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Abstract
Background: We introduce a QTL-mapping algorithm based on Statistical Machine Learning
(SML) that is conceptually quite different to existing methods as there is a strong focus on
generalisation ability. Our approach combines ridge regression, recursive feature elimination, and
estimation of generalisation performance and marker effects using bootstrap resampling. Model
performance and marker effects are determined using independent testing samples (individuals),
thus providing better estimates. We compare the performance of SML against Composite Interval
Mapping (CIM), Bayesian Interval Mapping (BIM) and single Marker Regression (MR) on synthetic
datasets and a multi-trait and multi-environment dataset of the progeny for a cross between two
barley cultivars.

Results: In an analysis of the synthetic datasets, SML accurately predicted the number of QTL
underlying a trait while BIM tended to underestimate the number of QTL. The QTL identified by
SML for the barley dataset broadly coincided with known QTL locations. SML reported
approximately half of the QTL reported by either CIM or MR, not unexpected given that neither
CIM nor MR incorporates independent testing. The latter makes these two methods susceptible
to producing overly optimistic estimates of QTL effects, as we demonstrate for MR. The QTL
resolution (peak definition) afforded by SML was consistently superior to MR, CIM and BIM, with
QTL detection power similar to BIM. The precision of SML was underscored by repeatedly
identifying, at ≤ 1-cM precision, three QTL for four partially related traits (heading date, plant
height, lodging and yield). The set of QTL obtained using a 'raw' and a 'curated' version of the same
genotypic dataset were more similar to each other for SML than for CIM or MR.

Conclusion: The SML algorithm produces better estimates of QTL effects because it eliminates
the optimistic bias in the predictive performance of other QTL methods. It produces narrower
peaks than other methods (except BIM) and hence identifies QTL with greater precision. It is more
robust to genotyping and linkage mapping errors, and identifies markers linked to QTL in the
absence of a genetic map.
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Background
The notion that DNA polymorphism explains the pheno-
typic diversity of living organisms has been the driving
force behind the Human Genome Project and widespread
investment in plant and animal genomics. Over the last
30 years, many examples of causal effects on phenotypes
arising from DNA sequence variation have been reported.
Finding associations between DNA variation and pheno-
types is straightforward for 'simple' traits that are inher-
ited in a Mendelian fashion as monogenic characters. Yet,
most of the economically important phenotypic variation
(e.g. crop yield and its components) is inherited through
a number of Quantitative Trait Loci (QTL) with different
magnitudes of effect and complex interactions among
themselves and with the environment [1].

QTL can be identified through their genetic linkage with
molecular markers. In a typical experiment, the progeny
of an experimental population are simultaneously ana-
lysed for their genetic makeup (molecular markers) and
one or more phenotypic traits of interest. The marker data
are used to build a genetic map, which is a pre-requisite
for the majority of QTL-detection methods [2,3]. The sim-
plest method to identify markers linked to QTL is single
Marker Regression (MR), which fits a linear model to each
marker using the trait data. Simple Interval Mapping
(SIM) disentangles QTL effects from the confounding
effect of linkage distance between markers and QTL by
regressing phenotypic data on the genotypic information
for marker intervals rather than the markers themselves
[4]. QTL are detected by 'stepping' through the whole
genome to generate a profile of the proportion of pheno-
typic variance explained or the logarithm-of-odds ratio
(LOD score) in favour of a QTL.

The Composite Interval Mapping (CIM) approach refines
the SIM algorithm by incorporating background markers
as cofactors into a multiple regression model [5]. In this
way, variation due to other QTL can be partly accounted
for. The CIM approach was further extended by using mul-
tiple marker intervals to fit multi-QTL models to the trait
data and selecting the 'best' model with a stepwise for-
ward and backward selection procedure (Multiple Interval
Mapping; MIM) [6]. Other approaches such as Bayesian
Interval Mapping (BIM) [7] approach the problem by
applying Bayesian inference over the whole genome using
priors designed to produce sparse models.

Here we explore a conceptually quite different QTL-map-
ping approach that focuses on generalisation ability. The
approach is based on Statistical Machine Learning (SML)
and differs from other methods in that it estimates the
generalisation performance of a QTL model by splitting
the data into independent training and testing subsets
that are used for model induction and evaluation, respec-

tively (Figure 1). Resampling data into training and test-
ing subsets is quite common in microarray analyses,
particularly in the context of cancer genomics [8,9].

Our QTL detection method determines the contribution
of each marker to the model performance during the
recursive feature elimination (RFE) procedure. First, a lin-
ear model containing every marker is fitted to the pheno-
type. The model is then reduced in size by recursively
eliminating the least useful markers and refitting the
model until only a single marker is left, which is similar to
recursive feature elimination support vector machines
[10,11]. We assign the change in variance explained after
each elimination (measured on the test set) to the marker
that was removed. The entire process is then repeated
numerous times to derive an unbiased bootstrap estimate
of the predictive power of each marker. To generate a QTL
profile across the genome, the contributions of genetically
linked markers within a sliding map window are added.

We compare the performance of the SML algorithm with
the performance of two conventional QTL-mapping
methods (MR, CIM) and the more recently developed
BIM. For this purpose, we re-analyse a well-known multi-
trait and multi-environment dataset for a population of
doubled haploid (DH) lines derived from the F1 of a cross
between cultivars Steptoe and Morex, and study some syn-
thetic datasets.

