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Abstract
Recently, we demonstrated that vessel geometry is a significant determinant of susceptibility-induced
contrast in MRI. This is especially relevant for susceptibility-contrast enhanced MRI of tumors with
their characteristically abnormal vessel morphology. In order to better understand the biophysics of
this contrast mechanism, it is of interest to model how various factors, including microvessel
morphology contribute to the measured MR signal, and was the primary motivation for developing
a novel computer modeling approach called the Finite Perturber Method (FPM). The FPM
circumvents the limitations of traditional fixed-geometry approaches, and enables us to study
susceptibility-induced contrast arising from arbitrary microvascular morphologies in 3D, such as
those typically observed with brain tumor angiogenesis. Here we describe this new modeling
methodology and some of its applications. The excellent agreement of the FPM with theory and the
extant susceptibility modeling data, coupled with its computational efficiency demonstrates its
potential to transform our understanding of the factors that engender susceptibility contrast in MRI.
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INTRODUCTION
In 1990, Rosen et al (Rosen, 1990) demonstrated that if a bolus of a high dose of gadolinium
(Gd)-chelated contrast agent was administered and MR images acquired rapidly during this
administration, a transient decrease in signal intensity was observed. This transient signal
decrease could then be converted into a concentration-time curve, from which the relative
cerebral blood volume (rCBV) could be computed for each image voxel using tracer kinetic
principles (Zierler, 1962). This imaging approach was based on the principle of susceptibility-
induced contrast. Specifically, if a high concentration of a paramagnetic contrast agent such
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as a Gd-chelate or a superparamagnetic iron-oxide contrast agent such as MION (Shen,
1993) is confined to the vascular space, a difference in susceptibility or “magnetizability”
between the vessel and tissue arises. Water protons diffusing through this resulting magnetic
field gradient lose phase coherence, inducing a transient decrease in the MR signal intensity
proportional to the fractional blood volume within the imaging voxel. The development of
dynamic susceptibility contrast (DSC) MRI enabled differentiation between gray and white
matter (Rosen, 1991a), made functional MR imaging (fMRI) of brain activation possible
(Belliveau, 1991), with several laboratories eventually demonstrating the feasibility of using
DSC techniques for determining the rCBV in patients with brain tumors (Aronen, 1994;
Donahue et al., 2000; Maeda, 1993).

However, implicit in all the abovementioned DSC studies is the assumption that the relationship
between the measured MR signal (i.e. change in T2 or T2* relaxation rate) and contrast agent
concentration, which is characterized by the susceptibility calibration factor, is the same for
normal brain and tumor tissue (Rosen, 1991b). Recent work by Pathak et al challenged this
assumption, revealing a different susceptibility calibration factor for brain and tumor tissue in
a rat brain tumor model (Pathak et al., 2003). It was demonstrated that this difference in
susceptibility calibration factors was not explicable by differences in the fractional vascular
volumes, but was probably due to the grossly different vascular morphology of brain tumors
compared to healthy brain tissue. Tumor vessels are characteristically more sinusoidal and
tortuous than normal brain vessels, especially at advanced stages of growth (Pathak et al.,
2001). Furthermore, these observations were consistent with results of simulations conducted
by Boxerman et al (Boxerman JL, 1993), which showed that susceptibility relationships were
different for spherical versus cylindrical perturbers, and more recently with analysis by Kiselev
showing differences between the arterial and tissue susceptibility relationship (Kiselev,
2001).

Consequently, to use susceptibility-based techniques more appropriately, such as DSC to
evaluate pathologies, we need a better understanding of susceptibility relationships under
pathologic conditions. An important approach in this regard is to use models to simulate
susceptibility relationships under various conditions, e.g. contrast agent dose, vessel diameters,
blood volumes etc. However, most current susceptibility contrast models assume a specific
perturber geometry for representing the microvessel architecture of the tissue being studied.
These have included the use of a single cylinder (Bandettini, 1995; Ogawa, 1990), multiple
cylinders (Fisel, 1991; Kennan, 1994), spherical perturbers (Weisskoff, 1994), and ensembles
of randomly oriented cylinders (Boxerman, 1995a; Yablonskiy, 1994), and have provided
invaluable insights into susceptibility contrast mechanisms. Nonetheless, cylindrical or
spherical perturbers may not adequately represent the anomalous vascular morphology of
tumors. Additionally, the cylindrical perturber (CP) approaches assume that the magnetic field
does not vary along the length of the vessel, thus allowing these effects to be simulated in 2D.
However, any vessel geometry that departs from the cylindrical model would need to be
simulated in 3D, since the microscopic magnetic field gradients are a function of the 3D
geometry. In addition, some CP models assume large inter-vessel separation, so that effects of
overlapping field gradients may be ignored. This assumption may be inappropriate for tumors,
for which vessel density can be either high or low, but with larger caliber tumor vessels, such
that the inter-vessel distance may not be negligible (Deane, 1981). Further, overlapping field
gradients may become significant at high contrast agent doses and dominate the eventual image
contrast. As a result, the primary goal of this study was to develop a computer model that could
simulate susceptibility-based contrast for arbitrary microvessel geometries while employing
the de facto capillary geometry from the rat cortex as an input to this model.

While there have been several approaches developed for calculating the field for arbitrary
geometries that include both non-Fourier (Li and Leigh, 2004) and Fourier approaches
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(Jenkinson et al., 2004; Koch et al., 2006), we independently proposed the finite perturber
method (FPM) technique (Pathak, 2002). Although analogous, the Jenkinson and Koch
approaches differ in both, methodology and application from the present paper. Namely, they
were concerned with the estimation and correction of field distortions due to inhomogeneous
magnetic fields, which produce MR image artifacts. The results presented therein-modeled
field distortion at the level of the whole-brain. However, our FPM approach is specifically
geared towards modeling susceptibility-induced field perturbations arising at the
microvascular (i.e., sub-voxel) level, producing the image contrast of interest. Furthermore,
we employ the estimated magnetic field perturbations to calculate the MR signal itself by
simulating proton diffusion and phase accumulation. The FPM circumvents the limitations of
traditional fixed-geometry approaches, and enables us to study susceptibility-induced contrast
arising from arbitrary microvascular morphologies, such as those that typically result from
tumor angiogenesis. In this paper, we describe this new modeling methodology and some of
its applications.

