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Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia.
Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography
(PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of
the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET
imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.1670.01,
was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in
the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage
of pO2 values o5 mmHg (r¼ 0.805, P¼ 0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P¼ 0.028).
In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–
60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging
(P¼ 0.05) reflected higher percentage of pO2 values o1 mmHg (P¼ 0.023), lower vessel density (P¼ 0.026), and higher
radiobiological hypoxic fraction (P¼ 0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent
tumour retention and is, thus, a promising PET marker that warrants clinical evaluation.
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Hypoxia occurs to a variable extent in most rodent and human
solid tumours (Moulder and Rockwell, 1984; Höckel and Vaupel,
2001). It results from an inadequate and disorganised tumour
vasculature and blood flow, and hence impaired oxygen delivery
(Vaupel et al, 1989). Detection of hypoxia is important because
hypoxia is a powerful trigger for gene expression and thus clonal
selection of a more aggressive phenotype, for example, diminished
apoptotic potential (Gräber et al, 1996; Koong et al, 2000). Of
immediate clinical importance, hypoxia reduces local tumour
control by external beam radiotherapy (Horsman and Overgaard,
1992) and predicts general treatment outcome, including meta-
static potential and survival following radio/chemotherapy and
surgery in a number of human cancers (Höckel et al, 1993; Brizel
et al, 1996). Thus, detection of hypoxia could improve patient
selection for therapy with bioreductive agents (Stratford and
Workman, 1998), modified radiotherapy regimes such as acceler-

ated radiotherapy with carbogen and nicotinamide ‘ARCON’
(Hoskin and Saunders, 1994), conformal radiotherapy, and
hypoxia-targeted gene therapy (Dachs et al, 1997). Beyond
oncology, potential applications exist for diagnosis of stroke,
ischemic heart disease, peripheral vascular disease, arthritis, and
anaerobic infection.

Studies with fine needle oxygen electrodes provided proof that
low pO2 leads to poor outcome after treatment (Höckel et al, 1996;
Brizel et al, 1997; Nordsmark and Overgaard, 2000; Fyles et al,
2002). Immunohistochemical parameters obtained by staining
biopsy sections with antibodies to EF5, pimonidazole, hypoxia-
inducible factor 1a (HIF-1a3), and carbonic anhydrase IX have also
shown promise (Evans et al, 1996; Wykoff et al, 2000; Aebersold
et al, 2001; Kaanders et al, 2002). Utility in a routine clinical setting
would, however, favour a simple, convenient, noninvasive method
for detecting tumour hypoxia that yields results, which correlate
with clinical outcome. In this regard, a number of probes have
been developed for imaging hypoxia by positron emission
tomography (PET) and single-photon emission tomography in
nuclear medicine. These include 18F-labelled 2-nitroimidazoles
such as [18F]FMISO (Koh et al, 1995; Rasey et al, 1996), [18F]EF5
(Ziemer et al, 2003), [18F]FETNIM (Yang et al, 1995), [18F]FAZA
(Sorger et al, 2003), and N-(2-([18F]fluoroethyl)-2-(2-nitro-
imidazol-1-yl)-acetamide ([18F]FETA) (Rasey et al, 1999); copper
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bis-thiosemi-carbazones such as [60Cu]ATSM (Fujibayashi et al,
1997; Dehdashti et al, 2003); technetium-based probes such as
[99mTc]HL-91 (Honess et al, 1998); and iodine-based probes such
as [123I]IAZA (Mannan et al, 1991). Due to various limitations,
none of these radiotracers have found their way into routine
clinical use (Workman and Brown, 1981; Nunn et al, 1995; Rasey
et al, 1999; Bentzen et al, 2002).

Of the numerous possibilities in nuclear medicine, appropriately
labelled 2-nitroimidazole probes are particularly attractive for
imaging tumour hypoxia (pO2 o10 mmHg (Höckel et al, 1996;
Nordsmark et al, 1996); radiobiological hypoxia, pO2 o1 mmHg
(Rasey et al, 1990)). A combination of pharmacological and
physical properties that need to be considered as part of an ideal
design goal include: (i) a nitro group with appropriate redox
potential (E1/7 of B�380 to �390 mV) for selective reduction and
binding in hypoxic tumour cells; (ii) lipophilicity that is high
enough to enable diffusion across cellular membranes to the site of
metabolism (octanol –water partition coefficient of BX0.1
(Brown and Workman, 1980; Workman, 1982), but low enough
(Bp2) to assure rapid systemic elimination and, hence,
convenient imaging times (within 2 h); (iii) stability to hypoxia-
independent degradation; and (iv) high photon flux (and low
energy) to assure high detection sensitivity and spatial image
resolution. The last property would favour 18F-based PET radio-
tracers. In this manuscript we report on preclinical studies that
underpin the development of [18F]FETA ([18F]fluoroetanidazole),
an extremely promising hypoxia probe for imaging by PET. We
demonstrate for the first time in mouse models of cancer that the
retention of [18F]FETA-derived radioactivity correlates with pO2

and radiation sensitivity.

