
Quantitative Evaluation of Automated Skull-
Stripping Methods Applied to Contemporary and

Legacy Images: Effects of Diagnosis, Bias
Correction, and Slice Location

Christine Fennema-Notestine,1,2 I. Burak Ozyurt,1,2 Camellia P. Clark,1,2

Shaunna Morris,1,2 Amanda Bischoff-Grethe,1,2 Mark W. Bondi,1,2

Terry L. Jernigan,1,2 Bruce Fischl,3,4,5 Florent Segonne,4,5

David W. Shattuck,6,7 Richard M. Leahy,6 David E. Rex,7

Arthur W. Toga,7 Kelly H. Zou,8,9 Morphometry BIRN,10 and
Gregory G. Brown1,2*

1Laboratory of Cognitive Imaging, Department of Psychiatry, University of California, San Diego,
La Jolla, California

2Veterans Affairs San Diego Healthcare System, San Diego, California
3Department of Radiology, Harvard Medical School, Charlestown, Massachusetts

4Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts

5Athinoula A. Martinos Center, MGH/NMR Center, Charlestown, Massachusetts
6Signal and Image Processing Institute, and Depts. of Radiology and Biomedical Engineering,

University of Southern California, Los Angeles, California
7Laboratory of Neuro Imaging, Dept. of Neurology, University of California, Los Angeles,

Los Angeles, California
8Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts

9Department of Health Care Policy, Harvard Medical School, Cambridge, Massachusetts
10Biomedical Informatics Research Network, www.nbirn.net

� �

Abstract: Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance
(MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional
anatomy, and age and diagnosis of subjects studied. The present study compared the performance of four
methods: Brain Extraction Tool (BET; Smith [2002]: Hum Brain Mapp 17:143–155); 3dIntracranial (Ward
[1999] Milwaukee: Biophysics Research Institute, Medical College of Wisconsin; in AFNI); a Hybrid
Watershed algorithm (HWA, Segonne et al. [2004] Neuroimage 22:1060–1075; in FreeSurfer); and Brain
Surface Extractor (BSE, Sandor and Leahy [1997] IEEE Trans Med Imag 16:41–54; Shattuck et al. [2001]

Contract grant sponsor: National Center for Research Resources at the
National Institutes of Health (NIH); Contract grant number: U24
RR021382 (to the Morphometry Biomedical Informatics Research Net-
work, BIRN, http://www.nbirn.net) and Projects BIRN002 and
BIRN004, M01RR00827, P41-RR14075, R01 RR16594-01A1, P41-
RR13642; Contract grant sponsor: National Institute of Mental
Health at NIH; Contract grant numbers: 5K08MH01642;
R01MH42575; HIV Neurobehavioral Research Center MH45294;
Contract grant sponsor: National Institute on Aging at NIH; Con-
tract grant numbers: R01 AG12674; AG04085; Contract grant spon-
sor: San Diego Alzheimer’s Disease Research Center; Contract grant
number: P50AGO5131; Contract grant sponsor: National Institute
for Biomedical Imaging and Bioengineering (NIBIB) at NIH; Con-
tract grant number: R01 EB002010; Contract grant sponsor: Mental

Illness and Neuroscience Discovery (MIND) Institute; Contract
grant sponsor: Department of Veterans Affairs Medical Research
Service; Contract grant numbers: VA Merit Review and Research
Enhancement award programs.

*Correspondence to: Dr. Gregory G. Brown, Laboratory of Cogni-
tive Imaging (9151-B), 9500 Gilman Drive, MC 9151-B, University of
California, San Diego, La Jolla, CA 92093.
E-mail: GBrown@UCSD.edu

Received for publication 17 September 2004; Accepted 25 February
2005

DOI: 10.1002/hbm.20161
Published online 28 June 2005 in Wiley InterScience (www.
interscience.wiley.com).

� Human Brain Mapping 27:99–113(2006) �

© 2005 Wiley-Liss, Inc.



Neuroimage 13:856–876) to manually stripped images. The methods were applied to uncorrected and
bias-corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic groups
(depressed, Alzheimer’s, young and elderly control). To provide a criterion for outcome assessment, two
experts manually stripped six sagittal sections for each dataset in locations where brain and nonbrain
tissue are difficult to distinguish. Methods were compared on Jaccard similarity coefficients, Hausdorff
distances, and an Expectation-Maximization algorithm. Methods tended to perform better on contempo-
rary datasets; bias correction did not significantly improve method performance. Mesial sections were
most difficult for all methods. Although AD image sets were most difficult to strip, HWA and BSE were
more robust across diagnostic groups compared with 3dIntracranial and BET. With respect to specificity,
BSE tended to perform best across all groups, whereas HWA was more sensitive than other methods. The
results of this study may direct users towards a method appropriate to their T1-weighted datasets and
improve the efficiency of processing for large, multisite neuroimaging studies. Hum Brain Mapp 27:99–113,
2006. © 2005 Wiley-Liss, Inc.
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INTRODUCTION

Quantitative morphometric studies of magnetic resonance
(MR) images often require a preliminary step to isolate brain
from extracranial or “nonbrain” tissues. This preliminary
step, commonly referred to as “skull-stripping,” facilitates
image processing such as surface rendering, cortical flatten-
ing, image registration, de-identification, and tissue segmen-
tation. To be feasible for large-scale, multisite studies, such
as the projects supported by the Biomedical Informatics
Research Network (BIRN), skull-stripping methods should
be accurate and relatively automated. Numerous automated
skull-stripping methods have been proposed [e.g., Dale et
al., 1999; Hahn and Peitgen, 2000; Sandor and Leahy, 1997;
Segonne et al., 2004; Shattuck et al., 2001; Smith, 2002; Ward,
1999] and are widely used. However, the performance of
these methods, which rely on signal intensity and signal
contrast, may be influenced by numerous factors including
MR signal inhomogeneities, type of MR image set, gradient
performance, stability of system electronics, and extent of
neurodegeneration in the subjects studied [Smith, 2002].
Suboptimal outcomes of automated processing often require
manual adjustment of method parameters and/or manual
editing to create a suitable skull-stripped volume. Manual
adjustment increases processing time and the level of re-
quired expertise and potentially introduces inaccuracies or
inconsistencies. There is a clear need to better understand
the factors that influence the performance of various auto-
mated skull-stripping methods. The results of such studies
may direct users towards a method appropriate to their
particular datasets and improve the efficiency of processing
for large, multisite neuroimaging studies.