METHODS
In this section, we first describe the numerical technique, which we refer to as the Finite
Perturber Method (FPM), for calculating the magnetic field shifts arising from an arbitrary
microvascular geometry having a given magnetic susceptibility difference from the
surrounding tissue. Second, we validate the FPM by comparing its performance with that
predicted by theoretical solutions for perturbers with simple geometries, and extant modeling
data on the vessel size dependence of the gradient- and spin-echo relaxation rates. Finally, we
present an illustration of the FPM calculated MR signal for the microvascular architecture of
the rat cortex using susceptibility differences characteristic of the blood oxygenation level
dependent (BOLD) contrast mechanism.

General Description of the Finite Perturber Model (FPM)
The Finite Perturber Method (FPM) differs from classical numerical methods for computing
electrical or magnetic fields such as the Finite Difference Method (FDM) and the Finite
Element Method (FEM) in that it does not attempt to solve Maxwell’s equations directly.
Instead, the vascular structure for which the magnetic field changes need to be computed is
represented by numerous small “perturbers”. To calculate the magnetic field shift at a given
point, the contribution to the magnetic field shift due to each perturber is calculated
independently. The total magnetic field shift is then evaluated as the sum of the magnetic field
shifts from all of the perturbers. In the most general case, a simple summation of the magnetic
field shifts would not suffice because there would be interactions among the perturbers.
However, for the present application, this effect can be ignored as typical main magnetic field
strengths (B0) range from 1–3 Tesla, whereas the magnetic field shifts that give rise to
susceptibility-based contrast are on the order of B = 10−6 Tesla. Therefore, the effect of such
inter-perturber interactions is negligible, and treating perturbers as if they are acting
independently is justified.

We implemented the FPM as a program in Matlab®. The inputs to the FPM computational
engine are: a tabular listing of the vascular structure; the B0 field components; the susceptibility
difference (Δχ) between the vasculature and surrounding tissue; the echo time (TE) to use in
calculating the MR signal; the number of protons to use in the Monte Carlo simulation; and
the diffusion coefficient (D). The FPM then generates the following: (1) a 3D “anatomical”
data structure representing the vasculature or substrate upon which all subsequent computations
are conducted. (2) A 3D “functional” dataset of the magnetic field perturbations arising from
the entire vascular substrate, and (3) modeling of proton diffusion and subsequent computation
of the evolution of the MR signal over time. A description of each of these modules follows.
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Generating the Anatomical Data Structure
The anatomical substrate for our simulations was a digitized 3D representation of a
cerebrocortical capillary network (≈320μm×320μm×70μm) obtained from a rat cortex
(Hudetz, 1993). Briefly, optical sectioning light microscopy was employed to trace out the X,
Y, and Z coordinates of various vessel segments obtained from a microvascular corrosion cast
of the rat cerebral cortex. The X and Y coordinates of the vessels were digitized directly off
the computer monitor, while Z coordinates were obtained from a potentiometer attached to the
focusing knob of the microscope that kept track of the depth of focus. The vessel segment
radius was also measured at each stage. The resultant data structure was a tabular listing,
wherein each vessel was represented as a sequence of short, connected cylindrical segments
with the centers of the two circular faces of each segment specified by a set of (x, y, z)
coordinates, and radius r of the cylindrical segment connecting the two faces. To avoid gaps
in the structural representation, a hemisphere of the same radius capped each circular face of
the cylindrical section. The FPM converts this input data structure into a 3D array of numbers
representing the “anatomical” dataset. Typically, this is a binary array with “0” or a “1”,
corresponding either to points lying “outside” or “inside” the vascular structure, respectively.
Since we use small, but finite, cubes in place of infinitesimal elements in our numerical
approximation, and as the cubes have finite extent, they may lie completely inside the
vasculature, completely outside, or part inside and part outside. It is for this reason that we
allow the possibility of accounting for the fractional occupancy of a cube, in which case
elements of the matrix representing the vascular structure may take on values between 0 and
1, inclusive. The option of employing the fractional occupancy function is especially relevant
to cases wherein the vessel structure is much finer than the simulation cell size.

The above (“tree” to 3D array structure) reconstruction was necessary for the vascular trees
obtained using our optical sectioning light microscopy method. However, it is important to
point out that any high-resolution “binarized” 3D vascular tree dataset could be employed
directly as the input anatomical substrate for the FPM, thereby obviating this processing step.

Computing the Magnetic Field Shift Due to the Vascular Structure
Our approach to modeling the magnetic field perturbation arising from an arbitrarily shaped
vasculature was to “fill” it with numerous very small perturbers. To calculate the magnetic
field shift due to our finite perturber, we consider a sphere to be embedded in the cube, as
illustrated in Fig. 1a. The radius ‘a’ of the sphere is one-half the side length of the cube. The
magnetic field shift, due to the sphere itself, at point p(x,y,z) at distance ‘r’ from the center,
and at an angle θ with respect to B0, is given by (Haacke, 1999;Landau and Lifshitz, 1984):

(1)

However, we are using an ensemble of many finite perturbers to model the macroscopic effect
of the vasculature. These perturbers are small, but due to computational limitations, are not
infinitesimal. The problem with using spheres as the finite perturbers is that it is not possible
to completely fill the vascular space using spheres of finite radius, because gaps would remain
between the spheres. Therefore, we “filled” the vasculature with cubes of finite size using the
following modification of Eq. 1. Since the volume of a cube is larger than the volume of the

embedded sphere (by a factor of ), we can approximate the magnetic field shift due to the
cube (i.e. the finite perturber) by:

(2)
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From Eq. 2, we can see there is a  dependence of the magnitude of ΔBcube relative to ‘r’.
Since this quantity falls off rapidly, the error introduced by a coarse approximation to the
vascular structure at a (relatively) long distance from the test point p is negligible. However,
for vasculature close to p, an accurate, high-resolution representation of the vasculature is
required to minimize this error.

