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Abstract
Hemostatic clot formation entails thrombin-mediated cleavage of fibrinogen to fibrin. Previous in
vitro studies have shown that the thrombin concentration present during clot formation dictates the
ultimate fibrin structure. In most prior studies of fibrin structure, clotting was initiated by adding
thrombin to a solution of fibrinogen; however, clot formation in vivo occurs in an environment in
which the concentration of free thrombin changes over the reaction course. These changes depend
on local cellular properties and available concentrations of pro- and anti-coagulants. Recent studies
suggest that abnormal thrombin generation patterns produce abnormally structured clots associated
with an increased risk of bleeding or thrombosis. Further studies of fibrin formation during in situ
thrombin generation are needed to understand fibrin clot formation in vivo.
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Fibrinogen and fibrin clot formation
Fibrinogen is a 450 Å, 340 kDa trinodular protein present at high (2 – 4 mg/mL) concentrations
in plasma. Fibrinogen consists of pairs of three different disulfide-linked polypeptide chains:
Aα, Bβ, and γ. These six polypeptide chains are arranged with their N-termini converged in a
central “E” domain of the molecule. The C-termini of the Bβ and γ chains extend outward into
distal “D” domains. The C-termini of the Aα chains are globular and situated near the central
E domain of fibrinogen where they interact intra-molecularly.1 Comprehensive reviews on the
biochemistry of fibrinogen and fibrin structure have been published.2–4

Mechanisms of fibrin production have been elucidated in studies conducted by adding
exogenous thrombin to purified fibrinogen. These studies have shown that thrombin removes
N-terminal peptides from the fibrinogen Aαl and Bβ chains, causing the spontaneous formation
of half-staggered, double-stranded protofibrils followed by thickening of protofibril chains.5
Initial formation of protofibrils occurs during a “lag” phase in which no turbidity increase is
detected. Subsequent lateral aggregation of fibrin protofibrils causes a turbidity increase. The
magnitude of the turbidity increase relates to the structure of the formed clot; formation of
thicker fibers causes a greater increase in final turbidity.6,7 Fibrin formation can be followed
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spectrophotometrically 8,9; while, fibrin structure can be determined using electron or confocal
microscopy.10–15

The thrombin concentration influences fibrin clot formation, structure, and
stability

Fibrin clot structure depends on a number of variables, including pH, ionic strength, and
concentrations of calcium, fibrinogen, and thrombin present during gelation.5,8,10,16–21 In
particular, the thrombin concentration influences both the fiber thickness and density of the
fibrin clot. Low thrombin concentrations produce very turbid, highly permeable fibrin clots
that are composed of thick, loosely-woven fibrin strands (Figure 1). Higher thrombin
concentrations produce relatively non-turbid, less permeable clots that are composed of a dense
network of relatively thin fibrin strands (Figure 1).11,21–23 The differential structures of these
clots has been shown to impart varying degrees of stability (viscoelastic properties and
resistance to fibrinolysis) on the clot.

Individual fibers have significant extensibility and elasticity 24,25; however, the potential
influence of fiber thickness on the properties of individual fibers is not yet known. In contrast,
the influence of clot structure on viscoelastic properties has been extensively examined. These
studies have shown the relationship between fibrin structure and clot stiffness to be highly
complex, depending on fiber thickness, length, density, and degree of branching, and extent
of cross-linking (reviewed in 21,26). Generally, increased thrombin concentrations are
associated with the formation of stiffer clots 27; however, Ryan et al. observed that clots formed
in the presence of thrombin concentrations above 0.25 U/mL (composed of thin fibers) are less
stiff (smaller G′) compared to clots formed with lower thrombin concentrations (thicker fibrin
fibers).21 The differences in findings from these studies may relate to differences in the
experimental conditions (fibrinogen, thrombin and calcium concentrations, ionic strength, and
pH).