In addition to manual approaches, the primary bases for
skull-stripping include intensity threshold, morphology,
watershed, surface-modeling, and hybrid methods [e.g.,
Dale et al., 1999; Hahn and Peitgen, 2000; Sandor and Leahy,
1997; Segonne et al., 2004; Shattuck et al., 2001; Smith, 2002;
Ward, 1999]. Although perhaps the most accurate, manual
methods require significant time for completion, particularly

on high-resolution volumes that often contain more than 120
slices. Furthermore, rigorous training is crucial to develop
reliable standards that reduce the subjectivity of decisions.
Depending on whether a study collects single contrast im-
ages or images with varying contrast, threshold methods
define minimum and maximum values along one or more
axes representing voxel intensities for univariate or multi-
variate histograms [e.g., DeCarli et al., 1992]. Morphology or
region-based methods rely on connectivity between regions,
such as similar intensity values, and often are used with
intensity thresholding methods [e.g., 3dIntracranial, Ward,
1999; in AFNI, Cox, 1996]. Other approaches combine mor-
phological methods with edge detection [e.g., Brain Surface
Extractor, Sandor and Leahy, 1997; Shattuck et al., 2001].
Although watershed algorithms use image intensities, they
operate under the assumption of white matter connectivity
[e.g., Hahn and Peitgen, 2000]. Watershed algorithms try to
find a local optimum of the intensity gradient for preflood-
ing of the defined basins to segment the image into brain
and nonbrain components. That is, the volume is separated
into regions connected in 3-D space, and basins are filled to
a preset height. Surface-model-based methods, in contrast,
incorporate shape information through modeling the brain
surface with a smoothed deformed template [e.g., Dale et al.,
1999; Brain Extraction Tool, Smith, 2002]. A recent Hybrid
Watershed method [HWA, Segonne et al., 2004; in Free-
Surfer, Dale et al., 1999; Fischl and Dale, 2000; Fischl et al.,
1999] incorporated the watershed techniques of Hahn and
Peitgen [2000] with the surface-based methods of Dale et al.
[1999]. The resulting HWA method relies on white matter
connectivity to build an initial estimate of the brain volume
and applies a parametric deformable surface model, inte-
grating geometric constraints and statistical atlas informa-
tion, to locate the brain boundary.

A few previous studies of available automated skull-strip-
ping methods have employed quantitative error rate analy-
ses to compare the potential advantages and disadvantages
of each approach [Boesen et al., 2004; Lee et al., 2003; Seg-
onne et al., 2004; Smith, 2002]. In a careful evaluation of
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automated skull-stripping methods, Smith [2002] reviewed
various approaches, introduced the Brain Extraction Tool
(BET), and examined the automated performance of BET
and two commonly available methods relative to manually
skull-stripped volumes. The automated performance of BET
(v. 1.1) was compared to the performance of a modified
version of AFNI’s 3dIntracranial [Ward, 1999; in AFNI v.
2.29, Cox, 1996] and Brain Surface Extractor [BSE v. 2.09,
Sandor and Leahy, 1997; Shattuck et al., 2001]. The test data
were acquired across many scanners and included primarily
T1-weighted images as well as some T2 and PD-weighted
image sets.. Analysis of a percent error measure revealed
that BET produced significantly fewer errors relative to the
modified AFNI and BSE methods across all dataset types
and within only the T1-weighted datasets, although the dif-
ference was smaller in the latter comparison. Relative to the
hand-segmented volumes, BET tended to produce a slightly
smaller and more smoothed volume. Smith [2002] also ex-
amined the effect of systematically varying software param-
eters for each dataset. The findings suggested that all three
methods performed similarly well under individually opti-
mized conditions, particularly for T1-weighted images. The
optimal parameters selected, however, did not reveal any
consistent within-sequence values that might be automati-
cally applied; thus, BET was judged the most robust and
successfully automated application examined when global
parameters were used. The author [Smith, 2002] suggested
that performance of these automated methods might be
improved with preprocessing, such as the correction of field
inhomogeneities, although most bias correction algorithms
require datasets be skull-stripped prior to their application.

Subsequently, Lee et al. [2003] reported an evaluation of
BET, BSE, and ANALYZE 4.0 as well as the authors’ local
Region Growing Tool (RG) relative to manual skull-strip-
ping. BET and BSE were applied in an automated fashion,
whereas ANALYZE and RG required manual interaction.
All methods were tested on the T1-weighted Montreal Neu-
rological Institute’s BrainWeb phantom at different levels of
noise and on T1-weighted human datasets from the Internet
Brain Segmentation Repository. Similarity indices that incor-
porated both false-positive and false-negative rates sug-
gested no difference between the methods for the small set
of phantom data, although BSE excluded some brain tissue.
Examination of the human data revealed that RG was more
similar to the manual criterion than were the other three
methods. The segmentation error rates suggested that BET
included more nonbrain tissue, whereas BSE and ANALYZE
both removed some brain tissue. The authors suggested that
the automated processing results were somewhat inaccu-
rate, but that a two-step processing procedure utilizing both
the semiautomated and automated methods may be useful.

Two more recent studies have examined skull-stripping
performance with slightly different approaches. Boesen et al.
[2004] examined the performance of BET [v. 1, Smith, 2002],
BSE [v. 2.99, Sandor and Leahy, 1997; Shattuck et al., 2001],
SPM (2b), and the Minneapolis Consensus Strip (MCS; in-
tensity based thresholding and the use of BSE). Parameters

for BET and BSE were examined in two ways: 1) optimized
parameters based on three training volumes and then ap-
plied in an automated fashion, and 2) subject-specific pa-
rameter settings based on an exhaustive review of all pa-
rameter combinations, selecting the outcome that produced
the least misclassified tissue. Two sets of T1-weighted vol-
umes were stripped and compared to manually stripped
volumes. Results suggested that MCS and, in some cases,
BSE tended to outperform the other methods, although MCS
was least affected by site-related differences. Although MCS
requires more user interaction, the authors suggest that such
a hybrid method may improve performance.

Finally, a relatively new hybrid approach, Hybrid Water-
shed [HWA, Segonne et al., 2004], was compared to the per-
formance of four skull-stripping methods: FreeSurfer’s original
method [Dale et al., 1999]; BET [Smith, 2002]; a watershed
algorithm [Hahn and Peitgen, 2000]; and BSE [Shattuck et al.,
2001]. Forty-three T1-weighted images from two sites were
used and automated performance was compared to manually
skull-stripped volumes. HWA produced the highest similarity
coefficients for both datasets, BSE performed second best on
the higher quality dataset, whereas BET often included addi-
tional nonbrain tissue. In an evaluation of the risk reflecting a
higher cost related to removing brain tissue than to adding
nonbrain tissue, HWA typically included all brain tissue and
found the pial surface in most datasets.

Although these studies launched the quantitative evalua-
tion of skull-stripping methods, important questions need to
be answered before automated skull-stripping methods can
be faithfully used in large-scale image analysis. First, little
published research has focused on the impact of subject
variables, such as age and diagnosis, on the accuracy of
skull-stripping routines. Yet both aging and common neu-
rodegenerative diseases, such as Alzheimer’s disease (AD),
reduce image contrast and adversely homogenize histo-
grams, create partial volume effects, and obscure edges.
Second, although Smith [2002] suggested that bias correction
of MR signal inhomogeneities might improve the results of
automated skull-stripping programs, to the best of our
knowledge, no studies have directly compared skull-strip-
ping of bias corrected and uncorrected images. Third, large-
scale image sets frequently contain legacy images collected
over many years. Legacy image sets often include images of
varying quality as gradients, software and electronic com-
ponents of MR systems change over time. Little has been
published regarding how results of skull-stripping of legacy
images compares with results from more homogenous, con-
temporary image sets. Fourth, previous skull-stripping stud-
ies have not evaluated the impact of local anatomy on skull-
stripping results. Yet in our experience, separation of skull
from brain can be especially difficult in some regions, such
as the anterior or posterior fossa, where subtle gradations of
white matter, gray matter, soft tissue, and bone occur in
proximity. Finally, most previous studies used one metric to
measure the accuracy of skull-stripping methods. Multidi-
mensional metrics of performance, such as those presented
here, may provide a better description of performance com-
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parisons, as they can measure several aspects of similarity
[Hand et al., 2001].

