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Abstract
Background—Thyroid hormones (TH) may influence glucose metabolism. Hyperthyroid subjects
have higher insulin secretion rates when compared with euthyroid individuals.

Objective—To evaluate the association between TH concentrations and insulin secretion in
euthyroid, healthy Pima Indian adults (n=55, 29±7 years, females/males 36/19) with normal glucose
tolerance (NGT) admitted to a Clinical Research Unit.

Methods—TSH, free thyroxine (FT4), 3,5,3′-L-tri-iodothyronine (FT3), and fasting plasma insulin
(FPI) concentrations were measured in fasting plasma samples, percentage of body fat (%BF) by
dual energy x-ray absorptiometry (DXA), acute insulin response (AIR), and incremental area under
the curve (AUC) of insulin in response to a 25 g intravenous glucose tolerance test (IVGTT) and 75
g oral glucose tolerance test (OGTT) respectively and insulin action (M) during an euglycemic clamp.

Results—FT3 concentrations were associated with FPI, AIR, and insulin AUC both before (r=0.33,
P=0.01; r=0.29, P=0.03; and r=0.35, P=0.008 respectively) and after adjustment for age, sex, %BF,
glucose (fasting concentrations or glucose AUC), and M (β=0.09, P=0.01; β=0.16, P=0.03; and
β=0.24, P=0.0007 respectively). No associations were found for TSH or FT4.

Conclusion—FT3 was associated with several measurements of insulin secretion in euthyroid
individuals with NGT. T3 concentrations may play a role in the regulation of insulin secretion.

Introduction
Inadequate insulin secretion is an early event in the natural history of type 2 diabetes mellitus
(T2DM) (1). Glucotoxicity and lipotoxicity (2), cellular nutrient overload (3), inflammatory/
immune mechanisms (4), in utero exposure to a diabetic environment (5), low weight at birth
(6), and genetic factors (5,7) contribute to this insulin secretory dysfunction. Furthermore, a
reduction in β-cell mass may be a characteristic of subjects with impaired fasting glucose and
T2DM (8,9). A better understanding of these and other factors influencing β-cell mass and
function is important to prevent or delay the development of T2DM.

Thyroid hormones (TH) influence glucose metabolism. Current knowledge on the role of TH
in both insulin secretion and action comes mainly from studies performed during experimental
or spontaneous forms of hyperthyroidism. The elevated plasma glucose concentrations
observed in hyperthyroid subjects are mainly accounted for by an increase in hepatic glucose
production, since insulin-mediated glucose uptake in muscle is actually enhanced (10,11).
Insulin secretion rates have been reported to be enhanced in thyrotoxic individuals when they
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are compared with the euthyroid situation or with control subjects (10,12–16).However, other
studies have also reported no differences (17,18) or even decreased (19,20) secretion rates.

In euthyroid individuals, evidence for a physiological role of TH, if any, in insulin secretion
is scarce. We aimed to investigate the association of TH with direct measurements of both
insulin secretion and insulin action in euthyroid individuals with normal glucose regulation.

Subjects, materials, and methods
Subjects were members of the Gila River (Pima) Indian Community near Phoenix, AZ, USA.
Participants were non-diabetic, healthy, adult full-blooded Pima, or closely related Tohono
O’odham Indians who participated in an ongoing longitudinal study to identify risk factors for
T2DM and obesity. Subjects in this study were part of a group (n=115) selected to examine
the relationship of TH with energy expenditure and body weight. These subjects had normal
thyroid function (based on normal serum thyroid-stimulating hormone (TSH) concentration,
0–3–4.5 mIU/l) and measurements of energy expenditure and substrate oxidation. For the
present study, a subset of this group was selected if they had normal glucose tolerance (NGT)
and measurements available for both insulin secretion and insulin action. Subjects were
admitted to the Clinical Research Unit of the National Institute of Diabetes and Digestive and
Kidney Diseases (NIDDK) in Phoenix, where they were fed a standard weight-maintaining
diet for at least 3 days before metabolic testing. Subjects did not smoke or take medication at
the time of the study. The study was approved by the NIDDK Institutional Review Board and
the Gila River Indian Tribal Council. Before participation, written informed consent was
obtained.