The above equation yields the magnetic field change (ΔBcube) arising from a single finite
perturber. To calculate the total magnetic field perturbation arising from the entire vasculature,
we let the radius ‘a’ of the finite perturber become infinitesimally small, and integrate over the
entire simulation space:

(3)

Where V(x,y,z) is a binary function indicating whether a given point (x,y,z) lies within the
vasculature, i.e.:

(4)

Now, Eq. 4 applies for this theoretical derivation, wherein the integrals are over infinitesimal
elements. Hence, a particular point is either inside or outside the vasculature. However, in the
numerical approximation to the vascular structure, as discussed earlier, we use small, but finite,
cubes in place of these infinitesimal elements. Since these cubes have finite extent, they may
lie completely inside the vasculature, completely outside, or part inside and part outside. It is
for this reason that we included the possibility of estimating the fractional occupancy of a cube
as follows: a number (say, n) of points are selected at random from each cell, and evaluated to
determine whether they lie inside or outside the vasculature. For a particular cell in the
simulation universe, if k of these random points is determined to lie inside the vasculature, the
occupancy of that cell is estimated by the fraction k/n. Thus, cells that lie completely inside
the vasculature have fractional occupancy of 1.0; those that lie completely outside the
vasculature have fractional occupancy of 0.0; with elements of the matrix representing the
vascular structure taking values between 0 and 1, inclusive. In all our simulations, except for
those with the cerebrocortical capillary network, we employed the binary function (i.e. no
intermediate values of fractional occupancy) when representing the vasculature.

Next, taking the 3D Fourier transform of both sides of Eq. 3 yields:

(5)

We can immediately recognize Eq. 5 as the Fourier transform of the 3D convolution of the
vascular structure with the finite perturber field, which may be rewritten as:

(6)

Since the Fourier transform of the convolution of two functions is equal to the product of the
Fourier transforms of the individual functions, Eq. 6 becomes:

(7)

Taking the inverse Fourier transform of Eq. 7, gives:
(8)

Now, Eq. 8 suggests a computationally efficient means of calculating the magnetic field
perturbation map arising from the entire vasculature, by using the Fast Fourier Transform (FFT)
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to perform the convolution. The general procedure for this reduces to the following steps: (1)
Convert the input node-and-branch tabular representation of the vasculature into a 3D
simulation grid. (2) Calculate the 3D magnetic field arising from a single finite perturber using
Eq. 2. (3) Calculate the 3D FFT of the vascular structure. (4) Calculate the 3D FFT of the finite
perturber field. (5) Perform a point-wise multiplication of the two 3D FFT’s. (6) Calculate the
inverse FFT of this product. Due to the computationally efficient nature of the FFT, these
calculations can be performed in a few minutes. Steps 1–6 are illustrated in Fig. 2. The results
for the reconstructed cerebrocortical capillary network of Fig. 1b are shown in Fig. 1c.

Computing the Magnetic Field Shift for Simple Geometries
It is possible to evaluate the accuracy of the numerical estimate of the magnetic field shift
induced by a vessel represented by a few simple geometries, such as a sphere or infinite
cylinder, in regions with different susceptibilities, since the theoretical solutions for the
magnetic field shift inside and outside such geometries are known. While we have neglected
terms involving the background tissue susceptibility, we do not assume that the susceptibility
outside the vasculature is zero. It is the difference in susceptibility (Δχ) between inside and
outside the vasculature that is relevant as far as the de-phasing effect of the inhomogeneous
magnetic field is concerned. To validate the numerical accuracy of the FPM, we compared the
results obtained with the FPM with theoretical values of the magnetic field change for the
following selected geometries:

(a) An infinite cylinder with B0 perpendicular to its long axis—Suppose an infinite
cylindrical perturber of radius ‘a’ is placed in a magnetic field B0 such that the field is
perpendicular to the axis of the cylinder, e.g. B0 is along the z-axis and the cylinder axis along
the y-axis as shown in Fig. 3a. If we examine the magnetic field shift along a line through the
center of the cylinder, perpendicular to the axis, and parallel to the B0 field, the theoretical field
shift (including the Lorentz correction) is given by (Haacke, 1999;Landau and Lifshitz,
1984):

(9)

where ‘ρ’ is the distance to the test point. For the same magnetic field and cylinder orientation,
if we examine the magnetic field shift along a line through the center of the cylinder,
perpendicular to the axis, but along a line perpendicular to the B0 field, the theoretical field
shift (including the Lorentz correction) is given by (Haacke, 1999;Landau and Lifshitz,
1984):

(10)

(b) An infinite cylinder with B0 parallel to its long axis—We again consider an infinite
cylindrical perturber; however, now the main B0 field is parallel to the axis of the cylinder. If
we examine the magnetic field shift along a line through the center of the cylinder,
perpendicular to the axis, and thus perpendicular to the B0 field, the theoretical field shift
(including the Lorentz correction) is given by (Haacke, 1999; Landau and Lifshitz, 1984):

(11)

(c) Sphere—Consider a sphere of radius ‘a’, placed in a magnetic field B0. If we examine
the magnetic field shift along a line through the center of the sphere, parallel to B0, the
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theoretical field shift (including the Lorentz correction) is given by (Haacke, 1999; Landau
and Lifshitz, 1984):

(12)

If, on the other hand, we examine the magnetic field shift along a line through the center of the
sphere, but perpendicular to the B0 field, the theoretical field shift (including the Lorentz
correction) is given by (Haacke, 1999; Landau and Lifshitz, 1984):

(13)

For all of the above scenarios we employed the following simulation parameters: B0=1.5T and
Δχ=4π×(1−0.6)×0.42×0.18×10−6=3×10−8, corresponding to BOLD contrast with 60% venous
oxygenation and 42% hematocrit (Bandettini and Wong, 1995). For determining the effect of
simulation grid size and therefore the number of finite perturbers on the accuracy of the FPM
calculated magnetic field for scenario (a), we employed simulation grid sizes of 64×64×64,
128×128×128 and 256×256×256, while holding the fractional volume of the cylinder constant
at ~2%. We then calculated the difference between the magnetic field computed from theory
and the FPM field along three-orthogonal axes for each case.