In the present study we investigated the effects of age and
diagnosis, bias correction, type of image set (Legacy vs.
Contemporary), and local anatomy (slice location) on the
performance of four automated skull-stripping methods. We
predicted that MR brain images obtained from older indi-
viduals and those obtained from patients with AD would be
less accurately skull-stripped than images from other
groups. We expected that bias correction would improve the
performance of 3dIntracranial due to its reliance on fitting
the intensity histogram, whereas other methods also might
be improved to varying extents. We also predicted less
accurate skull-stripping of legacy images, where data are
less likely to meet contemporary quality standards for image
acquisition. And finally, given the difficulties distinguishing
posterior fossa soft tissue from adjacent brain, we hypothe-
sized that mesial brain slices, which include large posterior
fossa regions and voxels including both partially volumed
tissue and CSF, would be less accurately skull-stripped than
other regions. This assessment of local anatomical effects of
skull-stripping, rather than examining the whole brain vol-
ume, is particularly relevant for subsequent morphometric
studies of these regions of interest.

The methods studied herein—3dIntracranial [Ward, 1999; in
AFNI, Cox, 1996], BET [Smith, 2002], HWA [Segonne et al.,
2004; in FreeSurfer, Dale et al., 1999; Fischl and Dale, 2000;
Fischl et al., 1999], and BSE [Sandor and Leahy, 1997; Shattuck
et al., 2001]—encompass most of the commonly used algo-
rithms for skull-stripping. We evaluated the most current soft-
ware versions with expert input from developers to select the
appropriate parameters for automated application. To provide
a reasonable criterion, or “gold standard,” for outcome assess-
ment, two experts manually skull-stripped six sagittal sections
in standard locations for all datasets. These manual outcomes
were compared to automated outcomes with the Jaccard sim-
ilarity index [JSC; Jaccard, 1912; Zou et al., 2004a,b], which
expresses the overlap between automated and manual skull-
stripping for each slice, and the Hausdorff distance measure
[Huttenlocher et al., 1993], which examines the degree of mis-
match between the contours of two image sets, providing

information on shape differences. Then all methods, including
manual skull-stripping, were compared with an Expectation-
Maximization algorithm [EM; Warfield et al., 2004; Zou et al.,
2004b], which provides both sensitivity and specificity infor-
mation.

MATERIALS AND METHODS

MR Image Sets

Data collected using two common structural gradient-
echo (SPGR) T1-weighted pulse sequences were examined.
All datasets were collected on a GE 1.5 T magnet at the VA
San Diego Healthcare System MRI Facility that was sub-
jected to regular hardware and software upgrades over time.
Legacy Datasets were collected over 4 years in the mid- to
late-1990s (June of 1994 and July of 1998): TR � 24 ms, TE
� 5 ms, NEX � 2, flip angle � 45°, field of view 24 cm, and
contiguous 1.2-mm sections (sagittal acquisition). Contempo-
rary Datasets were collected between May of 2002 and April
of 2003: TR � 20 ms, TE � 6 ms, NEX � 1, flip angle � 30°,
field of view 25 cm, and contiguous 1.5-mm sections (sagittal
acquisition). Of the 32 datasets examined, 16 were Legacy,
and 16 were Contemporary (Table I). The University of Cali-
fornia, San Diego, institutional review board approved all
procedures and written informed consent was obtained
from all subjects.

Diagnostic Groups

For each MR Image set of 16 datasets, four different diag-
nostic groups were represented, including depressed
(DEPR), Alzheimer’s (AD), young (YNC), and elderly nor-
mal controls (ENC), with four subjects from each group
(Table I). The YNC and DEPR groups were similar in age
and education, as were the ENC and AD groups. Each
diagnostic group from Legacy and Contemporary datasets
were similar in age and gender, and the AD groups were
also matched on disease stage as measured with the Mini-
Mental State Examination [MMSE, Folstein et al., 1975].

TABLE I. Dataset information

Diagnostic group/Image set Age, mean (SD) Gender MMSE, mean (SD)

Young Controls
Legacy 35.5 (13.5), range 25–54 2F/2M N/A
Contemporary 33.0 (15.1), range 21–54 2F/2M N/A

Elderly Controls
Legacy 75.0 (2.2), range 72–77 2F/2M N/A
Contemporary 74.5 (1.7), range 72–76 2F/2M N/A

Unipolar Depressed
Legacy 40.5 (13.3), range 28–56 3F/1M N/A
Contemporary 40.8 (10.8), range 21–54 3F/1M N/A

Alzheimer’s Disease
Legacy 76.0 (2.7), range 72–78 2F/2M 23.0 (2.7), range 21–27
Contemporary 75.5 (1.7), range 72–78 1F/3M 23.2 (2.5), range 22–27

N/A, not available.

� Fennema-Notestine et al. �

� 102 �



Bias Correction

To correct image bias we employed the nonparametric
nonuniform intensity normalization method [N3, Sled et al.,
1998], which uses a locally adaptive bias correction algo-
rithm. This method was chosen for its applicability to un-
skull-stripped image sets and for its excellent performance
compared with other bias correction methods [Arnold et al.,
2001]. All 32 datasets were studied with and without prior
bias correction with N3.

Manual Skull-Stripping

Two anatomists manually skull-stripped six sagittal slices
from each raw MR image set to provide a criterion, or “gold
standard,” against which to judge the automated skull-strip-
ping outcomes. Both anatomists (CPC and SM) were experi-
enced neuroimaging experts with training in neuroscience and
neuroanatomy. Both anatomists, in collaboration with a trained
neuroanatomist (CFN), completed four sample datasets not
included in the present study to formalize a set of criteria for
skull-stripping. If anatomists were unable to definitively clas-
sify tissue as brain or nonbrain, they were instructed to con-
servatively include this tissue. Anatomists were provided with
all orthogonal views, which provided them with better spatial
information to make their decisions. Comparisons of the two
anatomists manually skull-stripped datasets are examined in
the Results section. Six sagittal slices were selected to assess
skull-stripping on mid-sagittal slices and on lateral slices pass-
ing through the anterior medial temporal, anterior inferior
frontal, posterior cerebellar regions, and posterior occipital re-
gions (Fig. 1). Brain and nonbrain tissues in these regions are
often difficult to distinguish on T1-weighted images, particu-
larly in the posterior fossa (Fig. 1, Slices 4-6A) and anterior
temporal lobe (Fig. 1, Slices 4-6B). The mid-line sections, in
addition to including the posterior fossa, often contain cerebro-

spinal fluid that may be difficult to distinguish from partially
volumed adjacent cortex (Fig. 1, Slice 4C,4D).

Automated Methods and Parameter Selection

For each method except 3dIntracranial (the developer
chose not to participate), developers of the automated meth-
ods were provided with two sample datasets, one young,
healthy control from the Legacy image set and one from the
Contemporary image set. We asked developers to suggest
the most appropriate parameters for the automated applica-
tion of their software using the image sets provided. These
values were used for all analyses in this study. The selected
parameters and the computational processing times are de-
fined within each method description below. The elapsed
average processing time per dataset is based on the use of a
Dell Pentium Xeon 2.2 or 2.4 GHz with 512 MB RAM.

3dIntracranial [3dIntra, Ward, 1999]; in AFNI v. 2.29
[Cox, 1996].