Results and Discussion
Treatment of multi-environment data
In QTL mapping, we are primarily interested in quantify-
ing the influence of genotypic variation on phenotypes. In
practice, this is confounded by environmental variation to
differing extents depending on the trait. In this paper, we
limit our approach to mapping the genotypic component
of the traits. The interaction between QTL and environ-
ments (QTL × E), an important element influencing phe-
notypic variation of many quantitative characters, will be
addressed in a separate paper.

In order to precisely measure the genotypic component
we use data collected on genetically identical Steptoe/
Morex DH lines grown in multiple environments. We
standardise the phenotypes within each environment to a
mean of 0 and a standard deviation of 1, and then calcu-
late the mean (per phenotype and genotype) across all
environments. The scaling within environments aligns the
distributions, and the averaging provides an estimate of
the common underlying signal. The resulting increase in
QTL detection power for a whole-genome SML model
based on 548 markers is demonstrated in Figure 2; incor-
porating information from multiple environments pro-
vides an increase in the variance explained for all traits.
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The benefit from increasing the number of environments
differs between traits. This is not surprising as more envi-
ronments will provide a better estimate of the genotypic
variation, thus traits that are heavily influenced by the
environment are expected to benefit more from the inclu-
sion of more environments. The latter is seen clearly for
lodging, α-amylase, and plant height where the inclusion
of more environments produces a substantial increase in
performance over a single environment. We can therefore
use the degree of increase in variance explained as a crude
measure of environmental "susceptibility" or, conversely,
heritability of the trait. For example, heading time
appeared to be less influenced by environmental factors
(2-fold increase in variance explained) than plant height
(3.5-fold increase) and the degree of lodging (5.5-fold
increase). The performance improvement due to the

inclusion of multiple environments is, of course, accom-
panied by a decrease in the fraction of the total (multi-
environment) variance that remains after averaging the
scaled phenotypes across environments (Table 1), and
thus the latter can also be used as an estimate of environ-
mental susceptibility.

Model size and genetic complexity of traits
The SML algorithm combines Recursive Feature (marker)
Elimination (RFE) with ridge regression and bootstrap-
ping (see Methods). It starts with a whole-genome model
and progressively eliminates individual markers from the
model. When the algorithm starts removing markers with
predictive value, the predictive variance explained starts
dropping. The number of markers in the smallest model
that explains a close-to-maximum fraction of the variance

System dataflow diagramFigure 1
System dataflow diagram. Dataflow diagram (DFD) depicting the QTL analysis. Rectangles with round corners indicate 
processes, other rectangles indicate data stores, and lines indicate data flow. The left figure shows the top-level DFD, the right 
shows further detail of the 'SML analysis' process.

Top level SML analysis
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(the 'optimal model') can therefore be used as an indica-
tor of the genetic complexity of a trait.

Figure 3 displays the performance of models of varying
size obtained through recursive feature elimination. The
size of the 'optimal model' varied considerably among
different traits. For pubescent leaves, it is evident that the
optimal model contains one marker only – indeed the
locus determining the character (mPub). All additional
markers actually decrease performance as they only add
noise rather than information. This effect was also

observed for other traits such as yield (not shown). Plant
height is an example of a trait that can be accurately mod-
elled with a small number of markers, thus suggesting a
relatively low genetic complexity. Diastatic power and α-
amylase, by contrast, are traits that appear to be geneti-
cally quite complex. For example to accurately model dia-
static power, 100 markers are required, while 400 markers
are required for α-amylase. These large numbers suggest
that the genetic signal is spread out throughout the
genome, and that many markers influence (with small
individual effects) the phenotypic outcome.

To verify the accuracy of estimating the number of QTL,
we performed simulation experiments using a group of
100 artificial datasets. These datasets were simultaneously
analysed by Bayesian Interval Mapping (BIM) [12,13] for
the purpose of benchmarking our method. Each dataset
contained 1-10 QTL positioned randomly at markers
evenly spaced at 1 cM intervals across ten chromosomes of
100 cM length. As shown in Figure 4, the median differ-
ence in the number of detected QTL for SML is zero, with
a low variance. This result demonstrates that the genetic
complexity of traits can be estimated very precisely from
the performance curves given by the SML method. By con-
trast, BIM tends to underestimate the number of QTL.

Multiple environmentsFigure 2
Multiple environments. Effect of including phenotypic data from multiple environments before modelling. Along the x-axis is 
the number of environments used in the pre-processing of phenotypic data, and the y-axis is the fraction of variance explained. 
For each number of environments, all possible permutations of the available environments were tested. Each permutation was 
evaluated by a 50-permutation bootstrap of a whole-genome model fitted using ridge regression. Dotted lines are 95% confi-
dence intervals for the mean derived using the t-test.
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Table 1: Percentage of total phenotypic variance remaining after 
averaging scaled phenotypes across environments.a

Trait Variance (%)

α-Amylase 52.2
Diastatic power 74.1
Malt extract 54.0
Heading date 70.4
Plant height 64.2
Lodging 40.3
Grain protein content 45.6
Yield 22.4

a The number of environments was 6 for lodging; 9 for α-amylase, 
diastatic power, malt extract, and grain protein; and 16 for the 
remaining traits.
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Statistical validation of QTL through bootstrapping
An important estimation technique used in our method is
bootstrap resampling. Bootstrap resampling involves cre-
ating a subset of the data for training, and using the
remainder for testing (see Methods). In this way, inde-
pendent data are reserved for testing the model derived
from the training data. This approach produces less biased

estimates of the generalisation error (the predictive per-
formance of a model on data unseen during training), and
hence a better estimate of the true effect of a putative QTL
[14].