Percentage of body fat (%BF) was measured by whole-body dual- energy x-ray absorptiometry.
Glucose tolerance status was assessed by a 3-h, 75 g oral glucose tolerance test (OGTT)
(American Diabetes Association 2003).Acute insulin response (AIR) was calculated as the
average incremental plasma insulin concentration from the third to the fifth minute after a 25
g i.v. glucose bolus. Insulin-mediated glucose disposal rate (M) was assessed at physiologic
insulin concentrations (156±36 pmol/l) during a hyperinsulinemic–euglycemic clamp and
normalized to estimated metabolic body size (EMBS, fat-free mass + 17.7 kg) (21).

Frozen fasting plasma samples were used to measure TSH and free TH concentrations at Linco-
Diagnostic Services Inc., St Charles, MO, USA. Plasma TSH concentrations were measured
by RIA (LincoPlex). Plasma 3,5,3′-L-tri-iodothyronine (FT3) and free thyroxine (FT4)
concentrations were measured by a solid-phase 125I RIA (Diagnostic Product Corporation, Los
Angeles, CA, USA) with intra-assay and inter-assay coefficient of variation (CV) values of 6
and 7.8% and 5 and 7%, respectively. Plasma glucose concentrations were measured using the
glucose oxidase method (Beckman Instruments Inc., Fullerton, CA, USA). Plasma insulin
concentrations were measured by two different radio-immunoassays used over time in our
laboratory: Concept 4 (Concept 4; ICN, Costa Mesa, CA, USA) and Access (Beckman
Instruments. Insulin assays). All measurements of insulin were normalized to the original RIA
(a modified Herbert-Lau assay) using regression equations.

Statistical analyses were performed using SAS software (SAS version 9.1, SAS Institute Inc.,
Cary, NC, USA). All data are expressed as mean±S.D. throughout the manuscript. Incremental
areas under the curve (AUC) for plasma glucose and insulin concentrations during oral glucose
tolerance test (OGTT) were determined by the trapezoidal method. Non-normally distributed
variables were log transformed (log10) to reduce skewness and then normality was re-
evaluated. Pearson’s or Spearman’s correlation analyses were used to quantify relationships
between TH concentrations and variables of interest. General linear regression models were
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used to assess independent relationships of FT3 with measurements of insulin secretion after
adjustment for covariates. Level of statistical significance was set at P<0.05.

Results
Subjects were euthyroid young adults (Table 1). The FT3 concentrations were associated with
fasting plasma insulin (FPI), AIR, and insulin AUC both before (Fig. 1) and after the adjustment
for age, sex, and %BF (r=0.37, P=0.007; r=0.35, P=0.01; and r=0.39, P=0.005 respectively).
No associations between FT3 concentrations and body fat, fasting glucose, incremental glucose
AUC, or M were observed. Associations between FT3 concentrations and FPI, AIR, and insulin
AUC were additionally adjusted for glucose concentration and insulin action, the most
important determinants of insulin secretion. In multiple regression analyses, FT3
concentrations were positively associated with FPI, AIR, and insulin AUC after adjustment
for age, sex, %BF, fasting plasma glucose concentrations, glucose AUC (only for the
association with insulin AUC), and M (Table 2).

Neither FT4 nor TSH concentrations were associated with FPI, AIR, fasting glucose, or M.
The FT4 concentrations were weakly associated with insulin AUC (r=0.25, P=0.07).

Discussion
In euthyroid Pima Indians with NGT, plasma concentrations of FT3 were associated with
fasting insulin and with both a direct measurement (AIR) and an estimate (insulin AUC) of β-
cell function derived from intravenous glucose tolerance test (IVGTT) and OGTT respectively.
These associations were independent of insulin-mediated glucose uptake and plasma glucose
concentrations, both major determinants of insulin secretion.

The association between TH and insulin secretion has been investigated mainly in individuals
with hyperthyroidism (10,12–19). A serendipitous, positive association between serum-FT3
and an estimate of insulin production (calculated from the insulin clearance during the clamp
and fasting insulin concentrations) was found in euthyroid, lean, healthy individuals (22). A
physiological mechanism for the possible role of TH on insulin secretion has not been clearly
established, however, evidence indicates that TH may affect both β-cell mass and function.

