration (t � 14.8). More iterations were required to achieve such
coherence with the lower intensity stimulus (A). (Data were obtained by computer simulation of a UCS with 400 units.)
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pool that avoids ‘‘accommodating’’ the obstacles by avoiding
them.

Discussion
The olivo-cerebellar system represents a high level controller for
movement execution. It can simultaneously address an enor-
mous number of tasks coordinating all muscles to work in the
synchrony required for smooth movements. The system is agile
and robust and capable of reorganizing itself according to
current conditions. For a given task, it presents a pool of possible
solutions to the executing system. The system is, de facto,
tolerant of external perturbations, local internal controller dam-
age, and damage to the input–output pathways, or to the
executing mechanism. In modeling the structure and functions of
the olivo-cerebellar controller, we have found a solution that
approaches a universal control system, in the sense that it is

applicable to a large set of control requirements. The UCS does
not demand specification of parameters under control and has
no restriction on the number of the parameters to be tuned. Such
universality opens a wide area for its application. For instance,
as a model of a motor control system, the UCS could hold in tune
robot actuators, solving the problems of stability and adaptabil-
ity simultaneously. Indeed, given any device to be controlled, the
UCS must be supplied with the input–output connectivity
providing the interface between the parameter under control
and the phase of UCS’s oscillators. In contrast to existing
controllers (mostly based on digital computing systems), the
UCS does not operate numerically. It works by internal analo-
gous emulation of a set of possible solutions for a given task.
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