Figure 5 illustrates the bias that can occur when not using
independent DH lines for testing the predictive power of

Reduction of model sizeFigure 3
Reduction of model size. Performance of models of varying size (number of markers) for four traits: pubescent leaves, plant 
height, diastatic power, and α-amylase. The x-axis is the number of features (markers), and the y-axis is the fraction of variance 
explained, estimated using the zero bootstrap. Vertical grey lines indicate the optimal operating points. Dotted lines are 95% 
confidence intervals derived using the t-test.
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a QTL model. We used MR to detect the top QTL and esti-
mate its predictive performance, both using bootstrap
resampling and resubstitution (i.e. deriving an estimate
based on the whole dataset). For the bootstrap analysis,
200 iterations were used. Each iteration involved detect-
ing the top QTL using MR and training a single QTL linear
model on the training data, then estimating the variance
explained on the independent test data (the withheld DH
lines). In the figure, the red crosses and box plots show the
results obtained with resubstitution and bootstrap resam-
pling, respectively. For each trait except pubescence leaves,
the resubstitution estimate is overly optimistic, sitting
outside the upper quartile of the bootstrap estimate.

This result illustrates that resubstitution estimates of QTL
effects are inherently biased upward. As a consequence,
bootstrap resampling reduces the detection of spurious
QTL; QTL deemed important on the training set by chance
will not reflect the same importance when measured on
the test data. Other authors have explored resampling
techniques such as cross-validation in the context of QTL
detection and evaluation [14], and the biases that arise
when not using resampling methods have been well dem-
onstrated. Hence the use of bootstrap resampling in the
SML procedure should facilitate more robust QTL detec-
tion.

QTL identified compared to other methods
Real data
To further benchmark SML against other QTL mapping
methods, we identified QTL for nine traits using SML, sin-
gle Marker Regression (MR), Composite Interval Mapping
(CIM) and BIM. In the case of CIM we used 20 markers at
> 10 cM distance from the investigated interval to adjust
for the genome background. For BIM, the default values
specified in the R/qtlbim package were used for the priors
and sampling parameters. Table 2 shows the average
degree of correlation of the genome profiles of variance
explained (the QTL effects) among the various methods.
SML and CIM produced the most correlated results (Pear-
son's correlation coefficient r = 0.80). This is despite the
fact that SML uses marker information only, while CIM
requires the additional information of a genetic map. The
BIM profiles were less correlated with the profiles gener-
ated by other methods on average.

We next counted and compared the QTL reported by SML,
MR and CIM at a significance level of p < 0.05 (Figure 6).
BIM was not included in this detailed comparison as it is
difficult to match the frequentist null-hypothesis rejection
thresholds with the Bayes factors used with BIM. SML
reported slightly less than half the number of QTL than
MR and CIM, presumably because the bootstrap-valida-
tion step eliminated spurious QTL (see previous section);
MR, for example, reported five spurious peaks for pubes-
cent leaves, a trait known to be encoded by a single Men-
delian trait (Additional File 1). Perhaps not surprisingly,
about half of the QTL detected by either MR or CIM could
not be cross-validated by a second method. By contrast,
95% of the QTL identified by SML were also detected by
MR and/or CIM (Figure 6). These results suggest that QTL
detected by SML are more robust and hence more likely to
be 'biologically significant'.

There was a large overlap between QTL identified in this
study and previous studies of the same DH population
[15-18]. SML identified well-known major QTL for α-
amylase (chromosomes 2 H, 7 H), diastatic power (1 H, 4
H, 7 H), grain protein content (2 H, 4 H, 5 H), malt extract
(2 H, 4 H, 7 H), heading date (2 H), height (2 H, 3 H),
lodging (2 H, 3 H, 4 H) and yield (3 H) (Additional File
1) [15-17].

Figure 7 displays the profiles generated using several
methods on the heading date, height, lodging and yield
traits. The yield QTL on chromosome 3 H at a cumulative
map position of 431 cM indeed coincided closely with the
main lodging QTL (431 cM) and one of the plant-height
QTL (432 cM). Lodging is expected to affect yield, yet the
yield QTL profile produced by SML was identical, irrespec-
tive of whether or not environments where lodging was
reported were included in the analysis (data not shown).

Accuracy of genetic complexity estimatesFigure 4
Accuracy of genetic complexity estimates. Compari-
son of an analysis of 100 synthetic datasets with BIM and 
SML. The y-axis shows the difference between the true and 
estimated number of QTL.
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Hayes and colleagues suggested that the positive allele for
the yield QTL on chromosome 3 H coincided with low
lodging and height-QTL alleles from the opposite parent
[15]. These previous observations are clearly reinforced by
our results and appear to point to a locus influencing
plant height that has independent pleiotropic effects on
both lodging and yield as opposed to a causal chain (tall

plants → lodging → reduced yield). Plant height also
appeared to affect lodging via another QTL on chromo-
somes 2 H (241 cM), which coincided for the two traits.
Plant height, in turn, appeared to be partly associated with
heading date because the main QTL for these two traits
coincided precisely (chromosome 2 H; 269 cM). We con-
clude that the SML-QTL algorithm confirms and extends
previously hypothesised relationships among these traits.
Clearly, the resolution of the QTL profiles generated by
SML facilitates the genetic dissection of traits into physio-
logical or phenological components.