Because fibrin functions as both a cofactor and a substrate for the fibrinolytic enzyme plasmin,
the fibrin structure influences the clot’s susceptibility to fibrinolysis.12,28–30 Compared to
thick fibers, thin fibrin fibers support a slower rate of tPA-mediated plasmin generation,
reducing the rate of fibrinolysis.31 An elegant study by Collet et al. (2000) showed that while
thin fibers are lysed more quickly than thick fibers, clots composed of thin fibers are more
resistant to fibrinolysis than clots composed of thick fibrin fibers.12 These studies indicate that
clots formed in even “simple” purified systems with single thrombin concentrations exhibit
complex functionality.

Normal thrombin generation in situ
In vivo, thrombin generation is an intricate and highly dynamic process. Coagulation involves
specific interactions between cellular surfaces and plasma-derived zymogens and cofactors.
The reactions are typically described in three sequential phases: initiation, amplification, and
propagation. During the initiation phase, active tissue factor is exposed to plasma, permitting
formation of a complex between factor VIIa and tissue factor. The factor VIIa/tissue factor
complex activates factors IX and X. During the amplification phase, the factor VIIa/tissue
factor-activated factor Xa promotes small-scale thrombin generation, which activates cofactors
VIII, V and platelets. Phosphatidylserine exposed on activated platelets provides binding sites
for procoagulant zymogens and enzymes, including factors IXa, VIIIa, X, Xa, Va, and II.32–
35 During the propagation phase, intrinsic activities supported by the activated platelet surface,
produce a large-scale thrombin burst that catalyzes the conversion of fibrinogen to fibrin.36,
37 Thrombin produced during these phases also activates the transglutaminase factor XIII,
which catalyzes formation of covalent bonds between γ– chains and between γ– and Aα–
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chains.38 Cross-linking increases the elasticity of individual fibers in the clot24, as well as the
overall viscoelasticity of the fibrin clot.16 Ultimately, fibrin promotes the generation of
plasmin to degrade the clot, and re-establish a blood supply for new cells proliferating at the
site.

During a coagulation reaction, the concentration of free thrombin present can range from less
than 1 nM to greater than 500 nM. When thrombin generation is followed using chromogenic
or fluorogenic substrates, a characteristic pattern emerges.39–42 This pattern correlates with
the phases of coagulation described above. The small amounts of thrombin produced during
the initiation/amplification phases are not detectable in amidolytic assays (lower limit of
detection ~1 nM), resulting in a “lag” phase in the thrombin generation profile. The large burst
of thrombin generation that occurs in the propagation phase on the activated platelet surface
produces a “maximum rate of increase” in detectable free thrombin. When the rates of thrombin
production and thrombin inhibition reach equilibrium, the thrombin generation profile exhibits
a “peak.” Finally, the drop in thrombin production allows the amount of free thrombin to
decrease, which is seen as a return to baseline in the thrombin generation profile. The total
amount of free thrombin measured during the reaction course is referred to as the “area under
the curve” (AUC) or “endogenous thrombin potential” (ETP).

The turbidimetric pattern of fibrin clot formation during in situ thrombin generation resembles
the pattern seen after exogenous thrombin is added to purified fibrinogen. A lag phase, followed
by a rapid increase in turbidity indicates clot formation in both situations. However, the “lag”
phase of clot formation during in situ thrombin generation is more complex, reflecting not only
protofibril formation, but also the time required to generate thrombin on the tissue factor-
bearing cell surface, activate cofactors and platelets, and commence thrombin generation on
the surface of activated platelets.

The biochemical environment required for in situ thrombin generation can profoundly affect
fibrin formation. Assembly of procoagulant complexes and generation of thrombin requires
calcium, which shortens the onset of clotting and produces thicker fibrin fibers than are seen
in the absence of calcium.18 Additionally, several plasma proteins can directly or indirectly
affect thrombin activity and fibrin formation. Antithrombin inhibits free thrombin, effectively
lowering the apparent thrombin concentration, and resulting in prolonged times to gelation and
thicker fibrin fibers.43–47 Albumin, γglobulin, and hemoglobin shorten the onset of fibrin clot
formation, a phenomenon hypothesized to be caused by their influence on macromolecular
interactions in the clotting solution.45,48 Further, these proteins cause significant differences
between magnetic birefringence curves of fibrin polymerization in recalcified plasma and those
of pure fibrinogen and thrombin solutions.45 Cells can influence local fibrin structure via direct
interactions between integrins and fibrin(ogen). Cellular integrins organize fibrin into tighter
bundles near the cell surface than are seen more distally within the clot. Furthermore, cell-
associated fibrin is more resistant to fibrinolysis than distally-located fibrin.49–51 Cells also
release intracellular stores of soluble proteins that influence clot formation and stability,
including factor XIII, plasminogen activator inhibitor-1 (PAI-1), and fibrinogen.49,52–55