Simulation of Proton Diffusion Effects and Estimation of the MR Signal
Simulation of proton diffusion is an important component of the MR signal calculation, since
each individual proton “sees” a different magnetic field shift at different points along its
trajectory. Proton diffusion was modeled using a Monte Carlo approach. Typically, thousands
of “protons” are initially placed at random locations within the simulation space. Then, with
each increment of the simulation time, each proton is moved from its previous position (x, y,
z) to a new random location (x′, y′, z′), according to:

(14)

Where, D=diffusion coefficient (μm2/ms), Δt=simulation time step, N(0,2DΔt)=independent
normal random variates, with mean μ=0, and standard deviation . The total phase
accumulated by the nth proton through time t is given by:

(15)

Where, Δt = simulation time step, γ = proton gyromagnetic ratio (267.5×106 rad/Tesla), pn(t)
= position of nth proton at time t, ΔB(p) =magnetic field shift at position p. The MR signal can
then be estimated by summing the accumulated phase shift across the entire ensemble of N
diffusing protons:

(16)

Simulations using an ensemble of random cylinders
To determine the computational accuracy of the FPM, we decided to assess the dependency of
the gradient-echo (GE) and spin-echo (SE) relaxation rates i.e. ΔR2* and ΔR2, on vessel size,
analogous to the approach used by Boxerman et al. (Boxerman, 1995b). For these simulations,
we generated multiple ensembles of cylinders, each ensemble containing (approximately) fifty
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randomly oriented cylinders that filled a 2% volume fraction of a cube, and varied the radius
of the ensemble from 1–100μm while holding the fractional volume constant at 2%. Each
simulation run included an ensemble of 1000 randomly placed protons, and since we generated
sixty random ensembles for each vessel radius, this was equivalent to a simulation universe
comprising of 60×1000=6×104 protons. For the purposes of comparing the results of the FPM
with those of Boxerman et al., we employed similar simulation parameters that included
restricted diffusion with D=1×10−5 cm2/s typical of the cerebral cortex (Chien et al., 1990),
simulation time step Δt=0.2ms, B0=1.5T, Δχ=1×10−7 corresponding to an intravascular Gd-
DTPA concentration of approximately 3.6mM (Weisskoff and Kiihne, 1992), GE TE=60ms
and SE TE=100ms. For each ensemble, we determined the phase accumulated by the nth proton
using Eq. 15, and the MR signal using Eq. 16. Since we generated 60 ensembles for each vessel
radius, we first calculated the mean signal intensity for each radius, from which we calculated
the associated relaxation change using:

(17)

Additionally, we determined the effect of different magnetic field strengths on the vessel size
dependency of the GE and SE signals, by repeating the entire simulation for field strengths of
3T (GE TE=40ms, SE TE=80ms) and 4.7T (GE TE=10 and 60ms, SE TE=20 and 100ms).

Simulations using cerebrocortical microvessels as the model input
Finally, to demonstrate the effect of microvascular architecture on the MR signal, we computed
the spin- and gradient-echo signals for a 70×70×70μm3 section of the cerebrocortical substrate
(simulation parameters: D=1×10−5 cm2/s, Δt=0.2ms, B0=1.5T, Δχ=1×10−7, GE TE=60ms and
SE TE=100ms, grid size=256×256×256), and compared them to those obtained from an
ensemble of random cylinders with identical simulation parameters. The physical dimensions
of the ensemble of random cylinders was scaled to match those of the cerebrocortical network
(i.e. fractional volume ~0.5%, average vessel radius=1.8μm).

RESULTS
Generating the Anatomical Data Structure

The reconstructed cerebrocortical capillary network is shown in Fig. 1b. The intricacy of the
true vascular geometry is immediately apparent from this 3D volume rendering of the capillary
network.

Computing the Magnetic Field Shift Due to the Vascular Structure
Fig. 2a shows a slice through the volume representing the vascular structure shown in Fig. 1b.
One can see some blood vessels lie partly within the slice, while others penetrate the slice at
more-or-less orthogonal angles. Fig. 2b shows a slice through the 3D Fourier transform of the
vasculature, wherein one can observe that most of the signal content is at low spatial
frequencies. Fig. 2c shows the magnetic field change arising from our infinitesimal finite
perturber, barely visible at the center of the slice. Fig. 2d, shows a slice through the 3D Fourier
transform of the finite perturber magnetic field; as expected, there is a high spatial frequency
content. Fig. 2e displays the point-wise product of Figs. 2b and 2d. The inverse 3D Fourier
transform of Fig. 2e is displayed in Fig. 2f, which also corresponds to the spatial convolution
of Fig. 2a with Fig. 2c. Fig. 2f is the desired magnetic field shift due to the entire vascular
structure. Finally, Fig. 1(c) illustrates the cerebrocortical network overlaid with a slice through
the FPM-generated magnetic field map showing the magnetic field isolines.
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Computing the Magnetic Field Shift for Simple Geometries to Validate the FPM
To validate the numerical accuracy of the FPM, we compared results obtained from the FPM
with theoretical values of the magnetic field shift for various simple geometries. The columns
in Fig. 3 show the effect of simulation grid size (i.e. number of finite perturbers) on the accuracy
of the magnetic field calculated using the FPM, for the case of an infinitely long cylinder with
the main magnetic field B0, oriented along the z-axis as shown in Fig. 3a. N.B. in this and
subsequent figures, the plotted magnetic field shift is “normalized”, i.e.