Synthetic data
We also compared the genome profiles of variance
explained (the QTL effects) derived from the 100 synthetic
datasets discussed earlier, in order to benchmark SML
against BIM and MR. These methods were selected to rep-
resent the two extremes of algorithmic complexity of exist-
ing QTL mapping methods. To summarise these profiles
and give an idea of overall performance of each method,

Whole-dataset biasFigure 5
Whole-dataset bias. Demonstration of the optimistic bias that arises when measuring predictive performance on training 
data. For each trait, the optimal marker was selected using MR, either on the entire dataset (red crosses) or within a 200-per-
mutation zero bootstrap environment (box plots).
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Table 2: Correlation between genome profiles of variance 
explained obtained with different QTL-mapping methods.a

Methodb SML MR CIM BIM

MR 0.65 ± 0.04 -
CIM 0.80 ± 0.09 0.72 ± 0.15 -
BIM 0.48 ± 0.13 0.46 ± 0.15 0.44 ± 0.14 -

a The values given are means ± SD across the nine traits investigated 
in this study.
b QTL-detection methods were: SML, Statistical Machine Learning; 
MR, single Marker Regression; CIM, Composite Interval Mapping with 
20 background markers at > 10 cM distance from the tested interval, 
and BIM, Bayesian Interval Mapping.
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we considered each dataset to be a binary classification
problem – for each marker, classify it as a QTL or not a
QTL. Such a binary classification can be accomplished by
choosing a threshold and classifying markers exceeding
this threshold as linked to QTL. However, as the threshold
affects the trade-off between type-I and type-II errors, we
used the Area under the Receiver Operating Characteristic
(AROC) [19] to measure the performance. The AROC is
an order statistic equal to the probability of correctly
ordering pairs from different classes (see "QTL classifica-
tion performance" section in Methods).

Figure 8 summarises this experiment in the form of a box
plot. The results demonstrate that MR performs worse
than BIM and SML – as expected – with a lower median
and large variance. BIM achieved a high median perform-
ance, but had a larger variance than SML. Though the BIM
median was higher, the difference between the means of
SML and BIM was not significant (p = 0.499). We con-
clude that both methods are similar with respect to locat-
ing QTL.

Finally, we examined a single synthetic dataset comprising
of a 2,000 cM-long 'chromosome' that contained 20 ran-
domly positioned QTL of random strength. Figure 9
shows the smoothed profiles (5 cM averaging window for
BIM and 5 cM summing window for SML) of variance

explained obtained using BIM and SML (See Additional
File 2). Here it is clear that SML provides better estimates
of QTL strength – non-QTL markers are assigned low var-
iance explained and the estimates at QTL markers are not
overly optimistic. The lack of a bootstrapping step during
which experimental units (plants) are resampled presum-
ably accounts for the upward bias of BIM (see also section
entitled "Statistical validation of QTL through bootstrap-
ping"). One may claim that SML is underestimating the
variance, however after applying the suggested 5 cM sum-
ming window the estimates are improved.

It is important to emphasize that the amount of variance
explained supportable by the data will be less than the theo-
retical variance explained shown in red due to small sam-
ple size (100 samples with 2001 features) and noise.
Measuring the AROC on both variance explained profiles
gives 0.83 for SML and 0.78 for BIM, indicating the SML
peaks are better aligned with QTL and more distinct than
the BIM peaks.

QTL resolution
The precision with which a QTL can be mapped is impor-
tant in the context of marker-assisted selection and gene
cloning in particular. Narrow QTL peaks are also impor-
tant for distinguishing closely linked QTL (or genes)
affecting the trait. Figures 7 and 9 demonstrate that SML
consistently generated narrower and better defined QTL
signals than MR, CIM and BIM. It should be noted that we
used quite aggressive settings for CIM to produce narrow
QTL peaks (background markers at > 10 cM) [5]. To eval-
uate the precision of SML, we investigated the centromeric
region on chromosome 7 H flanked by markers Amy2 (64
cM) and Brz (95.2 cM) (Additional File 3). This region
contains several overlapping QTL for malting-quality
traits, including malt extract, α-amylase and diastatic
power [15,18].

It had been speculated that one of the two α-amylase QTL
could be attributed to Amy2, a structural gene encoding
low-pI α-amylase [15]. The resolution afforded by conven-
tional QTL-mapping methods, however, was insufficient
to settle this issue. The CIM analysis in this study also
reported a broad peak on chromosome 7 H. The QTL pro-
file generated by SML, by contrast, showed two distinct
peaks (Figure 10; Additional File 1). One of the two peaks
was at 4.6-cM distance from the Amy2 locus (the other was
further away). Given that various partially related traits
mapped to identical QTL with less than 1-cM precision
(Figure 7), a 4.6-cM distance would suggest the structural
gene and the QTL are not identical. This result is indeed
consistent with a fine-mapping study of this region that
identified recombinants between Amy2 and the QTL [18]
and hence underscores the high resolution afforded by
SML.

Cross-validation of QTLFigure 6
Cross-validation of QTL. Overlaps among QTL detected 
by SML, MR and CIM at a p < 0.05 level. QTL in common 
between each pair of methods were identified as described in 
the section entitled 'Comparisons between QTL-detection 
methods and map versions' in Methods. The reported num-
bers are the sums across all nine traits investigated in this 
study.
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Comparison of different QTL methodsFigure 7
Comparison of different QTL methods. Genome-wide QTL profiles for four traits generated by SML, MR, CIM and BIM. 
A 5 cM averaging window was applied to the BIM profile for plotting. Horizontal dotted lines are p < 0.05 thresholds for SML. 
The plots are based on the allele calls and genotypes underlying the 'raw' version of the linkage map (see section entitled 
'Genetic-map construction' in Methods).
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Conventional methods map QTL with limited precision,
particularly if the fraction of the variance explained by a
QTL is low [20]. In CIM, the width of QTL peaks can be
reduced by using more closely linked markers for genetic-
background adjustment. This approach, however,
decreases the statistical power of the method [5] and relies
on an ad-hoc cM-distance threshold. BIM provides a simi-
lar degree of resolution as SML but appears to overesti-
mate QTL effects to an even larger extent than CIM, and
reports QTL peaks not supported by the other methods
(Figure 10).