Effect of the thrombin generation pattern and location on fibrin clot formation
and structure

Differences in cellular procoagulant activity and plasma factor levels can alter the relative
influences of extrinsic and intrinsic activities during coagulation.13,14,41,56–61 Variations in
these activities produce different patterns of thrombin generation, causing variations in the
concentration of thrombin present during protofibril and fiber formation. Fibrinopeptide
release may occur under low, medium, or high thrombin concentrations, resulting in
significantly different kinetics of fibrinopeptide release and fibrin polymerization compared
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to assays in which a single thrombin concentration catalyzes the release of all fibrinopeptides.
Since fibrinopeptide release dictates protofibril formation and lateral aggregation, clots
produced during in situ thrombin generation contain considerably heterogeneous fibrin
structures.13,14,45,62,63 Thus, the composition of a given clot may be quite specific to the
circumstances under which it formed. Additionally, following formation of the initial clot,
fibrin-bound thrombin released during clot lysis can modulate subsequent platelet procoagulant
activity and fibrin deposition.64–66

It is currently hypothesized that extrinsic activities (on the tissue factor-bearing cell) and
intrinsic activities (on the surface of activated platelets) play specific, independent roles during
different stages of thrombin generation and fibrin formation.67–70 Low thrombin
concentrations (less than 1 nM) are sufficient to trigger the onset of fibrin formation, and can
be rapidly produced via extrinsic activities on surface of tissue factor-bearing cells. Thus, the
onset of clot formation depends on the nature and procoagulant properties of the tissue factor-
bearing cells. Since different tissue factor-bearing cells support different levels of procoagulant
activity, they differ in their ability to initiate fibrin formation.68,71–73 Interestingly, Ovanesov
et al. (2005) showed that the rate of thrombin generation on tissue factor-bearing cells does
not influence the rate of propagation of fibrin into the plasma milieu.68 Rather, propagation
of fibrin away from the site of initiation depends on the plasma composition and procoagulant
activity of the surrounding milieu.68 These findings suggest that thrombin generated on the
surface of platelets during the propagation phase dictates that rate of fibrin clot formation away
from the initiating cells.67–70

Fibrin formation during cell-mediated thrombin generation likely includes a complex spatial
component as well. It is likely that this physical progression of procoagulant activity from the
tissue factor-bearing cell (low levels of thrombin generation) to the activated platelet surface
(rapid burst of thrombin generation) induces the formation of a thrombin gradient in space.
Given the direct effects of thrombin concentration on fibrin formation, this gradient may
therefore, cause the formation of a range of fiber thicknesses across a region of growing
thrombus.

Pathologic effects of altered thrombin generation on fibrin clot formation,
structure and stability

Many studies have shown that the fibrin structure strongly influences the mechanical and
fibrinolytic stability of the clot. Current thinking suggests that these differences in stability
have significant physiologic implications. Dense, highly stable clots are associated with
thrombosis; while, loosely-woven, unstable clots are associated with bleeding disorders.12,
28–30,74–78 We and others have correlated abnormal patterns of thrombin generation with
the formation of abnormal fibrin clots. We hypothesize that the altered thrombin generation
pattern contributes to thrombotic or bleeding complications via its influence on fibrin structure
and stability.

Hyperprothrombinemia
The G20210A mutation in the 3′ untranslated region of prothrombin causes increased plasma
levels of prothrombin. Several studies have identified an increased risk of venous thrombosis
in individuals with this mutation.79–81 In in vitro assays, elevated prothrombin levels increase
the maximal rate, peak and area under the curve of thrombin generation.13,41,59,82 We have
shown that elevated (pro)thrombin levels trigger the formation of densely-packed fibrin clots
composed of thin fibrin fibers compared to normal clots.13 Increased thrombin generation in
these individuals also increases activation of the thrombin-activatable fibrinolysis inhibitor
(TAFI) in vitro.83 Activated TAFI downregulates fibrinolysis by cleaving C-terminal lysine
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residues from fibrin and reducing the number of tPA and plasminogen binding sites on fibrin.
It has been suggested that the combination of abnormal structure and increased TAFI activation
reduces the rate of fibrinolysis and contributes to the increased risk of thrombosis in these
individuals.