(18)

Fig. 3b shows a 3D surface plot of a slice in the XZ-plane through the magnetic field
perturbation map due to the cylinder using a 64×64×64 simulation grid size. One can clearly
distinguish the classic dipolar field pattern around the cylinder. Figs. 3c–e show the magnetic
field profiles computed from theory along lines through the center of the cylinder, but parallel
to the x, y and z-axes, respectively. Also shown for comparison are profiles along the same
directions obtained using the FPM, and plots of the difference between the FPM and theory
profiles for the simulation grid size of 64×64×64 (5120 finite perturbers, cell size=2μm3). One
can see that except for the discontinuity at the boundaries of the cylinder, there is excellent
agreement between theory and FPM along all three axes. Figs. 3f–i show the magnetic field
perturbation computed for the same scenario, but using a simulation grid size of 128×128×128
(40448 finite perturbers, cell size=1μm3), and Figs. 3j–m using a simulation grid size of
256×256×256 (325632 finite perturbers, cell size=0.5μm3), respectively. From these plots, one
can again see the excellent agreement of the results from the FPM and those computed from
theory. In addition one can also see a decrease in the computational error with increasing
simulation grid size (i.e. increasing number of perturbers) as reflected by the decreasing area
under the difference plot, especially at the boundaries of the cylinder. The “run time” for each
of these simulations on a workstation with a dual core, 3.00GHz Xeon® processor with 2GB
SDRAM was 19s, 31s and 110s, respectively. Similar plots of the numerical accuracy of the
FPM for scenarios (b) and (c) (see Computing the Magnetic Field Shift for Simple
Geometries) can be found in Supplemental Data.

Fig. 4 shows the projection onto a plane perpendicular to the axis of the cylinder in Fig. 3a of
the simulated random diffusion trajectories for five protons, over a period of 60msec. This
figure graphically illustrates how, over time, each proton experiences a different history of
magnetic field perturbation. In Fig. 4a, proton diffusion is unrestricted, i.e. each proton is
allowed to traverse the vessel wall. We can see that, in Fig. 4a, two of the protons have traversed
the vessel wall multiple times. In Fig. 4b, we demonstrate the opposite case in which proton
diffusion is restricted, i.e., no movement across the vessel wall is permitted. Thus, any proton
that initially resides outside the vasculature will remain outside the vasculature; conversely,
any proton that initially resides within the vasculature must remain inside the vasculature.
Indeed, in Fig. 4b we see that one of the protons is forever “trapped” inside the blood vessel
while another proton, initially located outside the blood vessel, is prevented from entering the
blood vessel. As described above, this has profound implications for the resulting MR signal
that is estimated by summing the accumulated phase shift across the entire ensemble of N
diffusing protons in the simulation universe.

Simulations Using an Ensemble of Random Cylinders to Validate the FPM
To further validate the computational accuracy of the FPM, we decided to assess the
dependency of the gradient-echo (GE) and spin-echo (SE) relaxation rates i.e. ΔR2* and ΔR2,
on vessel size, analogous to the approach used by Boxerman et al. (Boxerman, 1995b). For
these simulations, we generated multiple ensembles of (approximately) fifty randomly oriented
cylinders that filled a 2% volume fraction of a cube, and varied the radius of the ensemble from
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1–100μm while holding the fractional volume constant at 2%. Fig, 5a shows the FPM computed
dependence of ΔR2* and ΔR2 on vessel size for B0=1.5T, 2% fractional volume, and
Δχ=1×10−7. One can clearly see the excellent agreement of the FPM generated relaxation
curves with those of Boxerman et al. in Fig. 5b [Reproduced with permission from (Boxerman,
1995b)], wherein the ΔR2 is seen to peak for microvessels while ΔR2*>ΔR2 for all radii, and
plateaus for vessel radii > ~9μm. Fig. 5c illustrates the effect of increasing magnetic field
strength (B0) on the dependence of ΔR2* on vessel radius computed using the FPM. As field
strength increases from 1.5T to 4.7T, even with the correspondingly shorter TEs typically
employed at these higher fields, we observe a larger ΔR2* for the same dose of contrast agent
(i.e. Δχ=1×10−7). For comparison we can see that at 4.7T, for the same TE=60ms employed
at 1.5T and the same contrast agent dose, we get a three to four-fold increase in relaxation rate.
Fig. 5d illustrates the effect of increasing B0 on the dependence of ΔR2 on vessel radius
computed using the FPM. As field strength increases from 1.5T to 4.7T, even with the
correspondingly shorter TEs typically employed at these higher fields we observe not only a
larger ΔR2 for the same dose of contrast agent (i.e. Δχ=1×10−7), but also a shift in peak
sensitivity to smaller radii. For comparison one can see that at 4.7T, for the same TE=100ms
employed at 1.5T and the same contrast agent dose, we not only get a three to four-fold increase
in relaxation, but the peak vessel sensitivity shifts from ~6μm down to ~3μm. The “run time”
for these simulations (18 radii×1000protons/radius×60ensembles=108×104 proton
trajectories) was approximately 215mins.

Simulations using cerebrocortical microvessels as the model input
Fig. 6a shows a volume rendering of the section of the cerebrocortical capillary network
employed in the GE and SE MR signal simulations. Fig. 6e shows a slice through the magnetic
field perturbation map corresponding to the slice in Fig. 6c, wherein one can clearly visualize
the dipolar field pattern around each capillary. Fig. 6f shows a 3D volume rendering of the
ensemble of random cylinders with its physical dimensions scaled to match those of the
cerebrocortical network (i.e. fractional volume ~0.5%, average vessel radius=1.8μm) for
comparison. In Fig. 6j, a slice through the magnetic field perturbation map corresponding to
the slice in Fig. 6h, one can not only visualize the dipolar field pattern around each cylinder,
but can clearly discern the different 3D-spatial variations of the normalized magnetic field
perturbation arising from the different vessel geometries shown in Figs. 6a and 6f. Finally, Fig.
7a, which plots the normalized GE and SE MR signals vs. time for the two cases illustrated in
Fig. 6, unequivocally demonstrates the effect of microvascular geometry on both, the gradient-
and spin-echo MRI signals. Collectively, these data demonstrate the feasibility of the FPM
approach to compute the induced magnetic field changes and eventual MR signal evolution
for arbitrarily shaped geometries, such as cerebrocortical vessels.