By contrast, SML generates unbiased QTL models and
increases QTL definition by shrinking the size of the mod-
els through recursive marker elimination and apportion-
ing variance to individual markers based on nested
models. Individual markers are evaluated in the context of
other markers; so if multiple markers contain a similar

level of information then the (largely) superfluous mark-
ers will be removed. The remaining marker(s) will still
explain most of the variance, while the variance attributed
to the superfluous markers will be small, thus resulting in
well-defined QTL peaks.

Robustness to genotyping and linkage-mapping errors
Genotyping errors affect the accuracy of the marker order
on a genetic map and hence the performance of QTL-
detection methods that require a linkage map. We com-
pared the QTL profiles produced with SML, CIM and MR
using two different genotypic datasets: the dataset under-
lying a 'raw' version of the Steptoe/Morex map (0.4%
potential genotyping errors; 97.0% call rate) and the data-
set corresponding to a 'curated', re-optimised version of
the map (potential genotyping errors removed; 99.6% call
rate). Table 3 presents an overview of this comparison.
The QTL profiles were highly correlated for MR, less corre-

QTL profile accuracy on simulated dataFigure 8
QTL profile accuracy on simulated data. Accuracy of different methods of classifying individual markers as linked to syn-
thetic QTL on 100 simulated datasets. Results of genome profiles obtained using BIM, SML, and MR on 100 simulated datasets. 
The y-axis here is the Area under the Receiver Operating Characteristic (AROC). The 0.5 level indicates random performance 
and 1 indicates perfect performance.
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SML and BIM genome profiles on synthetic dataFigure 9
SML and BIM genome profiles on synthetic data. Estimated QTL effects using BIM and SML for a single synthetic 'chro-
mosome' of 2,000 cM length with 20 simulated QTL. QTL were positioned randomly with random strength. Red lines indicate 
true QTL locations, with height denoting strength. BIM profile smoothed using a 5 cM averaging window, and SML profile 
smoothed using a 5 cM summing window.

SML

V
a
ri

a
n
c
e
 e

x
p
la

in
e
d (b

o
o
ts

tr
a
p
p
e
d
 e

st
im

a
te

)

0.0

0.1

0.2

0.3

0.4

True

Modelled

BIM

'Chromosome' position (cM)

0 500 1000 1500 2000

0.0

0.1

0.2

0.3

0.4

(n
o
n
-b

o
o
ts

tr
a
p
p
e
d
 e

st
im

a
te

)



BMC Genetics 2008, 9:35 http://www.biomedcentral.com/1471-2156/9/35
lated for SML and the least correlated for CIM. Despite the
high correlated QTL profiles, only 67% of more than 80
QTL identified with MR were consistent between the two
map versions. The between-map consistency of the QTL
detected with CIM (approximately 80) was even lower
(64%).

As a result of the bootstrap-validation step, SML reported
less than half of the QTL identified by other methods (see

section entitled Statistical validation of QTL through boot-
strapping above). However, 81% of these QTL were con-
sistent between map versions. In contrast to CIM, the SML
method can function independently of a genetic map. We
only used the map for smoothing and conveniently plot-
ting the results. An erroneous marker order in a linkage
map, therefore, affects SML only marginally during the
final smoothing/plotting step.

Table 3: Consistency between QTL detected with 'raw' and 'curated' genotypic data.

Total number of QTL detected (p < 0.05)

Methoda Correlation between QTL profilesb Raw dataset Curated dataset Overlapc

SML 0.895 ± 0.085 38 34 29 (81%)
MR 0.998 ± 0.002 86 84 57 (67%)
CIM 0.887 ± 0.128 83 86 57 (67%)

a SML, Statistical Machine Learning; MR, single Marker Regression; CIM, Composite Interval Mapping with 20 background markers at > 10 cM 
distance from the tested interval.
b QTL profiles are whole-genome plots of the fraction of variance explained vs. genome position similar to those displayed in Figures 6-8. The values 
reported are means ± SD across the nine traits investigated in this study.
cThe percentage overlap was computed by division by the average number of QTL detected with the two datasets.

QTL for α-amylase on chromosome 7 HFigure 10
QTL for α-amylase on chromosome 7 H. QTL profiles produced with SML, CIM and BIM. The positions of the structural 
α-amylase gene (Amy2) and the maximum of the SML QTL peak are indicated by vertical dotted lines. A 5 cM averaging win-
dow was applied to the BIM profile for plotting. 'Significant peaks' (p < 0.05 for SML and CIM; 2log BF > 2.2 for BIM) are high-
lighted by asterisks. The plot is based on the allele calls and genotypes underlying the 'raw' version of the linkage map (see 
section entitled 'Genetic-map construction' in Methods).
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Map curation not only affected QTL detection but also the
estimation of QTL effects. Figure 11 displays a between-
map comparison for diastatic power, one of the geneti-
cally more complex traits. In the case of SML, the variance
explained by QTL was consistent between the two data-
sets. CIM was less consistent. For example, map curation
reduced the explanatory power of the most important
CIM QTL on chromosome 7H from 25% to 10% of vari-
ance explained (Figure 11). We conclude from these
results that SML is more robust to genotyping and linkage-
mapping errors than both MR and CIM.