MATERIALS AND METHODS

Radiosynthesis of [18F]FETA

Unless otherwise noted, all reagents, including anhydrous solvents,
were obtained from Sigma-Aldrich (Poole, UK). The synthesis of
[18F]FETA was based on the method of Tewson (1997), with
some modifications. N-[2-(toluene-4-sulphonyloxy)-ethyl]-phtha-
limide (I in Figure 1) was prepared according to the literature
method (Tewson, 1997). The precursor, 2,3,5,6-Tetrafluorophenyl
2-(2-nitroimidazol-1-yl) acetate, (II) was prepared by a novel
method, published separately (Wilson, 2003). [18F]fluoride was
prepared by the 18O(p,n)18F reaction using H2

18O enriched water
(Ruth and Wolf, 1979). A measure of 250ml 0.1 M K2CO3 and
3 mg [2,2,2]Kryptofix in 500 ml acetonitrile were added to the
[18F]fluoride. The fluoride was dried in a glassy carbon vessel
at 1251C, under N2, for 35 min (with two further additions of
500ml acetonitrile), before cooling. In total, 15 mg of compound (I)
was dissolved in 500ml acetonitrile. This was added to the
reaction vessel, which was sealed at 1001C for 10 min before
evaporation of the acetonitrile. A measure of 75 ml hydrazine
hydrate was added to the reaction vessel. [18F]fluoroethylamine
(IV) was distilled from the reaction vessel (751C, N2 flow
B3 ml min�1) into a vial containing 4 mg precursor (II) in 400 ml
of ice cold acetonitrile. The vial was sealed and stirred for
30 min at room temperature. The resulting product was purified
by high-performance liquid chromatography (HPLC) (Waters
m-Bondapak C18 column) and eluted with water (Baxter Healthcare
Ltd, Compton, UK; 3 ml min�1). The radioactive product
having the same retention time as fluoroetanidazole was collected
(reference material synthesised according to Tewson, 1997).
The product was evaporated to dryness and taken up in 0.9%
saline (Phoenix Pharma Ltd, Gloucester, UK) for injection.
The (manual) preparation time for [18F]FETA (synthesis, purifica-
tion, formulation) from the end of bombardment was approxi-
mately 3 h.

Lipophilicity measurements

The lipophilicity of [18F]FETA was determined by measuring the
octanol– water partition coefficient. For this, 80–100 mCi (2.96–
3.70 MBq) of [18F]FETA was dissolved in distilled H2O to a final
volume of 0.5 ml and 0.5 ml of octan-1-ol (BDH Chemicals Ltd,
Poole, UK) was added. The resulting mixture was processed in an
orbital shaker (Sanyo Gallenkamp PLC, Loughborough, UK) for
10 min at 300 rpm and subsequently centrifuged for 30 min
(12 000 rpm; Rotina 35R, Hettich Zentrifugen, Tuttlingen, Ger-
many). Aliquots (200 ml) of the resulting top layer (representing
[18F]FETA dissolved in octanol) and bottom layer ([18F]FETA
dissolved in H2O) were taken and the radioactivity in these
samples was measured using a Cobra II Auto-Gamma counter
(Packard Instruments, Meriden, CT, USA). Six octanol –H2O
mixtures were analysed and the complete experiment was repeated
once. The octanol – water partition coefficient was calculated by
dividing the octanol-containing radioactivity by the water-contain-
ing radioactivity.

Cellular uptake of [18F]FETA

The inhibitory effect of oxygen on [18F]FETA uptake by cells was
studied in vitro in RIF-1 tumour cells. Uptake was defined as the
transport of radiotracer into cells and its specific binding to
cellular macromolecules (and glutathione). The cells were cultured
(5% CO2 incubator at 371C) in T75 flasks in RPMI growth medium
(Life Technologies, Strathclyde, UK) supplemented with 10% foetal
bovine serum (Sigma) and antibiotics. Exponentially growing cells
were harvested, dissolved in phosphate-buffered saline (PBS) and
placed in a custom-made hypoxic chamber (Aboagye et al, 1997a),
which was positioned in a 371C shaking water bath and incubated
with pure nitrogen (O2 o20 ppm; BOC Gases, Guildford, UK) or
with air as control, each flowing at 2 l min�1. After pregassing for
8 min, the cells were incubated with 80–100 mCi (2.96 –3.7 MBq) of

Figure 1 Radiochemical synthesis of [18F]FETA. I, II, III, and IV represent
N-[2-(toluene-4-sulphonyloxy)-ethyl]-phthalimide, 2,3,5,6-Tetrafluorophenyl
2-(2-nitroimidazol-1-yl) acetate, [18F]Fluoroetanidazole, and [18F]Fluoro-
ethylamine.
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[18F]FETA. No correction for the total amount of stable etanidazole
in the reaction mixture was made between experiments. Immedi-
ately after addition of the radioactivity, and at 15, 30, 45, 60, 90,
and 120 min, the cells were harvested and centrifuged (5000 rpm
for 5 min) to obtain a pellet. The pellet was washed twice with PBS
(5 ml) and centrifuged as above. The cell number in the resulting
pellet was determined by counting cells that excluded trypan blue.
The total radioactivity added to each hypoxic chamber and the
cell-bound radioactivity were measured on a Cobra II Auto-
Gamma counter (Packard Instruments, Meriden, Connecticut, SA,
USA) to determine the degree of radioactivity binding. Percentage
of bound radioactivity was calculated as (bound radioactivity in
106 cells� 100)/total radioactivity. These experiments were carried
out in triplicate and repeated independently three times.