3dIntra, included in the Analysis of Functional NeuroImage
(AFNI) library, involves several steps. First a three-compart-
ment Gaussian model is fit to the intensity histogram. A down-
hill simplex method is used to estimate means, standard devi-
ations, and weights of presumed gray matter, white matter,
and background compartments. From these estimated values a
probability density function (PDF) is derived to set upper and
lower signal intensity bounds as a first step to identify brain
voxels. Upper and lower bounds are set to exclude nonbrain
voxels. Next, a connected brain region within each axial slice is
identified by finding the complement of the largest nonbrain
region within that slice, under the constraint that the area of
connected brain becomes smaller as the segmentation moves
from the center of the brain. The union of such connected brain
regions is formed as this slice-by-slice segmentation is repeated
for sagittal and coronal slices. Next, a 3D envelope based on

Figure 1.
Standard location of the six sagittal, manually stripped slices as
demonstrated on a coronal image. The six sagittal slices represent
the criterion dataset; three slices from each hemisphere in sym-
metrical locations passing through regions that are difficult to

skull-strip. Slices are numbered for reference. Three sample im-
ages are presented in the sagittal plane. Letters represent difficult
regions as referenced in the text.

� Evaluation of Skull-Stripping Methods �

� 103 �



local averaging smoothes brain edges. Finally, brain voxels
with few brain voxel-neighbors are excluded from brain,
whereas holes with many brain-voxel-neighbors are included.
3dIntracranial is integrated in the extensive library of AFNI
image analysis tools and its public source code is freely avail-
able at http://afni.nimh.nih.gov/afni/. The 3dIntracranial pa-
rameters utilized in the present study were the default param-
eters, described as follows: minimum voxel intensity limit
� internal probability density function (PDF) estimate for
lower bound; maximum voxel intensity limit � internal PDF
estimate for upper bound; minimum voxel connectivity to
enter m � 4; maximum voxel connectivity to leave n � 2; and
spatial smoothing of segmentation mask.

Brain Extraction Tool, v. 1.2 [BET, Smith, 2002].

BET employs a deformable model to fit the brain’s surface
using a set of “locally adaptive model forces.” This method
estimates the minimum and maximum intensity values for the
brain image, a “center of gravity” of the head image, and head
size based on a spherical equivalent, and subsequently initial-
izes the triangular tessellation of the sphere’s (head’s) surface.
BET v. 1.2 is freely available in the FMRIB FSL Software Li-
brary (http://www.fmrib.ox.ac.uk/fsl/). The developer rec-
ommended the default parameters for automated processing
of both the legacy and contemporary images. The parameters
utilized in the application herein are the default parameters,
described as follows: fractional intensity threshold � 0.5; ver-
tical gradient in fractional intensity threshold � 0.

Hybrid Watershed Algorithm, v. 1.21 [HWA, Segonne
et al., 2004]; in FreeSurfer [Dale et al., 1999; Fischl
and Dale, 2000; Fischl et al., 1999].

This HWA method is a hybrid of a watershed algorithm
[Hahn and Peitgen, 2000] and a deformable surface model
[Dale et al., 1999] that was designed to be conservatively
sensitive to the inclusion of brain tissue. In general, water-
shed algorithms segment images into connected compo-
nents, using local optima of image intensity gradients. HWA
uses a watershed algorithm that is solely based on image
intensities; the algorithm, which operates under the assump-
tion of the connectivity of white matter, segments the image
into brain and nonbrain components. A deformable surface-
model is then applied to locate the boundary of the brain in
the image. A final option under development will incorpo-
rate an atlas-based analysis to verify the correctness of the
resulting surface, modify it if important structures have
been removed, and locate the best-estimate boundary of the
brain in the image. In HWA v. 1.21 the atlas-based option
was not finalized, resulting in a considerably better perfor-
mance without the atlas-based option. Therefore, the present
study examined HWA without the atlas option. HWA v.
1.21 is freely available as a component of the FreeSurfer
software package at http://surfer.nmr.mgh.harvard.edu/.
HWA developers recommended the default parameters for
automated processing of both legacy and contemporary im-
ages. The parameters utilized in this study are the hard-
coded default parameters of HWA without the atlas option.

Brain Surface Extractor v. 3.3 [BSE, Sandor and
Leahy, 1997; Shattuck et al., 2001].

BSE, designed to fit the surface of all CNS regions, including
the spinal cord, uses a sequence of anisotropic diffusion filter-
ing, Marr-Hildreth edge detection, and morphological process-
ing to segment the brain within whole-head MRI. In MRI of the
brain the boundary between the brain and the skull will pro-
duce a contour in the Marr-Hildreth edge detection result.
Additional gradients in the image may otherwise act as decoys
for automated methods; for this reason, BSE uses anisotropic
diffusion filtering [Perona and Malik, 1990]. This is a spatially
adaptive edge-preserving filtering technique that smoothes
small image gradients while preserving larger variations that
correspond to strong edges in the image. Because of noise in
the image and actual anatomic connections such as optic tracts,
the brain contour that BSE generates may not separate the
brain from the rest of the head. BSE breaks remaining connec-
tions between the brain and the other tissues in the head using
a morphological erosion operation. After identifying the brain
using a connected component operation, BSE applies a corre-
sponding dilation operation to undo the effects of the erosion.
As a final step, BSE applies a morphological closing operation
that fills small pits and holes that may occur in the brain
surface. BSE v. 3.3 is freely available for download from the
BrainSuite website, http://neuroimage.usc.edu/brainsuite/.
The developers recommended the following parameters for
automated processing of both legacy and contemporary image
sets: anisotropic filter � 5 iterations with 5.0 diffusion constant;
edge detector kernel � 0.8 sigma. These parameters were uti-
lized in this study.

Statistical Analyses

Data analytic methods included the following: 1) the com-
parison of two manual anatomists’ performance using the
Jaccard similarity coefficient (JSC) to measure degree of
correspondence, or overlap, for each image slice; 2) detailed
qualitative review of all outcomes; 3) the comparison of each
manually skull-stripped outcome (the criterion) to the out-
come of each automated method using JSC to measure the
degree of correspondence for each slice [Jaccard, 1912; Zou
et al., 2004a,b]; 4) a similar comparison of methods with the
Hausdorff distance measure [Huttenlocher et al., 1993] to
examine the degree of mismatch between the contours (or
shape) of two image sets; and 5) the comparison of the
sensitivity and specificity of all methods (including both
manual sets) derived from an Expectation-Maximization
(EM) algorithm [STAPLE, Warfield et al., 2004; Zou et al.,
2004b], which provides a maximum likelihood estimate of
the underlying brain prototype inferred from the results of
all skull-stripping methods.

Jaccard Similarity Comparison.

The JSC is formulated as:

JSC(A,B) � (A�B)/(A�B)
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where A is the area of brain region of the manually skull-
stripped image slice (criterion) and B is the area of brain
region of the corresponding image slice skull stripped using
the compared skull-stripping tool [Jaccard, 1912; Zou et al.,
2004a,b]. A JSC of 1.0 represents complete overlap or agree-
ment, whereas an index of 0.0 represents no overlap. At both
extremes, this JSC is similar to the Dice similarity coefficient,
which is a simple transform. First, JSC was employed to
describe the overall level of similarity between the two
manual outcomes by expressing the overlap between each
pair of slices. Second, the results of the four automated
skull-stripping tools (with and without bias correction) were
compared to the manually stripped slices.

Hausdorff distance image comparison.