Interestingly, the quality of the "crude" genotyping data
set used in the analysis reported here is lower than that of
a typical dataset produced by a standard DArT assay (see
the 'Genotypic data' section in Methods) but arguably

higher than that of a typical dataset generated with
(semi)manually scored markers (AFLP or SSR). From this
it follows that:

1. 'Standard' QTL mapping approaches (like CIM), when
performed on genotyping datasets obtained with gel-
based marker technologies, may produce inconsistent
marker/trait associations; and

2. The SML approach is likely to perform well in detecting
and estimating QTL effects when using marker data with a
quality similar to that of a standard DArT assay, with neg-
ligible improvement afforded by either replicating DArT
assays or employing technically more complex and costly
SNP genotyping platform(s).

Robustness to genotyping and linkage-mapping errorsFigure 11
Robustness to genotyping and linkage-mapping errors. Effect of map curation on QTL for diastatic power detected by 
SML and CIM. In the case of CIM, 20 markers at > 10 cM distance from the tested interval were used to adjust for the genetic 
background. Statistically significant peaks (p < 0.05) are labelled with asterisks.
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Conclusion
The QTL identified with SML are broadly consistent with
those detected by other methods. Yet the SML algorithm
offers some advantages over QTL methods such as MR,
CIM and BIM. SML produces narrower peaks than MR and
CIM and hence identifies QTL with greater precision. BIM
generates similarly narrow peaks as SML, but unlike SML
seems to underestimate the genetic complexity of traits
and overestimate the QTL effects on synthetic data.
Because of the use of bootstrap resampling, SML avoids
the optimistic bias in predictive performance (% variance
explained), which is an inherent feature of other methods.
Consequently, SML provides better estimates of the QTL
effects supportable by the data, thus reducing the false-
discovery rate.

Finally, unlike several other QTL algorithms SML does not
require a genetic map. It is therefore applicable to any spe-
cies or population. Because of this feature, SML is a poten-
tially attractive alternative for association-mapping
experiments, an idea that will be explored in a future
paper.

Methods
Barley population
Our study is based on existing data for 94 F1-derived DH
plants from a cross between barley cultivars Steptoe and
Morex [21-23]. This population has been the subject of
extensive phenotyping across a range of environments
[22].

Genotypic data
Data source
We used part of the segregation data from a high-quality
Steptoe/Morex map with more than 1,000 markers. This
map was built from RFLP, DArT and SSR markers [23],
and had approximately 0.2% potential genotyping errors.
To create a more 'typical' dataset for plant QTL studies
reported in the literature (with less markers and a higher
error rate), we selected a random subset of 464 markers
and added 84 markers with more genotyping errors. The
majority of these markers were previously rejected DArT
markers with low marker-quality scores [24]. DArT geno-
types ('A' for homozygote maternal, 'B' for homozygote
paternal) were translated into the original presence/
absence allele calls (0/1) by comparison against the
parental alleles. RFLP genotypes were converted into pres-
ence/absence allele calls by arbitrarily assigning '1' to the
maternal allele.

Allele calls (0/1) were used to identify QTL using SML and
MR. Missing allele calls were imputed with 0.5 because
the ridge regression algorithm underlying our method
works on continuous input values (see section entitled
QTL machine-learning algorithm below). Genotypes (A/B)

were used to identify QTL using the map-based CIM
approach. Missing genotypes were replaced with expected
genotypes derived from flanking markers after genetic-
map construction.

Genetic map construction
For the purpose of displaying SML results and identifying
QTL by CIM, we built a genetic map for the dataset of 548
selected markers (351 DArT, 197 RFLP). The marker order
was established with RECORD software, and the cM dis-
tances between markers were estimated using a
multipoint regression algorithm [25,26]. The resulting
'raw' map had a call rate of 97.0% and contained 0.4%
potential genotypic errors (Additional File 3). For com-
parison, we also generated a 'curated' version of the map.
Map curation comprised imputing missing genotypes
from neighbouring markers, substituting potential geno-
typing errors (LODerror > 4) [27] with missing data, re-
optimising the marker order and collapsing co-segregat-
ing markers into 'bins'. The resulting refined map had 367
bins and a call rate of 99.6% (Additional File 3). We used
both the 'raw' and the 'curated' allele calls and genotypes
to identify QTL.

Phenotypic data
Data source
The phenotypic data for nine traits, measured in up to 16
different environments, were downloaded from the
GrainGenes website [22] (Additional File 4).

Pre-processing of phenotypic data
We introduce a method strongly related to principal com-
ponent analysis. Let pij be the phenotype measurement for
plant i in environment j, nenv, nmrk, and np be the number
of environments, markers, and plants respectively. Then
the mean and standard deviation of phenotypes within
environments are given by

where sj and  are the sample standard deviation and

mean of environment j calculated across all plants i ∈
1..np. The scaled phenotypes are then given by

Finally, we can combine the estimates into a single more
robust value by calculating the mean across all environ-
ments

p n p

s n p p

j p ij

i

j p ij j

i

=

= − −

−

−

∑
∑

1

11( ) ( )

p j

p̂
pij p j

s j
ij =

−

Page 14 of 18
(page number not for citation purposes)



BMC Genetics 2008, 9:35 http://www.biomedcentral.com/1471-2156/9/35
Note that missing values can be handled during the calcu-

lation of sj and  by calculating the mean and standard

deviation over available measurements only.

