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GD3 ganglioside has been considered to be associated with
cell proliferation and cell activation, as it is exclusively
expressed in the fetal brain tissues at the proliferative stage of
development (Yu et al. 1988). It can be induced in human T
lymphocytes by stimulating with Concanavalin A or inter-
leukin 2 (Yamashiro et al. 1995). It is also induced in
fibroblasts introduced with oncogenic ras gene (Nakaishi
et al. 1988). GD3 has been considered to be a melanoma-
associated tumor antigen (Furukawa and Lloyd 1990), and
been used as a target of antibody therapy in melanoma
patients (Houghton et al. 1985). Recently, we demonstrated
that GD3 expression actually enhanced the malignant
properties of melanoma cells via increased tyrosine phos-
phorylation of adaptor molecules such as p130Cas or paxillin
(Hamamura et al. 2005).

Besides GD3, a derivative of GD3 with O-acetylated sialic
acid has been reported to be also associated with tumors. In
particular, 9-O-acetyl GD3 was found in some of human

melanomas (Cheresh et al. 1984) and in other tumor tissues
(Kohla et al. 2002), suggesting that this structure is involved
in the development and evolution of cancer (Schauer and
Kamerling 1997; Angata and Varki 2002).
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Abstract

GM2/GD2 synthase gene knockout mice lack all complex

gangliosides, which are abundantly expressed in the nervous

systems of vertebrates. In turn, they have increased precursor

structures GM3 and GD3, probably replacing the roles of the

depleted complex gangliosides. In this study, we found that

9-O-acetyl GD3 is also highly expressed as one of the major

glycosphingolipids accumulating in the nervous tissues of the

mutant mice. The identity of the novel component was

confirmed by neuraminidase treatment, thin layer chroma-

tography-immunostaining, two-dimensional thin layer chro-

matography with base treatment, and mass spectrometry. All

candidate factors reported to be possible inducer of 9-O-

acetylation, such as bitamine D binding protein, acetyl CoA

transporter, or O-acetyl ganglioside synthase were not

up-regulated. Tis21 which had been reported to be a 9-O-

acetylation inducer was partially down-regulated in the null

mutants, suggesting that Tis21 is not involved in the induction

of 9-O-acetyl-GD3 and that accumulated high amount of GD3

might be the main factor for the dramatic increase of 9-O-

acetyl GD3. The ability to acetylate exogenously added GD3

in the normal mouse astrocytes was examined, showing that

the wild-type brain might be able to synthesize very low levels

of 9-O-acetyl GD3. Increased 9-O-acetyl GD3, in addition to

GM3 and GD3, may play an important role in the compen-

sation for deleted complex gangliosides in the mutant mice.

Keywords: 9-O-acetyl GD3, brain, ganglioside, knockout,
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7(9)-O-acetyltransferase, the enzyme responsible for
forming O-acetylated gangliosides, was demonstrated in
bovine submandibular glands in 1970 (Schauer 1970).
Recently, many attempts have been made to identify the
gene without success, suggesting that a single gene product
may not be able to catalyze the 9-O-acetylation of sialic
acids. These attempts resulted in the identification of a
putative acetyl-CoA transporter (named AT-1) cDNA (Kana-
mori et al. 1997) or of a cDNA for a novel transcriptional
factor (or AGS, O-acetyl ganglioside synthase) (Ogura et al.
1996). Vitamin D-binding protein (vit-D bp) was also defined
as a candidate for 9-O-acetylation-causing factor (Shi et al.
1988). Recently, Satake et al. identified Tis21 as an inducer
of 9-O-acetylation of GD3 under the expression of GD3
(Satake et al. 2002). This gene was originally identified as a
promoting factor of cell proliferation, and appears to also act
as an inducing factor of the O-acetyltransferase.