Animals and tumours

The mice used in this work were obtained from Harlan UK Ltd
(Bicester, UK). To obtain tumours, 2� 105 –2� 106 tumour cells
harvested from exponentially growing in vitro cultures were
injected into the dorsum subcutis of normal C3H/Hej and Balb/c
mice (for RIF-1 mouse fibrosarcoma and EMT6 mouse mammary
carcinoma tumours, respectively) or Balb/c nude mice (for HT1080
human fibrosarcoma and MCF-7 human mammary carcinoma
tumours). In the case of the HT1080 tumours, two subclones (1-3C,
26.6) with different capacities for producing vascular endothelial
growth factor (VEFG) were studied. As published recently by our
group, the 26.6-subclone produces two- to four-fold more VEGF
than the 1-3C-subclone (Collingridge et al, 2002). To obtain MCF7
tumours, a 60-day slow release 17-b-oestradiol pellet (Innovative
Research of America, Sarasota, FL, USA; 0.72 mg pellet�1) was
inserted subcutaneously on the contralateral flank of the mouse at
the time of inoculation of the tumour cells to maintain blood levels
of 300–400 pg ml�1. All the animal work was performed by
licensed investigators in accordance with the United Kingdom’s
‘Guidance on the Operation of Animals (Scientific Procedures) Act
1986’ (HMSO, London, UK, 1990) and in full compliance with
government regulations and the UKCCCR guidelines on animal
welfare in experimental neoplasia (Workman et al, 1998). Tumours
were selected for experiments when they had reached 5 –8 mm in
diameter (100 –300 mg). In order to obtain comparable results, all
biodistribution studies, PET imaging studies, and pO2 measure-
ments were performed in anaesthetised mice. For that, a general
neuropleptanalgesia comprising of a mixture of fentanyl citrate/
fluanisone (Janssen-Cilag Ltd, Saunderton, UK; 0.79 and
25 mg kg�1 respectively) and midazolam hydrochloride (Phoenix
Pharma, Ltd, Gloucester, UK; 12.5 mg kg�1) was injected i.p. 5 min
before the start of the experiments. Irradiation of mice, in studies
to determine radiobiological hypoxic fraction, were performed in
unanaesthetised mice.

Biodistribution of [18F]FETA

Anaesthetised tumour-bearing mice were injected intravenously
via the lateral tail vein with 100 ml of [18F]FETA (10–100 mCi; 0.37–
3. 7 MBq). Mice were killed by exsanguination via cardiac puncture
60 min after injection of the radiotracer. Aliquots of heparinised
blood were rapidly centrifuged (2000 g for 5 min) to obtain plasma.
The radioactivity contained in tumour, liver, kidney, spleen, lungs,
heart, small intestines, brain, muscle, bone, blood, plasma, faeces,
and urine was determined in a Cobra II Auto-Gamma counter and
expressed as % ID g�1 (percentage of injected dose per gram of
tissue). A minimum of six mice was used for each tumour model.

Biodistribution studies were also carried out in mice following
modulation of tumour hypoxia. In RIF-1 tumour-bearing mice, the
degree of tumour hypoxia was modulated by administration of
carbogen gas (95% O2, 5% CO2), which is known to decrease
tumour hypoxia (Powell et al, 1999). There are a number of reports

in the literature demonstrating an increase in oxygenation or
perfusion in RIF-1 tumours under carbogen breathing. These
studies include direct pO2 measurements, as well as magnetic
resonance and 86Rb extraction methods in RIF-1 tumours
implanted in the leg (Hasegawa et al, 1987; Song et al, 1987;
Ilangovan et al, 2002) or flank (Helmer et al, 1998; Dardzinski and
Sotak 1994; Honess and Bleehen, 1995). Carbogen gas was
delivered via a nose cone at 2.0 l min�1, starting 2 min before
radiotracer injection and for 60 min after radiotracer injection
(n¼ 5). Untreated RIF-1 tumour-bearing mice served as controls
(n¼ 8). Mice were injected with [18F]FETA and killed at 60 min
postinjection (p.i.), as described above. Successful modulation of
tumour pO2 was verified by means of OxyLite probes as described
below.