These final values yi are very similar to results obtained by
projecting onto the first principal component. This can be
seen by observing that the yi provide a good linear approx-
imation to the full set pi,j. We verified this on the barley
dataset by calculating the principal component projection
and measuring the correlation with the values obtained by
the above method. The result was a mean correlation coef-
ficient of 0.99 across all traits.

Synthetic datasets
Synthetic datasets were created using the R/qtl package
[28]. All datasets were simulated backcrosses using an
additive model for the phenotype comprising of 100 indi-
viduals. Markers were positioned uniformly across the
entire genome with no missing values or genotyping
errors. The Haldane mapping function was used to con-
vert genetic distances to recombination fractions. QTL
were distributed randomly at marker positions with uni-
form probability. QTL strength (difference between
homozygous and heterozygous) was randomly assigned
with uniform probability over the interval [-5,5]. Nor-
mally distributed noise with mean 0 and variance 1 was
added.

QTL machine-learning algorithm
The QTL detection algorithm is based on a few key con-
cepts: a linear predictive model, recursive feature elimina-
tion, bootstrap resampling for estimation of model
performance and marker effects, and generation of QTL
profiles by local summation. Figure 1 (left panel) shows a
high level overview of the data flow and processing steps
involved in generating the QTL profiles. We now detail
each concept.

Linear predictive model

Underlying our whole technique is the assumption of lin-
ear dependence. We assume that contributions from
markers are additive. Let xij be the genotype of plant i at

marker j, and  be the vector consisting of all markers

from plant i. Under the linear assumption, the estimate of
yi for plant i is

where K is a set of markers, xik is the genotype of marker k

for plant i,  is the associated weight vector, and b is the

bias parameter.

The parameters  and b are estimated from the training

data using the well-known ridge regression algorithm
[29,30]. In brief, ridge regression solves the least squares
problem

where the first term is the sum of squares, the second term
is the regulariser, and λ > 0 is a tuning parameter for
adjusting the amount of regularisation. The regulariser
encodes a preference for smoother functions by shrinking
the weights towards 0 (and also each other), and gives
both a unique solution to the ill-posed minimisation
problem and increased robustness against noise. For our
QTL analyses, we set λ = 1.

Recursive feature elimination
While a model over the entire set of markers is useful for
predicting the phenotypic outcome, we wish to determine
the key markers contributing to the genetic variation of
traits. In other words, we seek a model with K of low car-
dinality (i.e. with a low number of elements in the set)
that is sufficient for accurate phenotype prediction. This
feature (marker) selection is performed by using Recursive
Feature Elimination (RFE) to train and evaluate linear
models ranging in size from all features to one feature.

RFE commences with the full model using all features and
then discards the least important feature. This process is
recursively applied until a model of desired size is reached
(we created models down to one marker). In coupling RFE
with ridge regression (RFE-RIDGE), the importance can

be estimated from the weights  = (βk). As the model is

linear and all markers have the same range, the absolute

value |βk| is an estimate of the importance of the marker

k. The kth marker with minimal |βk| is deemed the least

important and is discarded. Note that re-optimisation of

 after each discard is required as the exclusion of a fea-

ture will result in a redistribution of weights.

More precisely, let  be the model obtained at time

step t from applying ridge regression with the set of mark-
ers Mt. The initial model at time step t = 1 is fitted with all

markers M1 = {1,2,..., m}. At each time step, determine the
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least important feature as . The new set

of markers for the next time step is then Mt+1 = Mt\{ζt}.

Bootstrap resampling
To estimate the performance of models the ε-0 bootstrap
method was used [31]. As mentioned previously, this
method involves sampling the original dataset with
replacement to create a training set, and using all remain-
ing un-sampled instances as the independent test set (Fig-
ure 1, right panel). The models are then built on the
training set, with the test set reserved for the evaluation of
model performance. This process was repeated 50 times.

Evaluation of models and estimation of marker contributions

To evaluate the performance of a model we used the frac-
tion of variance explained as a criterion. Suppose we have

a model ( , b) and we wish to evaluate the variance

explained on some test set T. Then, the variance explained
is defined as

where . This measure provides an overall

estimation of the predictive performance of a given
model.

In addition to evaluating the model, a measure of the con-
tribution of individual markers is needed to locate puta-
tive QTL. Quantifying these can be done by recasting this
problem as a novelty-detection problem: we wish to
quantify the amount of additional predictive power pro-
vided by each marker given some already selected set of
markers. We measure this degree of novelty using the
models built with RFE-RIDGE. As RFE-RIDGE produces
nested subsets of selected markers, we can attribute the
change in variance explained to the marker that was
removed between two consecutive models. More pre-

cisely, let  be the

sequence of models of decreasing size, i.e.{# j | βkl = 0} >

{# j | βj(i+1) = 0}, and dl be the marker eliminated between

ml and ml+1. Then

Δr2 (dl) = r2 (ml) - r2 (ml+1)

is a measure of the novelty of a marker with respect to all
the remaining markers in the model. We expect that a key
QTL marker will be novel in this sense and result in a large
change of variance explained when dropped from the
model. The average over the bootstrap iterations provides
a robust estimate of the importance of each marker to trait

prediction. This estimate is referred to as .