In the mutant mice of GM2/GD2 synthase lacking all com-
plex gangliosides, GM3 and GD3 accumulated at extremely
high levels (Takamiya et al. 1996). Recently, we detected an
additional band migrating between GM3 and GD3 in thin
layer chromatography (TLC). This component could only
be detected in the preparation without alkaline treatment,
suggesting it is alkaline sensitive. Based on the sensitivity
to neuraminidase treatment and alkaline treatment, TLC-
immunostaining, and mass spectrometry, the band was iden-
tified as 9-O-acetyl GD3. Mechanisms for the neo-expression
of 9-O-acetyl GD3 in the mutant mice were analyzed.

Materials and methods

Knockout (KO) mice
The generation of the KO mice of GM2/GD2 synthase (Takamiya

et al. 1996) and GD3 synthase (Okada et al. 2002) was previously
reported. Maintenance and genetic typing of these mice were

performed according to the directions of the Ministry of Education,

Culture, Sports, Science and Technology of Japan (MEXT). This

study was approved by the Committee for Animal Experiment of

Nagoya University Graduate School of Medicine.

Extraction of glycolipids and TLC
Glycolipid extraction was performed as described previously

(Furukawa et al. 1985). The brief and quick extraction was

performed as previously described (Miyazaki et al. 1997), in which

alkaline treatment step was skipped. Extracts with chloroform/

methanol were directly applied to DEAE SephadexTM A-50

(Amersham Biosciences AB, Uppsala, Sweden) ion exchange

column chromatography after desalting as described previously

(Miyazaki et al. 1997). TLC was performed usually with chloro-

form/ methanol/0.2% CaCl2 (55 : 45 : 10), and bands were detected

with resorcinol spray.

Neuraminidase treatment of gangliosides
In order to clarify the core structures of individual bands in TLC,

ganglioside mixtures were digested with a neuraminidase (Clostrid-

ium perfringens, Sigma, St Louis, MO, USA), and the products were

desalted and analyzed in TLC/resorcinol spray.

TLC-immunostaining
Using an anti-9-O-acetyl GD3 monoclonal antibody (mAb) Jones

(Blum and Barnstable 1987) (kindly provided by Dr Colin

Barnstable at Rockefeller Institute, New York) or mAb GMR2

(anti-9-O-acetyl GD3) (Seikagaku Kogyo, Tokyo), TLC-immuno-

staining was performed. After development of TLC, glycolipids

were heat-blotted with an automated heat blotter (Atto, Tokyo) as

described in the manufacturer’s instruction, and soaked in 2%

bovine serum albumin/PBS for the blocking at 4�C over night. The

membrane was stained with the antibodies at 2–5 lg/mL for 2 h at

25�C, then detected with horseradish peroxidase-labeled anti-mouse

IgG (H & L) antibody or anti-mouse l antibody combined with

Western LightningTM chemiluminescence reagent (PerkinElmer

LAS, Inc., Boston, MA, USA). TLC-immunostaining with mAb

R24 (anti-GD3) was also performed. Detection of antibody binding

was also performed with Immunostaining HRP-1000TM (Seikagaku

Kogyo, Tokyo).

Two-dimensional TLC
Two-D TLC was performed by changing the direction of TLC )90�.
For the standard condition, an identical neutral solvent system was

used to confirm the diagonal distribution of all components. Then,

alkaline-sensitivity was analyzed by exposing TLC plates to NH3

vapor for 2 h in a sealed box between the first and the second

development.

Mass spectrometry
Mass spectrometry was performed to confirm the chemical structure

of the new band, using the excised band from PVDF membrane on

which gangliosides were transferred from an HP-TLC plate.

Secondary ion mass spectrometry (SIMS) of the glycolipids was

performed as described previously (Taki et al. 1995; Kasama et al.
1996). Negative ion mass spectra of glycolipids were recorded on a

TSQ 700 quadrupole mass spectrometer (Thermo Fisher Scientific,

Inc.,Waltham,MA, USA) equippedwith a cesium ion gun as follows.

The glycolipid band on the PVDFmembrane was excised (1.5 mm in

diameter) and placed on a sample tip of mass spectrometer, and few

microliters of triethanolamine (Wako Pure Chemical Industries,

Osaka, Japan) was added as the SIMSmatrix. The matrix with sample

was bombarded with primary ion beam of Cs+ at 20 KeV. The ion

multiplier was kept at 1.2 KV and the conversion dynode at 20 KV.