Small animal [18F]FETA-PET imaging

In parallel with the 60-min biodistribution studies above, the time
course of [18F]FETA distribution was studied in vivo in tumour-
bearing mice by means of a second-generation dedicated small
animal PET scanner (Quad-HIDAC; Oxford Positron Systems,
Weston-on-the-Green, UK (Jeavons et al, 1999)). Mice were
anaesthetised as described above and placed prone on a
thermostatically controlled bed within the scanner. All anaesthe-
tised animals (in the PET imaging, biodistribution and OxyLite
pO2 studies) were placed on thermal platforms to maintain their
body temperature at B371C. Dynamic PET scans were acquired
over 60 min after intravenous (i.v.) injection of 40–100 mCi (1.48–
3.7 MBq) of [18F]FETA via a tail vein cannula. The imaging and
image-data processing protocol has been recently described in
detail elsewhere (Barthel et al, 2003). In brief, data were acquired
in list mode format and image reconstruction was performed by
filtered back-projection using a 2D Hamming filter (cutoff 0.6).
The image data sets obtained were transferred to a SUN
workstation (Ultra 10; SUN Microsystems, Santa Clara, CA, USA)
and visualised using the ANALYZE software (Version 5.0;
Biomedical Imaging Resource, Mayo Clinic, Rochester, NY,
USA). Region(s) of interest (ROIs) were defined for tumour and
heart cavity (to provide information on the delivered radioactivity)
on three to six transverse planes for tumour and three planes for
heart cavity. Time vs radioactivity curve(s) (TACs) from the ROIs
were averaged for each tumour and normalised to the integral of
the heart cavity TAC. Altogether, four HT1080/1-3C and three
HT1080/26.6 tumour-bearing mice were scanned.

In vivo metabolism of [18F]FETA

Plasma, urine, liver, gall bladder, muscle, and tumour samples
obtained from RIF-1 tumour-bearing C3H/Hej mice were assessed
for putative [18F]FETA metabolites by HPLC. For this, plasma
samples (100ml) were deproteinated by adding 2.0 ml ice-cold
methanol and centrifuged (3000 g, 10 min, 41C). Liver, muscle, and
tumour samples were cut into small pieces and homogenised in
2.0 ml of ice-cold methanol using an Ultra-Thurrax homogeniser
(IKA, Staufen, Germany) and the resultant homogenate was
centrifuged (3000 g, 10 min, 41C). The supernatants from plasma
and tissues were evaporated to dryness in a rotary evaporator
(501C) under vacuum, reconstituted in 1.5 ml of mobile phase
(methanol/H2O (20/80% v v�1)), centrifuged and filtered (0.2mm).
Unlike plasma and tissue samples, urine and gall bladder samples
were diluted with 1.5 ml of mobile phase and clarified by filtration
(0.2mm). Aliquots of each filtrate (1.0 ml) and of the injected dose
solution diluted in 1.5 ml of mobile phase were analysed by HPLC.
The samples were separated on a C18 mBondapak column
(7.8� 300 mm, size 10 mm; Waters, Milford, MA, USA) that was
eluted with the aforementioned mobile phase at a flow rate of
2.0 ml min�1. The radioactivity of the eluents was monitored. Peak
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areas were integrated and corrected for physical decay and
background radioactivity.

Direct measurement of pO2

Oxygenation in the established tumour models was measured
using the OxyLite pO2 system (Oxford Optronix Ltd, Oxford, UK)
(Young et al, 1996; Collingridge et al, 1997; Seddon et al, 2001).
The OxyLite probes measure pO2 by using a fluorescence
quenching technique (Young et al, 1996). These experiments were
performed under general neuroleptanalgesia. The animals were
placed on a thermal blanket (371C) and a maximum of four
(depending on the tumour size) oxygen probes were simulta-
neously implanted into the mouse tumours. The probes were
moved forward manually B0.2 cm every 10 min (total measure-
ment time 30–50 min), which resulted in 45–125 pO2 measure-
ments per tumour. All oxygen measurements were postcalibrated
to account for tumour temperature, as previously reported (Young
et al, 1996; Collingridge et al, 1997).

Measurement of vessel density

In parallel studies in HT1080 (grown from 1-3C and 26.6
subclones) tumour-bearing mice, tumours were excised for
histological examination of vessel density. For this, each of seven
1-3C and 26.6 tumours were excised, fixed in formalin, embedded
in paraffin, and cut into 5.0 mm sections. Adjacent sections were
stained with haematoxylin– eosin (H&E). Sections from three
different regions of each tumour, separated by at least 1.0 mm,
were used for the analyses. Vessels were counted in five randomly
selected fields of view (0.23 mm2) per section using a BX51
Olympus microscope (Olympus Optical, Tokyo, Japan) at � 200
magnification.