DISCUSSION
As mentioned earlier, several models have been developed to help understand the factors that
contribute to susceptibility-induced MR signal change, and to quantify its association with the
underlying microvascular geometry (Boxerman, 1995b; Fisel, 1991; Kiselev, 2001). However,
the majority of these approaches have employed cylindrical perturbers (CP) to approximate
the vascular architecture of the tissues being studied. As the analytical expressions for the
magnetic field perturbations arising from CPs are available, it makes their use in simulations
computationally convenient. However, traditional CP approaches have inherent assumptions
that limit their applicability to pathological conditions (such as tumors). One assumption is
that the magnetic field does not vary along the length of the vessels, and another is that inter-
vessel separations are large. While the former assumption enables susceptibility effects to be
simulated in 2D, since the induced field gradients are a function of the 3D geometry, any vessel
geometry that departs from the cylindrical model would need to be simulated in 3D. The second
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assumption simplifies the magnetic field calculations as the effect of overlapping magnetic
fields around the vessels may be ignored at very large inter-vessel distances. However, this
assumption may be inappropriate for tumor tissue – wherein although vessel density may be
low, due to larger caliber tumor vessels (Pathak et al., 2001), the intervessel distances may not
be negligible. Additionally, overlapping magnetic field gradients may become significant at
high contrast agent doses, and the effect of overlapping magnetic field gradients may even
dominate the eventual image contrast observed.

The recent demonstration that the microvessel architecture and possibly blood rheological
factors are critical determinants of susceptibility-induced contrast (Pathak et al., 2003),
especially for tumors with their characteristically abnormal vascular morphology, make the
CP approximation employed by most models inappropriate in such cases. These results in
conjunction with those from other studies (Kiselev, 2005) have created a crucial need for novel
computational approaches that specifically take the de facto microvasculature into account
while circumventing the shortcomings of traditional CP approaches, so that we might better
understand the various factors that engender susceptibility-based contrast mechanisms. This
is particularly true for the assessment of tumor angiogenesis using susceptibility-based contrast
MRI (Pathak et al., 2003).

We have described a computational technique called the finite perturber method (FPM) that
addresses several of the abovementioned issues. This technique allows us to estimate the
susceptibility-induced MR signal for arbitrary microvascular geometries, such as those found
in tumors. As demonstrated using a digitized version of a rat cerebrocortical capillary network,
the FPM can compute the magnetic fields induced around the de facto microvasculature without
necessitating any assumptions about microvessel geometry. In addition, these effects could be
computed in the presence of overlapping fields from the different vessels, for a range of
magnetic susceptibilities, in 3D.

Conventionally, one treats the magnetic field inside the spherical or cylindrical perturber as
arising from the interface between continuous media. However, each spin and its immediate
neighborhood cannot be considered a continuous distribution of magnetic field sources,
because of which an important correction known as the Lorentz correction must be applied to
the field equations for such perturbers. This correction defines a “Lorentz sphere” of influence
around the spin due to the cancellation of the fields of nearby molecules (Haacke, 1999). An
important advantage of the FPM, which computes the magnetic field shifts by summing the
contributions of thousands of tiny cubes, is that it automatically incorporates the Lorentz
correction.

The use of the FFT greatly improves the computational efficiency of the FPM in contrast to
the earlier “nested-cube” type computational approaches, for example (Pathak, 2002). In
addition, the FPM circumvents the disadvantages of classical numerical methods generally
employed for calculating magnetic fields, such as the Finite Difference Method (FDM) and
the Finite Element Method (FEM). While both these techniques are very general and have
widespread applications, they suffer from severe limitations for the class of problem under
consideration here. The FDM employs a uniform rectangular sampling simulation grid to
define points at which a system of simultaneous finite difference equations are employed to
solve Laplace’s equation for the scalar magnetic potential, from which the magnetic field shift
(ΔB) can be eventually calculated (Binns, 1973). The disadvantages of the FDM approach are
that a uniform rectangular simulation grid is a poor representation of the vasculature; there
exists the numerical problem of subtracting nearly equal numbers i.e. ΔB=B–B0; also the
Lorentz correction is not included. In contrast, the FEM represents space as a meshwork of
finite elements, within each of which a polynomial form for the scalar magnetic potential is
assumed, and solved to eventually extract ΔB (Binns, 1973). In addition to having drawbacks
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similar to the FDM approach, the FEM approach has the difficulty of requiring automatic
generation of a finite element mesh that adequately represents the fine detail of the vascular
geometry.

We rigorously tested the numerical accuracy of our FPM approach using two independent
approaches. In the first, we compared the magnetic field shifts computed with the FPM to those
predicted by the theoretical solutions for two simple geometries, namely a cylinder and a
sphere. We did this for spheres and cylinders with varying radii, and for a range of B0 field
strengths, and found exceptional agreement between the results from the analytical solutions
and the FPM values, each time. Figs. 3f–i show the magnetic field perturbation computed for
the same scenario, but using a simulation grid size of 128×128×128 (40448 finite perturbers
for FV=2%), and Figs. 3j–m using a simulation grid size of 256×256×256 (325632 finite
perturbers for FV=2%), respectively. From these plots, one can again see the excellent
agreement of the results from the FPM and those computed from theory. We also observed a
decrease in the computational error with increasing simulation grid size (i.e. increasing number
of perturbers), especially at the boundaries of the cylinder. While there exists a trade-off
between simulation grid size and computation time, the larger grid size could prove especially
advantageous for representing subtle architectural changes in blood vessels that are typically
observed in the early stages of tumor angiogenesis (Deane, 1981; Pathak et al., 2001), and is
an ongoing area of investigation in our laboratory.