The spectrum was accumulated several tens of scans.

Reverse transcription-polymerase chain reaction
Expression levels of candidate genes for the inducing factor of O-
acetylase were examined with total RNA from the nervous tissues of

the wild-type (WT), GM2/GD2 synthase KO, and GD3 synthase

KO mice. Total RNA 4 lg was served for reverse transcription in

50 lL mixture at 37�C for 90 min followed by 3 min incubation at

95�C. Usually, PCR was performed in 50 lL of reaction mixture

using cDNA (2.5 lL), 2 mM dNTP, 25 mM MgCl2, Taq polymer-

ase (0.25 lL), and 5 lM primers with a time course of 94�C for

3 min and 30 cycles of (94�C for 1 min, 55�C for 1 min, and 72�C
for 1 min), then at 72�C for 7 min. Actually, PCR for AGS gene

was performed at 60�C for annealing.
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The products were analyzed by electrophoresis and ethidium

bromide (EtBr) fluorescence under UV. Primer sequences used for

PCR were as follows, vitD-bp: sense primer, 5¢-CCAACCCTGAA-
AACCCTTAG-3¢, anti-sense primer, 5¢-CAGAGTGGTTCAGTTC
AAGA-3¢; AGS: sense primer, 5¢-GCCTGGACGGCTCAGAGC-
AA-3¢, antisense primer, 5¢-TTGGGCTGGCAGGACTGAGC-3¢;
AT-1: sense primer, 5¢-AACACTGTGTCTAATCTGGG-3¢, anti-

sense primer, 5¢-CCAGTAATGTT GGCATCAGT-3¢; Tis21: sense
primer, AGTCTGAATGCTGCTACCAC-3¢, antisense primer, 5¢-CA-
GCCCTACAAGAATACCAG-3¢; glyceraldehydes 3-phosphate

dehydrogenase, (GAPDH): sense primer, 5¢-GTCAGTGGTGGACC-
TGACCT-3¢, antisense primer, 5¢-TGCTGTAGCCAAATTCGTTG-3¢.

Uptake and expression of exogenous gangliosides by cultured
astrocytes
Astrocytes from mouse brain were prepared as described previously

(Mizuno et al. 2005). Astrocytes passaged more than three times

were plated in microtiter plates (500 cells/well), and incubated over

night. Then, GD3 was dried in a glass tube, and was resuspended in

plain minimum essential medium with rigorous vortex. GD3

solution was added to the cells in the plates after washing twice

with plain medium. Ganglioside expression was analyzed next day

by an immunofluorescence assay. Serially diluted antibodies with

PBS containing 3% fetal calf serum was added to the cells, and

incubated for 1 h at 25�C. After washing twice, FITC-conjugated

second antibodies (goat anti-mouse IgG or anti-mouse l chain) were

added and incubated for 30 min. After washing, cells were

examined under a fluorescence microscopy.

Results

TLC of WT and KO mice brain gangliosides
Ganglioside fractions were extracted as previously reported
(Furukawa et al. 1985). Then, gangliosideswere also prepared
with a brief method without alkaline treatment, where acidic
fractions were directly isolated from chloroform/methanol
extracts using DEAE SephadexTM A-50 ion-exchange
column (Miyazaki et al. 1997). In the standard separation,
only GM3 and GD3 could be found in the extracts from the
mutant mice (Takamiya et al. 1996) (Fig. 1a). In contrast, the
brief preparation resulted in the appearance of a new band
between GM3 andGD3, showing similar band intensity to that
of GM3 (Fig. 1b). This TLC pattern was essentially same in
cerebrum and cerebellum (Fig. 1c). The new band was present
persistently from 16 to 70 weeks after birth (Fig. 1d).