Determination of radiobiological hypoxic fraction

In addition to the pO2 measurements, radiobiological hypoxia was
evaluated for the 26.6. and 1-3C subclones of the HT1080 tumours
by performing clonogenic assays. Clonogenic cell survival, which is
still regarded as gold standard for measuring tumour hypoxia
(Rockwell and Moulder, 1990), was determined using an
established protocol (Collingridge and Rockwell, 2000). In brief,
the tumour-bearing mice were irradiated with 5, 15, or 25 Gy
(mean dose rate¼ 4.3 Gy min�1) using an IBL 637 irradiator (CIS
bio international, Gif/Yvette Cedex, France). One group of mice
breathed air during the irradiation; the other group comprised of
mice killed 10 min before the irradiation (n¼ 12 per group).
Immediately following irradiation, the tumours were excised,
minced, and digested for 45 min in a 371C shaking water bath with
a 10 ml solution of foetal bovine serum-free RPMI growth medium
containing 2 mg ml�1 collagenase type IV (Sigma, Poole, UK) and
0.2 mg ml�1 DNAse I (Sigma). After centrifugation, cell density was
determined by trypan blue exclusion and defined numbers of cells
were plated in Petri dishes containing complete growth medium.
The dishes were incubated at 371C in a humidified incubator in an
atmosphere of 95% air/5% CO2 for 10–14 days. The resulting
colonies were fixed and stained with crystal violet made up in 70%
ethanol and subsequently counted. The survival fraction was
calculated by dividing the plating efficiency of the irradiated mice
by that of unirradiated control mice (n¼ 4). Using these survival
curves, radiobiological hypoxia fraction was calculated from the
vertical displacement of the aerobic curve from the anoxic curve
according to the equation loghypoxia fraction ¼ logaerobic survival

fraction�loganoxic survival fraction (Moulder and Rockwell, 1984). The
determination of hypoxic fraction in this way is only possible if the
survival curves are parallel. Pooled tumours from four animals
were used for each irradiation level and tumour type.

Nitroreductase activity

Tumour retention of an ideal radiolabelled 2-nitroimidazole
should depend solely on intratumoural oxygenation levels, and
not on the levels of nitroreductase activities. In this regard, we
investigated the influence of tumour nitroreductase activities on
[18F]FETA tumour retention. The activities of cytochrome P450
reductase, cytochrome b5 reductase, and DT-diaphorase were
determined in excised, snap-frozen tumours using a standard
cytochrome c assay, as previously described by Sharp et al (2000).
Briefly, enzyme activities were determined on a UV-spectro-
photometer (BioMate 5; Thermo Spectronic, Cambridge, UK) by
measuring the rate of reduction of cytochrome c at 550 nm
(Walton et al, 1991). Tumour samples were thawed and homo-
genised in an equivalent volume of 50 mM Tris – 150 mM KCl–HCl
buffer (pH 7.4). The homogenates were centrifuged (10 000 rpm for
30 min, 41C) and the resulting supernatant, which represented the
S9 fraction, was taken for the further analysis. The protein content
of the S9 fractions was determined using a commercial kit (BCA
protein assay kit; Pierce, Rockford, IL, USA). Samples of the S9
fraction (5–30 ml) were added to 1 ml of a reaction mixture
containing 50 mM (final concentration) Tris HCl buffer (pH 7.4),
20 mM menadione (Sigma) as initial electron acceptor, 70 mM

cytochrome c (Sigma) as terminal electron acceptor, 200 mM NADH
(Sigma) as electron donor, and 1.4 mg ml�1 bovine albumin
fraction V (Sigma). The solutions were prewarmed at 371C and
the experiment was performed with or without 10 mM dicumarol
(Sigma), an established inhibitor of DT-diaphorase (Hollander and
Ernster, 1975). DT-diaphorase activity was taken as dicumarol-
inhibitable activity and expressed as nmol of cytochrome c
reduced per minute per mg of protein. The activities of
cytochrome P450 reductase and cytochrome b5 reductase were
determined as above, but without menadione/dicumarol, and with
200mM NADPH (Sigma) instead of NADH in the case of
cytochrome P450 reductase assay (Fitzsimmons et al, 1996; Winski
et al, 1998).

Statistics

Statistical analyses were performed using the software SPSS for
Windows, version 10.0.7 (SPSS Inc., Chicago, IL, USA). Differences
in pO2 data, ex vivo [18F]FETA biodistribution, and nitroreductase
activities were tested for significance using analysis of variance
(ANOVA). Two-sided Student’s t-test for independent samples was
employed to test for differences in [18F]FETA uptake in vitro under
normoxic and hypoxic conditions, pO2 values, and ex vivo
[18F]FETA retention in RIF-1 tumours treated with carbogen vs
untreated controls, as well as differences between vessel density,
clonogenic survival, and fractional radiotracer retention obtained
from dynamic PET scanning in 26.6 and 1-3C subclones of HT1080
tumours. Associations between [18F]FETA tumour retention, pO2

values, and nitroreductase activities in the established tumour
models were tested for correlations by means of linear regression
analysis. pO2 values obtained from the OxyLite measurements were
expressed as median values for all investigated mouse tumours.
Survival fractions from clonogenic assays were calculated relative
to the corresponding plating efficiency and are given as mean71
s.e.m. Survival curves were fitted by regression analysis and
compared at the midpoints of the curves. Unless stated, data
are expressed as mean71 s.e.m. The P-values of p0.05 were
considered significant.