Hemophilia and recombinant factor VIIa
The bleeding disorders hemophilia A or B result from deficiency in factors VIII or IX activities,
respectively. Hemophilic plasma exhibits relatively normal extrinsic (initiating) activities on
tissue factor-bearing cells, but reduced intrinsic (propagating) activities on platelets. Skin
biopsies of wounds in hemophilic patients show a thin peripheral layer of fibrin deposited
around a central region containing relatively few fibrin fibers.84 These findings are consistent
with normal, low level thrombin and fibrin generation on and near tissue factor-bearing cells
at the periphery of the wound, but deficient thrombin propagation and fibrin formation into the
central region of the wound. In vitro assays modeling hemophilic conditions demonstrate
delayed onset of measurable thrombin generation, as well as a reduced maximum rate and peak
of thrombin generation.14,41,42,85 These reduced rates and levels of thrombin generation
decrease the rate of fibrinopeptide release and delay fibrin formation85–87 Additionally, in
vitro assays indicate that hemophilic clots are composed of abnormally thick fibrin fibers and
have increased porosity compared to normal clots.14,88,89 The fiber composition of
hemophilic clots decreases their mechanical stability and makes them highly susceptible to
fibrinolysis.14,90,91 In vitro studies suggest that reduced thrombin levels limit TAFI
activation, leaving clots more vulnerable to fibrinolysis.90,92,93 The physiologic importance
of TAFI in clot stability is unclear, however, since TAFI-deficient animals exhibit minimal to
no bleeding.94–96

Recombinant factor VIIa (rFVIIa, NovoSeven) is approved for the treatment of severe bleeds
in hemophilic patients with inhibitory antibodies, and has demonstrated efficacy under these
conditions and in patients with acquired hemophilia.97 By binding to the surface of activated
platelets, rFVIIa reestablishes platelet tenase activity and restores thrombin generation on the
platelet surface.98 RFVIIa increases the maximum thrombin generation rate and shortens the
time to reach the peak thrombin level in hemophilic conditions.14 In vitro assays of hemophilic
plasma and whole blood have shown that rFVIIa activity shortens the onset of clot formation
and enables the formation of clots with thinner, more normal fibrin fibers, significantly
improving the clot structure, porosity, and stability.14,87,89,91 By increasing the rate of fibrin
formation, rFVIIa improves fibrin clot formation during a fibrinolytic challenge.14 RFVIIa
may further protect the clot by increasing TAFI activation.93 Recently, several “superactive”
analogs of rFVIIa have been described and tested in vitro and in animal models. These analogs
demonstrate similar procoagulant and anti-fibrinolytic properties as rFVIIa, but at significantly
lower concentrations.91,99,100

Conclusions
In sum, current studies suggest that the thrombin generation pattern determines biochemical
features of the resulting clot, including its rate of formation, structure, and mechanical and
fibrinolytic stability. Understanding the relationships between parameters of in situ thrombin
generation and clot formation is essential for determining requirements of hemostatic clot
formation and developing novel hemostatic and anti-thrombotic agents.
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Figure 1.
The thrombin concentration present at the time of gelation dictates the fibrin clot structure.
Scanning electron (A an B) and laser confocal (C and D) micrographs of fibrin clots formed
by adding thrombin [2.5 nM (A and C), or 10 nM (B and D)] to purified fibrinogen (1 mg/mL)
in 20 mM HEPES (pH 7.4), 150 mM NaCl. Scanning electron micrographs are at 76,030 ×
(micron bar is 200 nm). Laser confocal micrographs are at 63 X (micron bar is 10 μm).
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Figure 2.
Conceptual model of cellular tissue factor (TF)-initiated in situ thrombin generation. Please
see text for details.
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