Neuraminidase treatment
In order to clarify the structures of the bands in TLC,
ganglioside mixtures were digested with a neuraminidase,
and the products were analyzed in TLC. Gangliosides from
WT mice brain became a single band at the migration level of
GM1 (data not shown), corresponding to the previous reports
(Yamamoto et al. 1995). On the other hand, no GM1-like
band could be found in the null mutants. In stead, a definite
band was found at just above GM1 site, showing identical

migration behavior to the original migration site of the novel
band (Fig. 2). This result suggested that the unknown
component was neuraminidase-resistant. An intense band
above GM3 was newly found in the KO extracts after the
neuraminidase treatment (Fig. 2). This brown band distinct
from violet bands with resorcinol was found only in the KO

Fig. 1 A new band in ganglioside fractions from the mutant mice lacking

complex gangliosides. (a) TLC of brain gangliosides from the WT and

KO mice prepared via alkaline treatment. (b) TLC of brain gangliosides

from the WT and KO mice prepared by non-alkaline condition. (c)

Ganglioside fractions from cerebrum and cerebellum tissues of a KO

mouse. Ten mg tissue-derived gangliosides were applied for all sam-

ples. (d) Ganglioside fractions of the KO brains at different ages were

compared in TLC/resorcinol. The new band was indicated by X in b–d.

Fig. 2 Neuraminidase treatment of gangliosides from the KO mouse

brain. Gangliosides were incubated in the presence or absence of

neuraminidase and the products were analyzed in TLC after desalting.

ST, bovine brain gangliosides. TLC was developed with a solvent

system of chloroform: methanol: 0.2% CaCl2 (55 : 45 : 10). Bands

were visualized by resorcinol spray. The new band was indicated by X.
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sample, suggesting the product was a neutral (non-sialylated)
glycolipid, lactosylceramide derived from GM3 and GD3.

TLC-immunostaining
To identify the new band, TLC-immunostaining using mAb
Jones was performed. An intensely stained band was found at
the same migration site as the new band indicated by X in
Fig. 3a and 3b. This result indicated that the unknown band
was 9-O-acetyl-GD3.

Comparison of TLC-immunostaining pattern between the
wild-type and the KO mice
To clarify whether the wild-type mice express some levels
of 9-O-acetyl-GD3, further TLC-immunostaining was per-

formed. Using acidic fractions from WT and KO mouse
brains as shown in Fig. 4(a), TLC-immunostaining was
performed with anti-GD3 mAb R24 and anti-9-O-acetyl
GD3 mAb GMR2. mAb R24 stained GD3 in bovine brain
gangliosides (moderately), WT mouse brain extracts
(weakly), and in the KO mice brain (strongly) (Fig. 4(b)).
As expected, mAb GMR2 stained a strong band of
probably 9-O-acetyl-GD3 at the site of X. No correspond-
ing band was detectable in the WT sample. When, double
amounts of gangliosides were stained with longer incuba-
tion with the substrate, a very faint band appeared at the
migration site of X, suggesting that very low amount of 9-
O-acetyl-GD3 was present in the brain of the WT mice
(Fig. 4(c)). Additional bands (indicated as a and b) were

Fig. 3 The new component was 9-O-acetyl GD3 as analyzed by

TLC-immunostaining. (a and b) TLC-immunostaining of ganglioside

fractions from a KO mouse with mAb Jones. (a) TLC pattern of

gangliosides from a KO mouse as well as bovine brain to show the

migration sites of bands. After TLC, primulin-stained bands were

marked with a pencil, then transferred to PVDF by heat-blotting. (b)

After blotting, bands were stained with mAb Jones (ascites, 1 : 100

dilution) and a chemiluminescence detection system.

Fig. 4 The new component was detectable even in the WT mouse

brain extracts. To clarify whether 9-O-acetyl-GD3 was expressed in

the WT mouse brain, TLC-immunostaining was rigorously performed.

(a) Resorcinol pattern of the acidic fractions from WT and KO mice.

BBG is a standard (bovine brain gangliosides). (b) TLC-immuno-

staining of the samples as shown in (a) with mAb R24 and mAb

GMR2. mR24 was used at 1 : 100 dilution of ascites, and mAb GMR2

was at ·10 dilution of the commercial product (1 lg/mL). (c) Twice

amounts of gangliosides were applied, and incubated with the sub-

strate at the final step for longer time, leading to the detection of a faint

band at the site of X. TLC-immunostaining with mAb Jones also

showed same results.
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observed under this condition, whereas the identity of them
was not known.