RESULTS

Radiochemistry and in vitro characteristics of [18F]FETA

Beginning with 30– 50 mCi (1.11–1.85 GBq) [18F]fluoride,
[18F]FETA yields were typically 0.6–3.0 mCi (22–111 MBq), which
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represents a final (decay corrected to end of bombardment)
radiochemical yield of approximately 10–20%. High-performance
liquid chromatography analyses of the [18F]FETA dose solutions
were performed 60 min after preparation of the radiotracer.
[18F]FETA eluted at B9.5 min. The radiochemical purity was
94.671.5% (n¼ 4). The lipophilicity of [18F]FETA expressed as
octanol– water partition coefficient was determined to be
0.1670.01 (n¼ 12).

We studied the uptake of [18F]FETA in air vs nitrogen in RIF-1
cells. The uptake of the radiotracer by normoxic cells was very low.
In contrast, there was a rapid time-dependent linear increase of
[18F]FETA uptake by RIF-1 cells under nitrogen, which was 3.0-
and 4.3-fold as compared to the normoxia values at 60 and 120 min
p.i., respectively. In this model system the hypoxia-dependent
increase in [18F]FETA uptake reached significance after 60 min
(Figure 2).

In vivo tissue distribution and metabolism of [18F]FETA

The normal tissue retention of the radiotracer at 60 min
postinjection was low (o5% ID g�1) in lung, heart, brain, and
bone; intermediate (5–8% ID g�1) in plasma, liver, spleen, small
intestines, and muscle; and high (48% ID g�1) in kidney, bile, and
urine (Figure 3). The 60-min tumour retention of [18F]FETA
ranged from 6 to 10% ID g�1 for the different xenografts
(P¼ 0.023; one-factorial ANOVA; Figure 3 inset). Other than
differences in tumour retention, no significant differences in
radiotracer accumulation were found for normal tissues of the
different mouse strains (data not shown).

Radiochromatograms of plasma, liver, tumour, muscle,
gall bladder, and urine that were obtained at 10 (plasma,
liver, and tumour) and 60 min (all tissues and body fluids) after
the administration of [18F]FETA are shown in Figure 4. As
with the analysis of the dose solution, the parent compound
([18F]FETA) eluted at a retention time of B9.5 min. Parent
[18F]FETA comprised 88% of the total radioactivity in plasma
at 10 min p.i. In tumour, a minor radioactive peak at a retention
time of B6 min that comprised 18% of the total radioactivity
was detected at 10 min p.i., whereas most of the radioactivity
(92%) in the liver was associated with the metabolite(s) eluting
at B6 min. At 60 min p.i., metabolite peaks with retention times

of B6 to 7 min were detected in the plasma (7% of total
radioactivity), muscle (50%), liver (99%), bile (82%), tumour
(52%), and urine (26%) (Figure 4). These HPLC data represent
profiles of soluble parent and metabolites. The acid-insoluble
fraction obtained from PCA extraction (representing bound
radioactivity) was 69.2% for tumour and 63.7% for liver tissues
at 60 min p.i.

[18F]FETA tumour retention correlates with pO2 but not
nitroreductase activity

Various threshold pO2 values (o1, 2.5, 5, and 10 mmHg) have
been used to describe the degree of hypoxia in tissues. In the
tumour xenografts used here, the relative frequency of pO2 values
o1.0 mmHg as determined by the OxyLite method ranged from
28713 to 9379% (P¼ 0.008; one-factorial ANOVA). The relative
frequency of pO2 values o2.5 mmHg ranged from 51713 to
10070% (P¼ 0.057). In HT1080 tumours, the relative frequency of
hypoxic pO2 values was significantly higher for the 1-3C subclone
compared to the 26.6 subclone at a cutoff pO2 of 1.0 mmHg (9379
vs 55715%; P¼ 0.023) and 2.5 mmHg (10070 vs 66716%;
P¼ 0.045).

For all the tumour models, the relative [18F]FETA retention,
expressed as tumour-to-muscle ratio, was positively correlated
with the relative frequency of pO2 values o5 mmHg. This
correlation was found to be linear (y¼ 0.04x–1.5, r¼ 0.805) and
significant (P¼ 0.027; Figure 5A). A trend towards a significant
positive correlation was also observed for the association between
tumour [18F]FETA retention and relative frequency of pO2 values
o2.5 mmHg (r¼ 0.691, P¼ 0.064; Figure 5B). Of interest,
[18F]FETA radiotracer retention at 60 min p.i. was higher in the
less VEGF-producing HT1080/1-3C subclone compared to the 26.6
subclone (9.2971.36 vs 5.9870.50% ID g�1; P¼ 0.015). In addi-
tion, tumour/muscle ratios obtained from the [18F]FETA biodis-
tribution studies were significantly higher for the 1-3C subclone as
compared to the 26.6 subclone (1.9470.36 vs 1.0570.03,
Po0.001).