We applied Hausdorff distance measures [Huttenlocher et
al., 1993] to examine the degree of mismatch between the
contours of two image sets (A and B). This measure reflects
the distance of the point in A that is farthest from any point
of B and vice versa. Given two finite point sets A � {a1, …,
ap} and B � {b1, …, bq}, where A and B are sets of points on
the contour of a skull-stripped brain slice. The Hausdorff
distance is defined as:

H(A,B)�max(h(A,B),h(B,A))

The directed Hausdorff distance from A to B h(A,B) is
defined as:

h(A,B)�max
a�A

min
b�B

�a�b�

Here the norm is L2 or Euclidean norm, where h(A,B) and
h(B,A) are asymmetrical distances.

Since Hausdorff distance measures the extent to which
each point of a particular image point set lies near some
point of another image point set, it can be used to determine
the degree of resemblance between two objects superim-
posed on one another. For the Hausdorff distance d, every
point of A must be within a distance d of some point of B and
vice versa. The maximum displacement for the Hausdorff
measure is calculated for each image comparison, A and B.
For example, in Figure 4 (right panels), the distance from
each point on the yellow contour (A: manual strip) to each
point on the red contour (B: automated strip) is calculated.
In our estimation of the Hausdorff distance, we adjusted the
calculations to exclude outliers; if only a very few points are
far from average, these extreme distances would not mean-
ingfully represent common method performance. That is,
the distance measure would not be representative of the
common features resulting from automated application. In
the present application of the Hausdorff measure, the algo-
rithm first orders the boundary points distances (in ascend-
ing order). The 25th and 75th percentiles are then estimated
for image A and B and the interquartile range (IQR) for
image A and B is estimated. The IQR is equal to the bound-

ary point distance at the 75th percentile less the boundary
point distance at the 25th percentile. The present comparison
utilized the upper inner fence as defined by the boundary
point distance at the 75th percentile plus 1.5*IQR [Tukey,
1977]. This fence is used as a more robust normal outlier
boundary than maximum distance in Hausdorff calculations
yielding a modified Hausdorff measure likely to be less
sensitive to measurement error.

Expectation-maximization (EM) comparison.

Warfield et al. [2004] developed an EM algorithm, named
STAPLE, for computing a probabilistic estimate of the
ground-truth segmentation from a group of expert segmen-
tations, and a simultaneous measure of the quality of each
expert. As we applied their algorithm, this measure is a
maximum likelihood estimate of the underlying agreement
among all of the skull-stripping methods (two manual plus
four automated both with and without bias correction). The
underlying agreement is represented by an unobserved or
hidden skull-stripped prototype that divides all voxels into
brain or nonbrain sets, a hidden, binary ground truth seg-
mentation.

The iterative log-likelihood maximization algorithm esti-
mates specificity and sensitivity parameters given a priori
probabilities of hidden binary ground truth segmentation
and initial estimates of specificity and sensitivity. The sen-
sitivity of an expert j expressed as a proportion pj, where
({pj} � [0,1]), is the relative frequency of an expert decision
that a voxel belongs to the brain region when the ground
truth for that voxel also indicates the same decision. The
specificity of an expert j expressed as a proportion qj, where
({qj} � [0,1]), is the relative frequency of an expert decision
that a voxel does not belong to the brain region when the
ground truth for that voxel also indicates the same decision.
The a priori probabilities for all the voxels for each slice of
each subject tested are set to 0.5, indicating no initial knowl-
edge about ground truth. The initial estimates for sensitivity
and specificity are all set to 0.9. The termination criterion for
convergence set the root mean square error to � 0.005.

Statistical summary.

We employed mixed model analyses with the conven-
tional alpha level of 0.05 for a significant statistical effect.
Partial eta-squared (�2) values are provided as an estimate
of effect size. Between-subjects effects were examined for
Image Set (Legacy, Contemporary) and Diagnostic Group
(YNC, ENC, DEPR, and AD). Univariate within-subjects
repeated measures effects were examined for Slice (Slices 1
through 6 as in Fig. 1), Bias Correction (with and without N3
correction), and Method (3dIntra, BET, BSE, and HWA).
These univariate analyses employed the Huynh-Feldt cor-
rection since sphericity could not be assumed; logarithmic
transforms of the same data produced similar findings. Both
within- and between-group post-hoc analyses contrasted
pairs of each condition in sequence. For example, post-hoc
analyses of Diagnostic Group included three comparisons:
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YNC vs. DEPR, DEPR vs. ENC, ENC vs. AD. To analyze
agreement between raters we performed a Slice by Image Set
by Diagnostic Group mixed design analysis of variance
(ANOVA) using JSC as the dependent variable. Investiga-
tion of the influence of study variables on the correspon-
dence of each automated method with each manual outcome
comparison required a Method by Bias Correction by Slice
by Image Set by Diagnostic Group mixed design (ANOVA)
with the JSC and the modified Hausdorff measure analyzed
as separate dependent variables. The latter ANOVA design
also was used to investigate the influence of study variables
on EM-derived sensitivity and specificity. EM analyses re-
ported herein included all four automated methods and the
two manual outcomes.

RESULTS

Statistical Comparison of
Two Manually Stripped Outcomes

When the two anatomists’ manually stripped sections
were compared, the grand mean JSC averaged across slices
was 0.938 (SE � 0.002). There were significant main effects of
Slice (F(4.5, 108.5) � 18.5, P � 0.001, partial �2 � 0.44) and
Diagnostic Group (F(3,24) � 7.2, P � 0.001, partial �2

� 0.47). Neither the effect of Image Set nor any interactions
reached significance (all P � 0.05; all partial �2 � 0.13).
Post-hoc, within-subjects contrasts suggested that the simi-
larity coefficient was lowest for the two mid-line sagittal
sections (Fig. 1, Slices 3, 4) relative to the four lateral sec-
tions; these mid-line sections were most variable between
anatomists. As predicted, contrasts for Diagnostic Group
suggested that the similarity coefficients were lower for
ENC and AD groups relative to the YNC and DEPR subjects
(F(3,24) � 7.2, P � 0.001, partial �2 � 0.47). Specifically, the
coefficients for the YNC and DEPR groups did not differ (P
� 0.05) and neither did the ENC and AD groups (P � 0.05).
The similarity coefficients for the DEPR and ENC groups,
however, were significantly different (P � 0.001). In sum-
mary, the brain contours drawn by anatomists agreed less in
the two mesial slices and for data from the older diagnostic
groups. These conditions that were more difficult for man-
ual skull-stripping may also prove difficult for the auto-
mated methods.

Qualitative Evaluation of All Outcomes

Qualitative review of all individual results revealed that
the outcomes differed in: 1) the amount of cerebrospinal
fluid (CSF) included in the stripped volume; 2) the type of
nonbrain remaining in the stripped volume; and 3) the re-
gions and extent of brain tissue loss in the stripped volume.
All methods included internal (e.g., ventricular) CSF in the
resulting volume, which would allow future processing to
evaluate ventricular volume. HWA consistently included
external CSF in the space between brain tissue and the
external dura (subarachnoid space; HWA in Fig. 2).

The type and extent of nonbrain tissue remaining in the
stripped volumes varied across methods and the most com-
mon results are described here (Figs. 2–4). All methods
tended to leave some nonbrain tissue in the posterior fossa
(Fig. 2). As intended by developers, BSE volumes consis-
tently include the spinal cord (Fig. 2). BET tended to leave
muscle and other tissue in the mid-neck region (Figs. 2–4).
On some occasions, nonbrain included in 3dIntra results was
found in similar areas, although to a lesser extent. HWA
volumes consistently included surrounding subarachnoid
space and nonbrain dura (Figs. 2–4), occasionally including
tissue around the eyes (Fig. 2), although HWA consistently
removed nonbrain tissues in the neck regions.