2D TLC
In order to further investigate the nature of the new band in
the null mutants, we examined the 2D TLC pattern of
gangliosides from WT and KO mice brains. After TLC of
gangliosides using C: M: 0.2% CaCl2 (55 : 45 : 10), the
TLC plates were exposed to NH3 vapor for 2 h. Then, TLC
was developed by turning the direction )90� using the same
neutral solvent. As expected, all ganglioside components
were aligned on the diagonal line in WT gangliosides as well
as bovine brain gangliosides (Fig. 5a), indicating all these
spots consisted of alkaline-resistant structures. When gan-
gliosides from KO mice were developed with a neutral
solvent system in both first and second dimension, three
spots were found on the diagonal (Fig. 5b). On the other
hand, KO mice samples showed a non-diagonal pattern, i.e.,
a new component migrated more slowly in the second
chromatography when the plate was exposed to NH3 after the
1st dimension (Fig. 5c), suggesting this band is alkaline
sensitive and was converted to GD3.

Mass spectrometry
Mass spectrometry was performed using the novel band from
PVDF membrane on which gangliosides were transferred
from an HP-TLC plate. As shown in Fig. 6a, presence of
O-acetylated gangliosides containing d20:1-C18:0 and
d18:1-C18:0 were suggested. In A, m/z 1534.8 and 1562.9
were [M+Na-H2]

). m/z 1512.9 and m/z 1541.1 were [M-H]).
m/z 1179.8 and 1207.8 were of fragment ions from which
O-acetyl sialic acid was cleaved. Based on ceramide
structures, m/z 1179.8, 1512.9, 1534.8 were from ganglio-
sides with d18:1-C18:0, and m/z 1207.8, 1541.1, 1562.9
were from gangliosides with d20:1-C18:0. In MS/MS
spectrum of m/z 1513.2 ([M-H])) (Fig. 6b), m/z 1179.8

was a fragment ion derived from [M-H]) from which
O-acetyl sialic acid was cleaved. m/z 289.1 (correct m/z 290)
corresponded to sialic acids (dehydrated minus ion). m/z
331.0 (correct m/z 332) corresponded to O-acetyl sialic acid
(dehydrated minus ion). m/z 623.1 corresponded to O-acetyl
sialic acid + sialic acid (dehydrated minus ion). m/z 641.1
corresponded to O-acetyl sialic acid + sialic acid. m/z 888.1
corresponded to the ion of GA3 structure. These results
indicated the band contained O-acetyl GD3, though the exact
acetylated site could not be determined.

Expression levels of candidate genes for the inducing factor
of O-acetylase
In order to clarify that involvement of several genes that were
previously reported to be associated with O-acetylation of
GD3 in the neo-expression of 9-O-acetyl GD3 in the mutant
mice, RT-PCR was performed. None of the genes examined,
i.e., Tis21, vitD-bp, AT-1, and AGS, showed up-regulation in
GM2/GD2 synthase gene KO mice compared to the WT
mice (Fig. 7). In particular, the expression level of Tis21 that
had been reported to be expressed under GD3 expression
rather decreased in the KO brain (Fig. 7d). Since it has been
suggested that Tis21 was induced by GD3 expression leading
to the induction of machinery for 9-O-acetylation, the mRNA
expression levels in GD3 synthase KO mice were also
examined. However, no definite changes in the expression
levels of Tis21 could be observed (Fig. 8).

Uptake and acetylation of GD3 in astrocytes
In order to clarify whether WT or other mutant mouse brain
had enzyme activity to synthesize 9-O-acetyl-GD3, expres-
sion of 9-O-acetyl-GD3 as well as GD3 was analyzed after
addition of GD3 to the culture medium of astrocytes. When
nothing was added to the medium, strong expression of GD3
in the astrocytes from the KO mice were observed
(Fig. 9(a)). WT astrocytes also expressed GD3 at a fairly

Fig. 5 The new component was 9-O-acetyl GD3 as analyzed by 2D

TLC. 2D TLC of gangliosides extracted from a KO mouse brain

showing an alkaline-labile component. (a) Gangliosides from bovine

brain as a standard. Gangliosides from a WT mouse showed a similar

pattern (data not shown). (b and c) Gangliosides from a KO mouse.