The activities of cytochrome P450 reductase, cytochrome b5
reductase, and DT-diaphorase for the different tumours are
given in Table 1. There were significant intertumour differences
(one-factorial ANOVA) in enzyme activity. The range of t
hese values, however, were p2.5 fold for all the reductive

Time (min)

0 15 30 45 60 75 90 105 120
0

20x10-3

18x10-3

16x10-3

14x10-3

12x10-3

10x10-3

8x10-3

6x10-3

4x10-3

2x10-3

Hypoxia
Normoxia

%
 B

ou
nd

 r
ad

io
ac

tiv
ity

/1
06 c

el
ls

*

*

*

Figure 2 In vitro binding of [18F]FETA to RIF-1 cells under hypoxic (-K-)
and normoxic (-J-) conditions. The cells were incubated with [18F]FETA
under nitrogen gas or air for 0–120 min and washed to remove unbound
radioactivity. The percentage of bound radioactivity was calculated as
(bound radioactivity in 106 cells� 100)/total radioactivity. Data are
mean7s.e.m. (n¼ 3), *Pp0.05.
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enzymes tested (Table 1). There were no correlations between
tumour enzyme profiles (cytochrome P450 reductase, cyto-
chrome b5 reductase, and DT-diaphorase) and ex vivo [18F]FETA
tumour retention or tumour pO2 obtained from OyxLite measure-
ments.

Acute changes in pO2 are detectable with [18F]FETA

The ability to detect acute changes in tumour oxygenation was
investigated in RIF-1 tumours after application of a physiological
modulator, for which the resultant effect is well documented.
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Figure 4 Reversed-phase high-performance liquid chromatograms of [18F]FETA and its putative metabolites at an early time-point (10 min p.i.) in plasma
(A), liver (D), and tumour (G), and a late time-point (60 min p.i.) in plasma (B), muscle (C), liver (E), gall bladder (F), tumour (H), and urine (I). Filled
arrows are parent [18F]FETA compound, and double-lined arrows are metabolites.
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Carbogen breathing decreased [18F]FETA tumour retention to
4.7070.26% ID g�1, compared to untreated controls (7.4170.98%
ID g�1; P¼ 0.028). In tissues other than tumours, [18F]FETA
retention was not altered by carbogen breathing. Administration of
carbogen decreased the relative frequency of pO2 values
o2.5 mmHg in comparison to untreated controls (40711 vs
51713%). However, these differences did not reach significance
level (P¼ 0.551).

Small animal PET imaging with [18F]FETA

Whole body PET scanning was carried out in HT1080/26.6 (n¼ 3)
and HT1080/1-3C tumour-bearing mice (n¼ 4). For illustration
purposes, the 30–60 min summed images are presented (Figure 6).
In agreement with the biodistribution data determined by ex vivo
g-counting, the PET images revealed high [18F]FETA accumulation
in tumour, kidney, urinary bladder, and proximal parts of the
small intestine (Figure 6A). In contrast, radiotracer retention was
low in brain and spinal cord (Figure 6B). Also in agreement with
the biodistribution studies, the tumour retention of [18F]FETA was
higher in all HT1080/1-3C tumours (Figure 6C) than in the
HT1080/26.6 tumours (Figure 6D).

By drawing ROIs over the whole tumour, TACs were obtained
from the dynamic PET data sets (Figure 7). HT1080/26.6 tumours
were characterised by a rapid delivery of [18F]FETA up to 2 min
p.i., followed by a plateau with a minimal increase of the TACs up
to 60 min p.i. The delivery of the radiotracer into HT1080/1-3C
tumours was comparatively slower, but retention was higher
(Figure 7). The fractional retention of [18F]FETA in tumours (ratio
of radioactivity at 60 min to that at 2 min) was significantly higher
in the 1-3C tumours compared to 26.6 tumours (1.4470.10 vs
1.1070.01; P¼ 0.05).

Biological basis and implication of [18F]FETA retention in
HT1080 tumours

In order to explain the differences in [18F]FETA retention
between the different HT1080 tumour types, we compared the
retention of [18F]FETA in the tumours to vessel density,
oxygenation, and radiation sensitivity. The vessel density mea-
sured in histological sections of the HT1080 tumours was
significantly lower for the 1-3C subclone, which contains less
VEGF (Collingridge et al, 2002), compared to the 26.6 subclone
(Figures 8A–C). The lower vessel density in the 1-3C tumours was
associated with a significantly higher frequency of pO2 values
o1 mmHg (Figure 8D). Radiation sensitivity was determined
for the two tumour types by measuring the fraction of clonogenic

radiobiological hypoxic cells. The plating efficiency (mean7
s.e.m.) of HT1080/1-3C and /26.6 tumours were 0.5070.03
and 1.7070.41%, respectively. Overall, disaggregation of the
tumours yielded (irradiated vs control) 2 to 20� 106 cells vs 4 to
20� 106 cells for HT1080/1-3C and 1 to 11� 106 and 2 to 9� 106

cells for HT1080/26.6 cells, respectively. Figures 8E, F show that
hypoxic fraction was significantly higher in HT1080/1-3C than
in HT1080/26.6 tumours (86.172.1 vs 68.170.2%, P¼ 0.008;
Figures 8E, F).