The region and extent of brain tissue loss in stripped vol-
umes also varied across methods (Figs. 3, 4). HWA was sensi-
tive to retaining brain volume. On one occasion, however, the
cerebellar volume was reduced. In general, the anterior frontal
cortex, anterior temporal cortex, posterior occipital cortex, and
cerebellar areas were common locations for loss of cortical
voxels in other methods (3dIntra, BET, and BSE). The most
cortical loss on stripped volumes of the Contemporary datasets
tended to be a thin layer of brain voxels in these areas, with BSE
seeming to result in the least amount of tissue loss. In the
Legacy datasets, however, the loss of brain tissue was more
severe in some cases for these methods.

Figure 2.
Examples of automatically stripped volumes of a bias corrected,
Contemporary YNC dataset. Sagittal sections are taken near the
midline to represent extent of CSF and nonbrain tissue included in
the resulting volumes.
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Statistical Comparisons of Automated Methods

The average elapsed processing time for performing au-
tomated applications per dataset was calculated for each
automated method based on the performance across all 32
datasets. 3dIntracranial required less than 1 min (53.9 s; SD
� 10.5), BET required less than 4 min (223.1 s; SD � 60.0),
HWA required less than 8 min (473.6 s; SD � 127.8), and BSE
required on the order of 15 sec (14.2 s; SD � 0.8).

The effects of each condition (Image Set, Slice, Bias Cor-
rection, and Diagnostic Group) are described separately,
followed by a description of the Method effects and inter-
actions. Statistical results for significant findings are re-
ported for JSC (Table II), Hausdorff distance (Table III), and
EM Sensitivity and Specificity (Table IV). JSC and Hausdorff
distance analyses were completed for each anatomist sepa-
rately. Findings were similar for both anatomists unless
otherwise reported; the representative findings for Anato-
mist 1 (CC) are reported herein for simplicity. EM analyses
represent the inclusion of all four automated methods and
the two manual outcomes. All results described emphasize
the comparison of methods.

Image set.

There were no significant differences of JSC or Hausdorff
distance between the Image Sets studied (Legacy vs. Contem-
porary) when the contour of either rater was used as the
ground truth (Anatomist 1: JSC partial �2 � 0.03, Hausdorff

partial �2 � 0.12; Anatomist 2: JSC partial �2 � 0.01, Hausdorff
partial �2 � 0.10). Thus, the correspondence of each anato-
mist’s brain contour to the contours produced by the four
automated skull-stripping programs was similar for the two
Image Sets. EM analyses, however, revealed a significant effect
of Image Set for Sensitivity (Table IV); the effect did not reach
significance for Specificity (F(1,24) � 3.5, P � 0.074, partial �2 �
0.13). The Contemporary data resulted in greater sensitivity
(mean � 0.960, SE � 0.009) relative to the legacy data (mean
� 0.926, SE � 0.009). Interactions between Image Set and other
conditions are described below.

Slice (regional anatomy).

Significant main effects of Slice were found across all
measures (Tables II–IV). The effects of Slice were similar to
those found in the comparison of the two anatomists’ man-
ual skull-stripping results; that is, in general the two midline
slices (Fig. 1, Slices 3, 4) had lower similarity coefficients and
higher distance measures relative to the more lateral slices.
Slice significantly interacted with Image Set for JSC (Table II)
and measures of Sensitivity and Specificity yielded by the
EM algorithm (Table IV). Mesial slices from Legacy data
were least similar to the criterion dataset, whereas mesial
(Fig. 1, Slices 3, 4) and most lateral (Fig. 1, Slices 1, 6) slices
from Contemporary data were least similar. Specificity was
best moving from mesial to lateral slices, particularly for the
Contemporary data.

Bias correction.

There was no significant main effect of bias correction for
any of the measures (all partial �2 � 0.05), and no interac-
tions with bias correction reached significance. Although
there were some individual cases that qualitatively ap-
peared to benefit from bias correction, this effect was not
significant over any condition.

Diagnostic group.

The main effect of Diagnostic Group reached significance
for all measures (Tables II–IV). Planned contrasts supported
the hypothesis that all measures were significantly poorer
for the AD group relative to all other groups. The YNC and
DEPR groups did not differ significantly, and, unexpectedly,
neither did the DEPR and ENC groups. The JSC for Anato-
mist 2 resulted in a significant Diagnostic Group by Slice by
Image Set interaction (Table II), although this interaction did
not reach significance for Anatomist 1 (F(14.8, 118.2) � 1.5, P
� 0.12, partial �2 � 0.16). This 3-way interaction is difficult
to interpret, but it appears to suggest that the Contemporary
data may result in better performance for the mesial slices
for the older Diagnostic Groups. Diagnostic Group did not
significantly interact with Image Set, Slice, or Bias Correction
for any other measures. Interactions involving Method are
examined below.

Figure 3.
Examples of automatically stripped volumes of a bias corrected,
Legacy YNC dataset. Sagittal sections are lateral to the midline and
represent the extent of brain tissue retained or excluded from the
resulting volumes.
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Figure 4.
Examples of outcomes for a bias corrected, Contemporary ENC
dataset. Each pair of figures includes solid color overlays on the
stripped image (left) and the contours of these shapes (right). Left,
Yellow � regions included in the manual but not in the automatic

outcome. Blue � regions included in the automatic but not in the
manual outcome. Right, Yellow � contour of manually-stripped
dataset. Red � contour of automatically stripped dataset.

TABLE II. Statistically significant main effects and interactions for Jaccard similarity coefficient (JSC) analyses

F P Partial �2

Anatomist 1
Slice F(4.9,118.2) � 12.2 �0.001a 0.34
Slice by image set F(4.9,118.2) � 9.2 �0.001a 0.28
Diagnostic group F(3,24) � 7.9 0.001b 0.50
Method F(3,72) � 3.4 0.023d 0.12
Method by slice F(4.3,103.2) � 8.1 �0.001a 0.25
Method by diagnostic group F(9,72) � 2.8 0.007c 0.26

Anatomist 2
Slice F(4.8,114.0) � 13.3 �0.001a 0.36
Slice by image set F(4.8,114.0) � 11.8 �0.001a 0.33
Diagnostic group F(3,24) � 8.6 �0.001a 0.52
Diagnostic group by slice by image set F(14.3,114.0) � 2.1 0.017d 0.21
Method F(3,72) � 3.3 0.026d 0.12
Method by slice F(4.5,107.1) � 8.0 �0.001a 0.25
Method by slice by image set F(4.5,107.1) � 2.8 0.023d 0.11
Method by diagnostic group F(9,72) � 3.0 0.004b 0.27

Automated methods were compared to manually stripped slices for each anatomist. Boldface type indicates that findings were significant
for only one anatomist.
a P � 0.001; bP � 0.005; cP � 0.01; dP � 0.05.
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Automated methods.