Alkaline treatment of the plate was done between the 1st and the 2nd

development in (c), but not in (b). For all plates, the 1st and the 2nd

developments were done with the identical solvent system of chloro-

form : methanol: 0.2% CaCl2 (55 : 45 : 10). Resorcinol spray was

used for the spot detection.
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level. As expected, astrocytes from the double KO mice
(GM2/GD2 synthase and GD3 synthase) showed no GD3.
As for 9-O-acetyl-GD3, the KO-derived astrocytes showed a
low, but definite level of 9-O-acetyl-GD3 as detected by
mAb GMR2. WT samples showed marginal expression.
When exogenous GD3 (25 lM) was added, high levels of
GD3 was observed in both the double KO- and the WT-
derived astrocytes (Fig. 9(b)). Low levels of 9-O-acetyl-GD3
were also found in both types of mice. Addition of half
amount of GD3 resulted in essentially same effects with
slightly less intensity (Fig. 9(c)). In Fig. 10, pictures of cells
observed under fluorescence microscopy were shown.

Discussion

9-O-acetyl GD3 has been considered to be associated with
tumors. Thus, 9-O-acetyl GD3 was found in some of human
melanomas (Cheresh et al. 1984; Ritter et al. 1990) and
basal cell sarcomas (Fahr and Schauer 2001), suggesting this
structure is involved in cancer evolution (Schauer and
Kamerling 1997; Angata and Varki 2002), though no direct
evidence has been shown. On the otherhand, 9-O-acetylation
in influenza C protein transgenic mice resulted in the arrest of

cell division at the early stage of development (Varki et al.
1991).

7(9)-O-acetyltransferase, the enzyme responsible for the
acetylation of gangliosides was first detected in bovine
submandibular glands (Schauer 1970). Recently, many trials
have been performed to identify the gene mainly by
expression cloning system, resulting in failure. These results
suggest that a single gene product may not be able to catalyze
the reaction of 9-O-acetylation onto sialic acids or sialic acid-
nucleotides. Thus, the regulatory mechanisms for the
synthesis of O-acetylated sialic acids is not well understood
because of the unavailability of the cDNA of the enzyme
coding 9-O-acetylase. The active form may exist as a
molecular complex of several components.

In the mutant mice of GM2/GD2 synthase gene, 9-O-
acetyl GD3 is expressed at an extremely high level. In the
early reports, gangliosides were isolated via alkaline treat-
ment, resulting in the elimination of O-acetyl compounds
(Fig. 1a) (Takamiya et al. 1996). Here, we demonstrated the
identity of the new band using multiple approaches. First of
all, the component was sialidase-resistant, while two major
bands were completely digested and converted to lactosyl-
ceramide. Second, the band was specifically detected by an

Fig. 6 Mass spectrometry to confirm the

presence of O-acetylation in GD3. (a)

Gangliosides from a KO mouse brain was

separated in TLC and visualized with prim-

ulin. The new component was cleaved from

PVDF membrane on which gangliosides

were transferred and secondary ion mass

spectrometry was performed as described

in the Experimental Procedures. Presence

of O-acetylated gangliosides containing

d20:1-C18:0 and d18:1-C18:0 were sug-

gested. (b) MS/MS spectrum measured

from m/z 1513.2 ([M-H])) as a precursor

was shown. Peaks derived from precursor

ions were indicated in the figure. These

results indicated that the band contained O-

acetyl GD3, though the accurate acetylated

site could not be determined.
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anti-9-O-acetyl GD3 mAb in TLC-immunostaining. Third,
the component showed altered migration in TLC after
alkaline treatment, resulting in the identical migration with
that of GD3. Fourth, mass spectrometry of the component