TH are critically involved in cell growth and development. Plate chondrocyte hypertrophic
differentiation (23), cardiomyocyte growth (24), neuronal and glial cell differentiation (25),
and primary B lymphopoiesis (26) are influenced by TH. T3 is also a powerful inducer of
pancreatic acinar cell proliferation in rodents (27). β-Cell mass is determined by a balance
between β-cell replication, size, and neogenesis, and rate of β-cell apoptosis (28). In vitro
studies of human and rodent insulinoma cell lines showed that T3 protects from apoptosis and
induces β-cell growth and proliferation (29). The latter effect was mediated by interaction of
T3 with its receptors and associated with changes in the expression of cell cycle-related proteins
(29). Human pancreatic duct cells (hPANC-1) express high levels of TH receptor isoforms
(30). Treatment of hPANC-1 cells with T3 induces changes in cell morphology, promotes cell
differentiation into insulin-producing β-cells, upregulates insulin and glucose transporter
protein-2 transcripts, and increases insulin release into the medium (30). Furthermore, T3
affects the splicing and secretion of β-amyloid precursor proteins (APP) isoforms (31) and
represses the expression of the APP gene in neuroblastoma cells (32). Whether T3 has a similar
effect on islet amyloid polypeptide, a potential cytotoxic protein for β cells, is not known.

On the other hand, TH may also influence β-cell function. TH receptor has been identified in
pancreatic β -cell lines (33). T3-enhanced insulin release in isolated rat pancreatic islets exposed
to glucose concentrations of 2–8 mmol/l, had no effect at concentrations of 12 mmol/l, and
inhibited insulin release at concentrations of 16.6 mmol/l (34). T3 promotes expression of
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important proteins involved in both glucose and lipid metabolism that may influence insulin
secretion. In particular, carnitine palmitoyl transferase 1 (CPT-1) expression and activity (35,
36), mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) activity (37), and levels of
excitatory amino acid transporter type 1 (EAAT1) mRNA and protein (38) are increased by
TH. EAAT1 and mGPDH are key components of the NADH shuttles which are essential for
coupling glycolysis with mitochondrial ATP generation and triggering glucose-induced insulin
secretion (39). CPT-1 is responsible for the transport of fatty acids into the mitochondria for
oxidation. Accumulation of long-chain fatty acyl-CoAs is proposed to mediate the deleterious
effects of chronically elevated fatty acids on insulin secretion (2). However, free fatty acids
(FFAs), when not chronically in excess, are essential to the pancreatic β-cell for its normal
function, in particular, for glucose-stimulated insulin secretion (40). It has been reported that
hyperthyroid individuals have higher serum concentrations of FFAs, glycerol, and rates of
lipolysis in adipose tissue (41,42). Whether, and how, FFA concentrations or rates of lipolysis
are similarly influenced at physiological TH concentrations in euthyroid individuals and
whether this favors insulin secretion is not known. Unfortunately, FFA concentrations were
not available in our study population.

In summary, plasma-free T3 concentrations were associated with direct and indirect
measurements of insulin secretion independent of insulin sensitivity and glucose
concentrations in euthyroid individuals with NGT. T3 concentrations may play a role in the
regulation of insulin secretion.
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Figure 1.
Association between plasma free T3 concentrations and fasting plasma insulin (A), acute
insulin response (B), and incremental area under the curve of insulin (C). Correlation
coefficients and P values are given.
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Table 1
Subjects characteristics.

n=55

Sex (females/males) 36/19
Age (years) 29±7
Height (cm) 168±7
Weight (kg) 93±21
BMI (kg/m2) 33±8
Body fat (%) 32±7
Fasting plasma glucose (mg/dl) 87±10
2-h glucose (75 g OGTT, mg/dl) 105±21
Fasting plasma insulin (µU/ml) 39±14
AUC insulin (µU/ml per min) 136±85
Acute insulin response (µU/ml) 270±120
M (mg/kg EMBS min) 2.8±1.5
TSH (µIU/ml) 2.7±1.5
Free T4 (ng/dl) 1.2±0.2
Free T3 (pg/ml) 2±0.4

Data are mean±S.D; BMI, body mass index; OGTT, oral glucose tolerance test; AUC, Incremental area under the curve; EMBS, estimated metabolic body
size; TSH, thyroid-stimulating hormone; Insulin, glucose, TSH, free T3, and free T4 concentrations are given in conventional units; to convert to Système
Intermationale units (pmol/l, mmol/l, µIU/l pmol/l, and pmol/l respectively) multiply by 6.945, 0.055, 1, 1.54, and 12.87 respectively.
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