Direct evaluation of the four automated skull-stripping
methods (Table V) revealed consistent differences for JSC
(Table II; analyses compared automated performance to
manual method) and EM Sensitivity (Table IV; analyses
included all automated and manual methods) measures (but
not EM Specificity or Hausdorff indices). Post-hoc JSC con-
trasts for Method indicated that 3dIntra and BET did not
differ significantly and neither did BSE and HWA. BET and
BSE, however, were significantly different (P � 0.003). That
is, BSE and HWA produced higher similarity measures than
3dIntra and BET for both anatomists (Table V). With respect
to Sensitivity, 3dIntra, BET, and BSE did not differ signifi-
cantly, whereas HWA was significantly more sensitive than
BSE (P � 0.001). Thus, HWA was significantly more sensi-
tive than all other automated methods (Table V).

For the measure of Sensitivity, Method significantly inter-
acted with Image Set (Table IV). The performance of BET
was greatly affected by Image Set; BET was least sensitive on
the Legacy data with respect to all other methods, but per-
formed better with the Contemporary data. No significant
interactions were observed between Image Set and auto-

mated Method for other measures. The nonsignificant inter-
action of Image Set with Method accounted for less than 6%
of the observed variation of JSC or Hausdorff distance.

There were significant Method by Slice interactions for the
JSC (Table II) and EM Sensitivity (Table IV). In general, BSE
and HWA performed relatively similarly across slices with
the mesial slices least similar; 3dIntra and BET, both with
lower overall similarity coefficients, performed differently
across slices. 3dIntra performed most poorly on Slice 1 with
an otherwise similar pattern to BSE and HWA. BET, in
contrast, performed best on Slice 1 and then at a slightly
lower level across Slices 2–6. With respect to Sensitivity,
HWA performed consistently high across all slices. Al-
though less sensitive, BSE was also fairly consistent across
slices, with the exception of poor performance on Slice 1.
3dIntra also was least sensitive on Slice 1. BET was least
sensitive for the two mesial slices (Slices 3 and 4).

For the JSC, the Method by Slice by Image Set interaction
was significant for Anatomist 2 (Table II), although this
interaction did not reach significance for Anatomist 1 (P
� 0.11, partial �2 � 0.08). This 3-way interaction, however,
was also significant for EM Sensitivity (Table IV).

TABLE III. Statistically significant main effects and interactions for Hausdorff distance analyses

F P Partial �2

Anatomist 1
Slice F(4.1,98.4) � 23.0 �0.001a .49
Diagnostic group F(3,24) � 4.8 0.010c .37
Method by diagnostic group F(9.0,72.0) � 2.1 0.037c .21

Anatomist 2
Slice F(3.9,93.2) � 24.1 �0.001a .50
Diagnostic group F(3,24) � 4.8 0.009b .38
Method by diagnostic group F(9.0,72.0) � 2.1 0.037c .21

Automated methods were compared to manually stripped slices for each anatomist.
a P � 0.001; bP � 0.01; cP � 0.05.

TABLE IV. Statistically significant main effects and interactions for EM analyses of Sensitivity and Specificity

F P Partial �2

Sensitivity
Slice F(3.1,73.7) � 5.4 0.002b 0.18
Image set F(1,24) � 8.3 0.008c 0.26
Slice by image set F(3.1,73.7) � 6.3 0.001b 0.21
Diagnostic group F(3,24) � 5.1 0.007b 0.39
Method F(2.6,63.0) � 12.1 �0.001a 0.33
Method by image set F(2.6,63.0) � 5.0 0.005c 0.17
Method by slice F(3.3,78.1) � 4.3 0.006c 0.15
Method by image set by slice F(3.3,78.1) � 2.9 0.04d 0.11

Specificity
Slice F(3.5,83.7) � 40.1 �0.001a 0.63
Slice by image set F(3.5,83.7) � 3.3 0.018d 0.12
Diagnostic group F(3,24) � 3.3 0.036d 0.30
Method by slice F(6.6,159.1) � 10.7 �0.001a 0.31
Method by diagnostic group F(8.1,64.5) � 2.6 0.017d 0.24
Method by diagnostic group by slice F(20.0,159.1) � 1.7 0.032d 0.18

All methods, including manual stripping, were treated similarly.
a P � 0.001; bP � 0.005; cP � 0.01; dP � 0.05.
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Of considerable interest, the effect of Diagnostic Group on
JSC and Hausdorff distance varied by automated skull-strip-
ping method for both anatomists (Figs. 5, 6; Tables II, III).
For EM Specificity, although there was no significant main
effect of Method (partial �2 � 0.039; Table V), there was a
significant interaction between Method and Diagnostic
Group (Table IV; Fig. 7). EM Sensitivity, in contrast, did not
significantly interact with Diagnostic Group, although the
main effects of Diagnostic Group and Method were both
significant (Table IV; Fig. 8). Of critical interest, the post-hoc
analyses of the interactions between Method and Diagnostic
Group revealed that when compared with BSE and HWA,
3dIntra had significantly lower similarity and larger dis-
tance coefficients for the AD data, and BET had lower sim-
ilarity and larger distance coefficients for the ENC and AD
data (Figs. 5, 6). Thus, BSE and HWA were more effective at
finding the brain contour for the AD group, the most chal-
lenging group to skull strip. However, 3dIntra was most
effective for young normal controls. With respect to EM
Specificity (Fig. 7), 3dIntra demonstrated significantly worse
performance in AD relative to other groups, and BSE tended
to perform best across all diagnostic groups (Fig. 7). In

summary, the HWA algorithm most successfully retained
“true” brain tissue even within the AD group (Table V; Fig.
8), whereas BSE resulted in the best specificity across all
conditions (Fig. 7).

DISCUSSION

This collaborative study provides guidance to end-users
and developers of automated skull-stripping applications
and demonstrates a quantitative analysis path for the eval-
uation of morphometric analysis tools. The investigation
examined the effects of bias correction, image set, slice loca-
tion, and diagnostic group on automated skull-stripping
performance. Bias correction of field inhomogeneities
through the use of N3 [Sled et al., 1998] did not significantly
improve performance of skull-stripping methods. Given that
some individual cases of these 1.5 T data did improve with
prior bias correction, bias correction on data from higher-
field strength magnets may have a more significant effect.
Performance was, in general, better on the Contemporary
data relative to the Legacy data with respect to sensitivity,
perhaps due to improved image contrast. As predicted, me-

TABLE V. Coefficients for Jaccard similarity (JSC) and Hausdorff distance for each method as they relate to the
manually stripped slices, and expectation-maximization (EM) estimates of Sensitivity and Specificity

3dIntra BET BSE HWA

Jaccard similarity (JSC)
Anatomist 1 0.802 (0.029) 0.787 (0.014) 0.863 (0.019) 0.855 (0.015)
Anatomist 2 0.809 (0.027) 0.796 (0.014) 0.865 (0.019) 0.865 (0.015)

Hausdorff distance
Anatomist 1 26.2 (5.4) 23.1 (2.4) 20.5 (5.2) 14.7 (2.8)
Anatomist 2 24.6 (5.3) 22.2 (2.4) 19.9 (5.2) 14.6 (2.8)

Expectation–maximization (EM)
Sensitivity 0.914 (0.015) 0.925 (0.015) 0.937 (0.005) 0.996 (0.001)
Specificity 0.953 (0.017) 0.964 (0.003) 0.975 (0.010) 0.951 (0.008)

Values are expressed as mean (standard error).
Each mean represents method performance averaged across all other conditions. Data from both anatomists is presented where relevant.
Main effect of method was significant for JSC and EM Sensitivity.

Figure 5.
Mean (std. error bars) Jaccard similarity coefficient (JSC) for
Diagnostic Group by Method relative to the manually stripped
slices from Anatomist 1. Mean JSC for the two manual raters
(0.938) is represented by the horizontal dashed black line.