Fig. 9 Expression of GD3 and 9-O-acetyl-GD3 after addition of

exogenous GD3 to cultured astrocytes. Astrocytes were cultured with

or without GD3 for 24 h, and expression of the gangliosides were

analyzed by immunofluorescence assay as described in the materials

and methods. The intensity of the stained fluorescence was scored as

follows, 3+, bright; 2+, moderate; 1+, weak; ±, marginal. Open squire

represents cells from the KO (GM2/GD2 synthase) mouse. Open

circle represents those of the WT mouse, and closed ones were of the

double KO (GM2/GD2 synthase and GD3 synthase).

Fig. 8 Expression levels of Tis21 gene in GD3 synthase KO mice. (a)

RT-PCR was performed to analyze Tis21 gene expression in GD3

synthase KO mice as well as the Wt mice as described above. (b)

Expression levels of GAPDH gene as a control with cycles indicated in

the figure. Almost equivalent levels of Tis21 mRNA in the presence/

absence of GD3 were shown.

Fig. 7 Expression levels of genes possibly involved in the expression

of 9-O-acetyl GD3. Results of RT-PCR of AGS (a), AT-1 (b), vit-D bp

(c) and Tis21 (d) genes. A result of GAPDH gene was shown as a

control (e). Products of RT-PCR with cycles indicated in each panel

using mRNA from KO and WT mice were separated in an acrylamide

gel, and EtBr-stained bands were obtained, showing almost equivalent

levels (AGS, AT-1, vit-D bp as well as GAPDH) or reduced expression

levels in KO (Tis21).
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revealed that it contained O-acetyl base in GD3. Taken
together, the unknown band found in the brain tissues from
the mutant mice turned out to be 9-O-acetyl GD3.

Mechanisms for the neo-synthesis of 9-O-acetyl GD3 in
the mutant mice were analyzed by examining the changes in
the expression levels of mRNAs for genes that had been
reported to be associated with 9-O-acetyl GD3. Rat AGS
(Ogura et al. 1996) containing high homology with mouse
fat globule membrane protein was cloned by expression
cloning using GD3 synthase-transfected CHO cells, and was
considered as a putative O-acetyltransferase. This gene was

reported to be up-regulated in stellate cells during liver
fibrogenesis (Lee et al. 2003). AT-1 was also isolated by
expression cloning as a membrane protein required for the
formation of O-acetylated gangliosides, and concluded to be
a putative acetyl-CoA transporter gene (Kanamori et al.
1997). Shi et al. also isolated cDNA clones by expression
cloning using CHE-FcD as a detection probe, and identified
that one of them was vit-D bp (Shi et al. 1988). This could
induce 9-O-acetylation on COS cells expressing a2,6-linked
sialic acids. As these authors pointed out, it is unlikely that
the products of all these genes act as an O-acetyltransferase.

Fig. 10 Pictures of the immunofluores-

cence assay as shown in Fig. 9. Pictures

were taken with identical conditions, i.e.,

fluorescence samples were at 3 s of the

exposure, and DIC was at 1 s exposure.

Results of mAb R24 (1 : 100 dilution) and

mAb GMR2 (1 : 3 dilution) were shown.

Since the KO (b4KO) already showed

positive reaction for 9-O-acetyl-GD3 before

the GD3 treatment, we did not try to add

GD3 (they had extremely high amounts of

GD3).
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Recently, Satake et al. reported that GD3-specific 9-O-
acetyltransferase was induced by Tis21, expression of which
was enhanced by the transfection of GD3 synthase cDNA
into CHO cells (Satake et al. 2002). They concluded that
GD3 expression triggered Tis21 expression. This hypothesis
was confirmed here in the mutant mice exhibiting accumu-
lation of GD3 as well as GM3, and this seemed not the case
in the mutant mice. In the RT-PCR, none of mRNAs
examined showed significant up-regulation. Surprisingly,
Tis21 showed rather a reduced level in the mutant mice,
suggesting that high expression of 9-O-acetyl GD3 sup-
pressed the Tis21 expression probably as a feed back
inhibition.