A couple of points about the FPM approach are worth emphasizing: first, the numerical results
from the FPM demonstrated in Fig. 3 were obtained by summing the contributions from
thousands of tiny cubes i.e. finite perturbers, and not by simply “plugging-in” values into the
theoretical formula. Second, as can be seen from the plots in Fig. 3, the normal component of
the ΔB field is not continuous at the perturber boundary, i.e. the FPM method automatically
incorporates the Lorentz correction. This would not be the case for a naïve solution of
Maxwell’s equations, which assume homogeneity of the material substance inside the
vasculature, as opposed to a rigorous solution of Maxwell’s equations, which would allow for
inhomogeneity of the medium, thereby incorporating the Lorentz correction. This is not a trivial
matter, and we believe that the difficulty of implementing the rigorous solution of Maxwell’s
equations makes other methods, such as the finite difference method and the finite element
method, impractical for the current application, and was the primary motivation for developing
the finite perturber method.

We also validated the computational accuracy of the FPM by assessing the dependency of the
gradient-echo (GE) and spin-echo (SE) relaxation rates i.e. ΔR2* and ΔR2, on vessel size,
using simulation parameters identical to those employed by Boxerman et al. (Boxerman,
1995b). Again, we observed excellent agreement of the FPM-generated relaxation curves with
those of Boxerman et al. (Figs. 5a–b). We also simulated the effect of increasing magnetic field
strength (B0) on the dependence of ΔR2* (and ΔR2) on vessel radius, using values for B0 and
TE typical of clinical magnets. For the range of TEs employed and for the same dose of contrast
agent (i.e. Δχ=1×10−7), we observed an increase in ΔR2* as B0 increased from 1.5T to 4.7T.
For example (Fig. 5c) we can see that for the same TE=60ms and contrast agent dose, we get
a three to fourfold increase in ΔR2* at 4.7T relative to 1.5T, thereby providing greater SNR
for relative cerebral blood volume (rCBV) measurements at higher field strengths. However,
as field strength increases from 1.5T to 4.7T, for the range of TEs employed we observed not
only an increase in ΔR2 for a constant dose of contrast agent (i.e. Δχ=1×10−7), but also a shift
in peak sensitivity to smaller radii. For example (Fig. 5c) we can see that for the same
TE=100ms and contrast agent dose, we not only get a three to four-fold increase in ΔR2, but
the peak vessel sensitivity shifts from ~6μm down to ~3μm between 1.5T and 4.7T, thereby
providing greater microvascular sensitivity for SE protocols. A similar two-fold effect on ΔR2
was also observed by Boxerman et al. when they increased the strength of the perturbation by
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increasing Δχ while keeping B0 constant, an explanation for which was provided by Weisskoff
et al. using scaling laws (Weisskoff, 1994). The same scaling laws are applicable to our case
wherein the magnetic perturbation was increased by increasing B0 while keeping Δχ constant.
For a two-fold increase in the strength of the perturbation (from 1.5T to 3T, for example) these
scaling laws predict a quadratic dependence of relaxivity on B0 for small-sized vessels (1–
3μm), linear dependence near the peak of the relaxation curve (4–6μm), and a sub-linear
dependence in the large-sized vessel range (>10μm), just as our simulations predict. Details
regarding the derivation of these scaling laws from the Bloch-Torrey equations can be found
in (Weisskoff, 1994). This independent validation of the FPM is all the more significant since
Boxerman et al. employed an entirely different computational technique to simulate the
biophysics of the MR signal. Specifically, they employed an iterative, Monte-Carlo approach
using the equations for infinitely long cylindrical perturbers (Eq. 9).

Limitations of the FPM
As explained in the Methods section, the FPM uses the Fast Fourier transform (FFT) to
calculate the spatial convolution of the vascular structure with the finite perturber magnetic
field distortion. One limitation of this method is that the FFT convolution is a “circular-
convolution” i.e., the result of the convolution is the same as if the underlying vascular structure
were spatially periodic. In effect, the “top” of the simulation space is glued to the “bottom” of
the simulation space; the “left” edge is attached to the “right” edge; and the “front” of the
simulation space coincides with the “rear”. This is illustrated in Figs. 7b–c. In Fig. 7b, the
vasculature is modeled by a single, long cylinder that crosses the simulation space at an oblique
angle. In Fig. 7c is plotted the magnetic field distortion arising from this vessel, using the FPM.
Comparing Figs. 7b and 7c, we see that calculated field differs from what we would expect for
an infinite cylinder. This is not the field pattern for an infinite cylinder, but for a cylinder that
is truncated and spatially periodic. In the left panel of Fig. 7c, the calculated magnetic field
along the top edge of the simulation space corresponds to the vasculature that is present along
the bottom edge, and vice versa. Therefore, caution must be exercised to avoid “boundary
effects”. A possible solution is to “zero-pad” the vascular dataset, to keep the vasculature away
from the simulation boundary. However, this is not a perfect solution either, as the true “real-
world” vasculature usually extends well beyond the boundary of the simulation space. Thus,
such “boundary effects” will always pose a problem for any numerical method.

Finally, the results presented herein demonstrate the versatility of the FPM for simulating an
array of susceptibility-based contrast mechanisms. In addition to the BOLD contrast
mechanism, we are primarily interested in the effect of vascular remodeling that accompanies
tumor angiogenesis and anti-angiogenic therapy, on susceptibility-based contrast. We are
currently in the process of investigating the effects of an array of physiological variables on
the biophysics of susceptibility-based contrast within the context of brain tumors.