Figure 6.
Mean (std. error bars) Hausdorff distance for Diagnostic Group by
Method relative to the manually stripped slices from Anatomist 1.
Mean Hausdorff distance for the two manual raters (5.5) is rep-
resented by the horizontal dashed black line.
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sial brain slices proved the most challenging to skull-strip.
These slices included posterior fossa tissue that is often
difficult to distinguish from adjacent brain tissue, as well as
voxels containing partially volumed tissues and CSF (Figs.
2–4). Across all of our performance measures, images from
the Alzheimer’s disease (AD) group proved the most diffi-
cult to skull strip.

In general, HWA [Segonne et al., 2004] and BSE [v. 3.3,
Sandor and Leahy, 1997; Shattuck et al., 2001] were more
robust across all study conditions relative to 3dIntracranial
[Ward, 1999] and BET [Smith, 2002], although the interac-
tions between Method and other conditions warrant further
discussion. It should be noted that BSE’s final outcome
purposefully aims to fit the brain surface and includes the
spinal cord as part of the CNS, whereas HWA aims to
conservatively bound the pial surface. Consistent with a
recent study [Segonne et al., 2004], HWA was significantly
more sensitive than other methods, resulting in a conserva-
tive strip that rarely removed any brain tissue. HWA pre-
served much of the subarachnoid space, which might allow
the estimation of cranial vault volume to be incorporated
into statistical analyses controlling for individual differences
in head size. However, as with all methods’ results, the final
outcome would likely benefit from additional editing due to
the extent of remaining nonbrain tissue. BSE, in contrast,
was more specific, although some brain voxels tended to be
removed, and the final outcomes include some of the same
posterior nonbrain regions as in HWA although to a lesser
extent.

The significant interaction between Method and Diagnos-
tic Group supported the robust, general application of HWA
and BSE relative to 3dIntracranial and BET. However, for
the Young Control (YNC) group, 3dIntracranial produced
results that were the most similar to the criterion dataset and
tended to be the most specific. As measured by inclusion of
nonbrain tissue (false-positives) and exclusion of brain tis-
sue (false-negatives), 3dIntracranial performed poorly on
the data from the AD group, suggesting that 3dIntracranial
may be an appropriate tool particularly for younger popu-
lations. BET also performed less well for both the ENC and
AD data, including neck regions of nonbrain tissue, as in a

recent study [Boesen et al., 2004], and removing some ante-
rior and posterior cortical tissue. BSE and HWA, in contrast,
were less affected by diagnostic group, despite lower simi-
larity coefficients on the YNC data relative to 3dIntracranial.
In short, 3dIntracranial performed extremely well when
working with young subject data; however, in the study of
older subjects BSE and HWA appeared more promising. The
HWA algorithm demonstrated the highest sensitivity, most
successfully retaining brain tissue even within the AD
group, and BSE demonstrated the best specificity in the
older groups.

The performance of BSE relative to BET was not easily
predictable based on previous studies of automated appli-
cation of these methods [Boesen et al., 2004; Lee et al., 2003;
Smith, 2002]. Although Lee et al. [2003] and Smith [2002]
reported that BET performed better than BSE, Segonne et al.
[2004] suggested that BSE may provide superior results.
Boesen et al.’s [2004] findings suggested that the relative
performance of BET and BSE may be influenced by image
quality. The present study differed from previous work in
that we employed a more recent version of the BSE software
(v. 3.3), the parameters employed were determined by the
expert developers, and anisotropic filtering was included in
the BSE path of the present study, a processing step not
always included in other studies [e.g., Smith, 2002].

Our study focused only on T1-weighted image sets and
was limited to rectangular k-space trajectories. Method per-
formance on other types of image sets may be quite differ-
ent. As with 3dIntracranial and BSE, BET has the ability to
strip other types of image sets and might perform especially
well on T2- or proton-density-weighted image sets not ex-
amined herein [Smith, 2002]. Our preliminary work suggests
that there are significant challenges to the application of
these methods to spiral trajectories. In addition, the findings
reported here are limited to the specific groups studied.
Given our findings in AD, the characteristics of the AD data
that influenced the performance of these automated meth-
ods should be investigated further, and these algorithms
tested on other neurodegenerative groups. Finally, this
study provides no information about region-growing algo-
rithms and other hybrid approaches, which performed well

Figure 7.
Mean Specificity from the Expectation-Maximization (EM) analysis
by Diagnostic Group for each Method.

Figure 8.
Mean Sensitivity from the Expectation-Maximization (EM) analysis
by Diagnostic Group for each Method.

� Evaluation of Skull-Stripping Methods �

� 111 �



in previous studies of skull-stripping methods [e.g., Boesen
et al., 2004; Lee et al., 2003].

The comprehensive analysis path employed in the present
study provides several quantitative measures that may be
useful to future studies of image processing. The initial JSC
analyses [Jaccard, 1912; Zou et al., 2004a,b] are similar to
previously employed statistics. These provided general in-
formation on the amount of overlap between two outcomes,
although there was no specific information as to the sensi-
tivity, specificity, or shape differences that may be addition-
ally informative. Our estimation of the Hausdorff distance
measure [Huttenlocher et al., 1993] provided information on
shape differences between outcomes, although in the
present study the results were similar to the Jaccard find-
ings. When this measure is small the shapes are similar and
almost exactly overlap. When this measure increases the
shapes may be quite dissimilar, despite overlap. Most im-
portant to the present work, the use of the Expectation-
Maximization (EM) algorithm [Warfield et al., 2004; Zou et
al., 2004b] provided both sensitivity and specificity indices
for the methods examined, including the manual outcomes,
relative to the overall ground truth. This additional infor-
mation was critical to informing differences between BSE, a
more specific method, and HWA, a more sensitive method,
both of which performed similarly well across diagnostic
groups on the other similarity measures.

CONCLUSIONS

Evidence suggests that HWA may remove substantial
nonbrain tissue from the difficult face and neck regions,
carefully preserving the brain, although the outcome often
would benefit from further stripping of other nonbrain re-
gions; BSE, in contrast, more clearly reaches the surface of
the brain, although, in some cases, some brain tissue may be
removed. 3dIntracranial and BET often left large nonbrain
regions and/or removed some brain regions, particularly in
the older populations. Based on the present findings, further
investigations may pursue a skull-stripping approach that
combines methods, either sequentially or in parallel. For
example, HWA simplifies the problem of stripping away
nonbrain while proving to be quite sensitive, and following
the application of HWA with BSE may improve the speci-
ficity of the final result. Another approach presented re-
cently [Rex et al., 2003] pursued the possibility of combining
methods within a single meta-algorithm to optimize results.
Again, the present study aimed to examine the automated
performance of available skull-stripping methods only on
T1-weighted image sets. All methods examined in the
present study permit users to manually optimize parame-
ters, which may improve performance over values em-
ployed herein. These parameter choices may vary depend-
ing on the region of interest to the investigators, as some
regions may be more susceptible to tissue loss with some
methods. Furthermore, BSE, BET, and 3dIntracranial are
applicable to some other types of image sets (e.g., T2-
weighted), and thus might be significantly advantageous
under such circumstances. We hope this study will guide

end-users toward a method appropriate to their datasets,
improve efficiency of processing for large, multisite neuro-
imaging studies, and provide insight to the developers for
future work.
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