Accumulation of the precursor GD3 might be a crucial
factor in the enhanced synthesis of 9-O-acetyl GD3, and the
synthetic activity itself (9-O-acetylransferase) might not be
changed, although no definite evidence could be shown. The
results of TLC-immunostaining with WT mouse brain
extracts suggested that even WT mice could synthesize 9-
O-acetyl-GD3, though at an extremely low level. Martin
et al. reported that specific sialyltransferases influence the
in vivo regulation of O-acetylation, i.e., loss of O-acetylation
in ST6GalI and ST3GalI null mice (Martin et al. 2002). This
seems quite reasonable, because these enzymes are indis-
pensable to synthesize the precursors or acceptors of the O-
acetylation. By analogy, accumulation of GD3, the precursor
of 9-O-acetyl GD3, could lead to the neo-synthesis of 9-O-
acetyl GD3 based on its high level in the mutant mice of
GM2/GD2 synthase.

Since over-expression of GD3 might have induced Tis21
gene expression, leading to the induction of 9-O-acetylation
of GD3 (Satake et al. 2002), Tis21 expression in GD3
synthase KO mice was examined to clarify whether GD3 is
essential for the induction of Tis21. Contrary to expectation,
Tis21 mRNA levels were not altered in the GD3 synthase
KO mice, indicating that Tis21 mRNAwas not affected even
in the absence of GD3. Exogenously added GD3 was
reported to induce O-acetyltransferase in CHO cells (Chen
et al. 2006). Whether neo-expression of 9-O-acetyl GD3 is
really dependent on the neo-expression of an O-acetyltrans-
ferase because of GD3 or the accumulation of GD3 merely
prompts the synthesis of 9-O-acetyl GD3 remains to be
investigated. It seems more likely that O-acetylase was
induced directly or indirectly by the high levels of GD3
regardless of Tis21, or the existing level of O-acetylase was
sufficient to increase 9-O-acetyl GD3 levels in the presence
of huge amount of GD3. At least we can conclude that Tis21
is probably not an inducing factor of such an O-acetyltrans-
ferase in GM2/GD2 synthase KO mice.

As Chen reported (Chen et al. 2006), it might be possible
that accumulated GD3 induced synthetic machinery of 9-O-
acetyl-GD3 in the KO mice. As shown in Fig. 9 and 10
together with the results in Fig. 4, low levels of 9-O-acetyl-
GD3 were already found in the WT mouse brain. Therefore,

it seems reasonable that the expression of 9-O-acetyl-GD3 in
the KO mouse brain became overt because of the increased
synthesis based on the increased precursor structure.

Although 9-O-acetyl GD3 or 9-O-acetylated sialic acid-
containing mucins have been considered to be involved in
the malignant features of tumor cells, their roles in cell
proliferation and invasion have not been clearly demon-
strated. A significant role for the O-acetylation of GD3 in the
induction of apoptosis has also been reported (Malisan et al.
2002). However, it is not clear whether modulation of GD3 is
important or 9-O-acetyl sialic acid itself has a unique
function. The mutant mice lacking complex gangliosides
showed much milder phenotypes than expected (Takamiya
et al. 1996). Accumulation of GM3 and GD3 was considered
to compensate the functions of the lost structures, and to
attenuate the morphological and functional defects because
of the lack of the complex gangliosides. Neo-synthesis of 9-
O-acetyl GD3 might also play an important role in the
attenuation of the abnormal phenotypes of GM2/GD2
synthase KO mice. In fact, 9-O-acetyl GD3 was appeared
to participate in neuronophilic as well as gliophilic migration
of subventricular zone explants (Miyakoshi et al. 2001), and
granule cell migration in the developing cerebellum (Santi-
ago et al. 2001), suggesting its roles in the protection of
neuronal death or reconstruction of the degenerated nervous
system in the KO mice (Sugiura et al. 2005). In order to
investigate these mechanisms, it seems critical to define the
enzyme and other essential molecules responsible for the
O-acetylation of sialic acids.
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