CONCLUSIONS
Here, for the first time we have successfully demonstrated both the numerical accuracy and
the feasibility of a novel computational and simulation technique for estimating the
susceptibility-induced MR signal for arbitrary microvascular geometries. Further, our
technique allows us to visualize these effects in 3D and in exquisite detail. The excellent
agreement of the FPM with theory indicates that it could greatly advance our understanding
of susceptibility-based contrast mechanisms, particularly within the context of tumor
angiogenesis.

SUPPLEMENTARY DATA
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
(a) Schematic illustrating the geometry for calculating the magnetic field perturbation due to
a tiny cube (the “finite perturber”). We estimate the field induced around the cube by
considering a sphere of radius ‘a’, embedded in a cube of side ‘2a’. A test point p(x,y,z,) is
located at a distance ‘r’ from the center of the perturber placed in field B0. (b) 3D volume
rendering of a rat cerebrocortical capillary network. (c) Volume rendered cortical substrate in
(b) overlaid with a slice through the FPM generated magnetic field map showing the magnetic
field isolines.
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Fig 2.
This figure illustrates the steps involved in computing the magnetic field shifts due to the input
vasculature using the FPM: (a) 2D slice through the vasculature. (b) 2D slice through the 3D
Fourier transform of (a). (c) 2D slice through the normalized (ΔBnormalized) finite perturber
magnetic field. (d) 2D slice through the 3D Fourier transform of (c). Point-wise multiplication
of (b) and (d) in the Fourier domain yields (e). (f) is a 2D slice through the 3D inverse Fourier
transform of (e), and is also a result of the convolution of (a) and (c). (f) Is the sought after
normalized (ΔBnormalized) magnetic field shift due to the arbitrarily shaped vascular tree.
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Fig 3.
(a) Schematic illustrating the orientation of an infinitely long cylinder (2% fractional volume,
Δχ=3×10−8) relative to the main magnetic field B0=1.5T, employed to check the effect of
simulation grid size on the accuracy of the magnetic field calculated using the FPM. (b) Surface
plot of a slice in the XZ-plane through the magnetic field perturbation map due to the cylinder
in (a) using a 64×64×64 simulation grid size. One can clearly distinguish the classic dipolar
field pattern around the cylinder. Plots of the magnetic field profile predicted by theory (blue)
versus those computed using the FPM (red), and the difference between the two (black) plotted
along the x-axis (c), y-axis (d), and z-axis (e), respectively. The number of finite perturbers
required to fill the cylinder was 5120. (f–i) are the same results for a simulation grid size of
128×128×128 (40448 finite perturbers required), and (j–m) for a simulation grid size of
256×256×256 (325632 finite perturbers required), respectively. From these plots one can
clearly see the excellent agreement of the results from the FPM and those predicted by theory
even at the coarsest simulation grid size. In addition, one can also see a decrease in the
computational error with increasing simulation grid size, as reflected by the decreasing area
under the difference plot. This is especially evident at the surface of the cylinder i.e. at the
interface of the cylinder and background.
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Fig 4.
Projection of five 3D proton diffusion paths onto a slice through magnetic field perturbation
due to the cylinder in Fig. 3a, for: (a) the unrestricted proton diffusion case, i.e. proton allowed
to traverse the vessel boundary, and (b) the restricted proton diffusion case, i.e. proton is not
allowed to traverse the vessel boundary.
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Fig 5.
(a) FPM computed dependence of ΔR2* and ΔR2 on vessel size for B0=1.5T, 2% fractional
volume, and Δχ=1×10−7. One can see excellent agreement of the FPM generated curves with
those of Boxerman et al. shown in (b) [Reproduced with permission from (Boxerman,
1995b)], wherein the ΔR2 peaks for microvessels while the ΔR2*>ΔR2 for all radii, and
plateaus for vessel radii > ~9μm. (c) The effect of magnetic field strength (B0) on the
dependence of ΔR2* on vessel radius computed using the FPM. (d) The effect of magnetic
field strength (B0) on the dependence of ΔR2 on vessel radius computed using the FPM.
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Fig 6.
(a) 3D volume rendering of the section of the cerebrocortical capillary network employed in
the GE and SE MR signal simulations. (b) Three orthogonal center planes of the volume in (a)
with colored lines indicating the intersection of the displayed slice and the three orthogonal
center planes of the volume. (c) A slice through the volume in (a) with the borders of the volume
displayed in green. The red, green and blue colored markers indicate the start and end positions
of the lines in the planar views shown in (b). (d) Three orthogonal center planes of the
normalized magnetic field perturbation map corresponding to the capillary network in (a). (e)
A slice through the magnetic field perturbation map corresponding to the slice in (c). One can
clearly visualize the dipolar field pattern around each capillary. (f) 3D volume rendering of the
ensemble of random cylinders employed in the GE and SE MR signal simulations, with its
physical dimensions scaled to match those of the cerebrocortical network (i.e. fractional
volume ~0.5%, average vessel radius=1.8μm). (g) Three orthogonal center planes of the
volume in (f) with colored lines indicating the intersection of the displayed slice and the three
orthogonal center planes of the volume. (h) A slice through the volume in (f) with the borders
of the volume displayed in green. The red, green and blue colored markers indicate the start
and end positions of the lines in the planar views shown in (g). (i) Three orthogonal center
planes of the normalized magnetic field perturbation map corresponding to the cylinders in (f).
(j) A slice through the magnetic field perturbation map corresponding to the slice in (c). One
can visualize the dipolar field pattern around each cylinder, and see differences in 3D-spatial
variations of the magnetic field perturbations between geometries (e) and (f).
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Fig 7.
(a) Normalized GE and SE signals computed for the vascular substrates shown in Fig. 6. (b)
Vasculature modeled by a single, long cylinder that crosses the simulation space at an oblique
angle. (c) Plot of the magnetic field distortion arising from this vessel computed using the FPM.
Comparing (b) and (c), we see that calculated field differs from what we would expect for an
infinite cylinder. In (c) the calculated magnetic field along the top edge of the simulation space
corresponds to the vasculature that is present along the bottom edge, and vice versa.
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