Generation of QTL profiles

The information provided by Δr2 (dl) is immediately use-

ful; we can examine which markers are found to have sig-
nificant contributions. If a linkage map is available, we
can use it to create graphs similar to conventional QTL

profiles by simply plotting  vs. the marker posi-

tions. However, the  value of a particular genetic

location is sometimes 'spread out' among a few highly
correlated (genetically close) markers, due to the linkage
disequilibrium between the markers and the QTL. This
effect can be reduced by smoothing the results based on
the positions of markers on a genetic map; for the experi-
ments on barley we smoothed the curves by applying a
summing window of 5 cM to collect the contributions of
genetically close markers. The 5 cM size was chosen
because it provides a good balance between resolution
and smoothness.

Finally, there are two methods for determining a 95% sig-

nificance threshold. We assume the smoothed 

were gamma distributed. The gamma assumption is justi-
fied as previous literature shows that QTL effects are
gamma distributed [32], and 95% thresholds can easily be
determined by fitting a gamma distribution. Alternatively,
when no smoothing is applied an empirical method can
be used to estimate the p-values from the bootstrap repli-
cates by applying a standard one-sample t-test.

QTL classification performance
The Area under the Receiver Operating Characteristic
(AROC) [19] is a general measure of classification per-
formance. We used it to evaluate QTL profiles for simu-
lated data where the QTL positions are known. Let si be a
score (for example the apportioned variance explained
produced by the SML) for each marker i, Q be the set of
indices of 'QTL markers' and N be the set of indices of
'non-QTL markers.' The AROC is then given by
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Given a finite set of scores the AROC can simply be esti-
mated by counting:

Other QTL-mapping methods
Single Marker Regression (MR)
To obtain the fraction of variance explained for individual
markers, the Pearson correlation coefficient between the
marker and the phenotype was squared. A phenotype per-
mutation test of 1,000 iterations was used to derive empir-
ical 95% significance thresholds for genome profiles of
variance explained [33].

Composite Interval Mapping (CIM)
QTL were also identified by CIM using Cartographer 2.5
software [5,35,36]. The program settings were adjusted to
scan the genome at a walk speed of 1 cM. The 20 most
important markers, selected by forward stepwise regres-
sion outside a 10-cM window on either side of the mark-
ers flanking the test site were used to adjust for the genetic
background [36]. Experiment-wise 95% significance
threshold for likelihood-ratio genome profiles were esti-
mated using a permutation test based on shuffling geno-
types against phenotypes [33,37].

Bayesian Interval Mapping (BIM)
Finally, SML was also benchmarked against BIM [12]
using the R package qtlbim [13]. The algorithm was
restricted to analysis at marker positions only and not
within intervals. Two types of genome profiles were used
in experiments – Bayes Factor (BF) profiles for QTL detec-
tion, and 'heritability profiles' (i.e. variance explained) for
estimating QTL effects. The number of QTL was also esti-
mated using Bayes factors.

Comparisons of QTL profiles
The QTL profiles generated by different methods were
compared by computing the Pearson correlation coeffi-
cient between the genome profiles of variance explained.
For the comparison between different map versions (com-
prising unequal numbers of markers or bins), the genome
scans were first approximated by loess curves based on
1,000 evenly spaced loci.

Statistically significant QTL were identified for each
method by recording the cM positions of peak maxima in
genome-wide plots of variance explained (p < 0.05). Each
contiguous stretch of above-threshold markers was con-
sidered to belong to a single QTL peak. Small clusters of

above-threshold markers at less than 5 cM distance from
such a stretch of markers (if present) were considered to
be part of the shoulder of the same QTL peak. The overlap
between the sets of QTL identified using different meth-
ods (or map versions) was quantified by counting the
instances in which they detected significant QTL within
10-cM of each other.

List of abbreviations
BF, Bayes Factor; BIM, Bayesian Interval Mapping; CIM,
composite interval mapping; DArT, diversity arrays tech-
nology; DH, doubled haploid; LOD score, logarithm-of-
odds ratio in favour of a QTL; LODerror, logarithm of odds
value in favour of genotyping error; MIM, multiple inter-
val mapping; MR, single marker regression; QTL, quanti-
tative trait locus/loci; RFE, recursive feature elimination;
RFE-RIDGE recursive feature elimination – ridge regres-
sion; RFLP, restriction fragment length polymorphism;
SIM, simple interval mapping; SML, statistical machine-
learning; SSR, simple sequence repeat.
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Additional file 1
QTL detected with different algorithms (p < 0.05). PDF file containing 
a list of QTL identified for each combination of QTL-detection method 
(SML, MR, and CIM) and trait (α-amylase, diastatic power, heading 
date, plant height, lodging, malt extract, pubescent leaves, grain protein 
content, and yield).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-35-S1.pdf]

Additional file 2
Unsmoothed results obtained in the analysis of a synthetic 'chromo-
some'. PowerPoint file with two plots containing the unsmoothed results 
from which the plots in Figure 9 were generated.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-35-S2.ppt]
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Additional file 3
Genotypic data used for QTL analysis. Excel file containing 0/1 allele 
calls and A/B genotypes (segregation data) for both the 'raw' and the 
'curated' Steptoe/Morex genetic map.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-35-S3.xls]

Additional file 4
Phenotypic data used for QTL analysis. Excel file containing phenotypic 
data for the nine traits investigated in this study (α-amylase, diastatic 
power, heading date, plant height, lodging, malt extract, pubescent leaves, 
grain protein content, and yield). The data is from up to 16 different envi-
ronments and includes averages across standardised environments (see 
section entitled 'Pre-processing of phenotypic data' in Methods).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2156-9-35-S4.xls]
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