Figure 6 [18F]FETA-PET images of HT1080 tumour-bearing mice
acquired on the small animal quad-HIDAC scanner (pixel size
0.5� 0.5� 0.5 mm3). (A) Three-dimensional (volume-rendered) image
of an HT1080/1-3C tumour-bearing mouse (30–60 min p.i. summed)
showing a dorsal view of the mouse. Here, pixel values are defined by the
maximum voxel value in corresponding lines in the z-axis. Arrows point to
tumour (Tm), Kidneys (Ki), small intestine (In), and urinary bladder (Bl). (B)
Sagittal (0.5 mm) slice of 30–60 min p.i. summed [18F]FETA-PET images
from the same mouse as in (A) at the midplane level, showing low
radiotracer uptake in brain (Br) and spinal cord (Co), as well as high
accumulation in urinary bladder. (C) Transverse (0.5 mm) slice of
30–60 min p.i. summed [18F]FETA-PET images from the same HT1080/
1-3C tumour-bearing mouse as in (A) at the level of the maximal tumour
diameter. (D) Corresponding transverse slice from an HT1080/26.6
tumour-bearing mouse, exhibiting lower tumour radiotracer uptake.
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Figure 7 Tumour time–activity curves (TACs), normalised to the
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Table 1 Nitroreductase activities in established tumours

Tumour
type

Cytochrome
P450

reductase
(nmol min�1 mg�1)

Cytochrome
b5 reductase

(nmol min�1 mg�1)
DT-diaphorase

(nmol min�1 mg�1)

RIF-1 2.2170.18 50.071.8 1.3870.23
HT1080/26.6 3.3970.36 36.871.4 0.9370.01
HT1080/1-3C 4.1570.34 35.372.5 0.2170.05
EMT6 2.7970.37 52.271.9 0.6270.15
MCF-7 2.0170.17 20.871.0 0.0070.00a

P (ANOVA) 0.001 o0.001 o0.001

Enzyme activities were determined spectroscopically by measuring reduction of
cytochrome c at 550 nm, as described in Materials and Methods. Units are nmol of
cytochrome c reduced per minute per mg of sample protein and are given as
mean7s.e.m. (n¼ 5–7). aNo activity detected within effective range of assay (lower
limit of detection¼ 0.05 nmol min�1 mg�1).
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DISCUSSION

The partial pressure of oxygen has been directly determined
in accessible tumours such as cervix tumours, head and neck
tumours, and sarcomas using Eppendorf oxygen electrodes
(Höckel et al, 1996; Brizel et al, 1997; Nordsmark and Overgaard,
2000; Fyles et al, 2002). Such studies provided proof that low pO2

(hypoxia) leads to poor outcome after cancer treatment. These
findings, together with the well-known effect of hypoxia on
radiation sensitivity as well as the development of hypoxia-
modifying therapies, have strengthened the medical need for a
noninvasive, clinically acceptable method of measuring hypoxia in
patient tumours. Of the numerous possibilities available, the use of
appropriately labelled 2-nitroimidazoles detectable by PET ima-
ging is particularly attractive. In this paper, we have demonstrated
that [18F]FETA is a suitable radiotracer for PET imaging of tumour
hypoxia.

18F-labelled 1-(2-nitro-imidazolyl)-3-fluoro-2-propanol
([18F]fluoromisonidazole ([18F]FMISO) (Jerabek et al, 1986; Koh
et al, 1995; Rasey et al, 1996)) is the most widely studied
radiotracer for tumour hypoxia. This radiotracer has, however,
failed to gain a wider acceptance for routine clinical application in
a PET setting because of a number of limitations including: (i) slow
accumulation in hypoxic tumours (scanning has been performed
up to 5 h p.i. (Nunn et al, 1995; Bentzen et al, 2002)); (ii) low

target-to-background contrast due to high nonspecific binding
resulting from a relatively high lipophilicity (octanol/water
partition coefficient¼ 0.41 (Workman and Brown, 1981)); and
(iii) significant non-oxygen-dependent metabolism (e.g. 50.0 and
36.2% of metabolites in plasma and urine, respectively, at 2 h p.i.
(Rasey et al, 1999)). The choice of an ideal hypoxia marker would
favour probes that have low lipophilicity and resistance to
hypoxia-independent degradation; in general 2-nitroimidazoles
with an amide side chain typified by etanidazole are more stable to
nonhypoxic metabolism than those with a hydroxypropyl side
chain such as misonidazole (Aboagye et al, 1998). [18F]FETA
possesses these favourable characteristics. Its octanol –water
partition coefficient, determined here to be 0.16, is higher than
nonfluorinated etanidazole (0.046 (Brown and Workman, 1980)),
but lower than that of [18F]FMISO. In vitro, [18F]FETA accumu-
lated selectively in hypoxic, but not in aerobic RIF-1 cells (4.3-fold
differential at 120 min p.i.), consistent with the presence of a 2-
nitroimidazole moiety (with redox potentials (E1/7) around �380
to �390 mV (Adams et al, 1979; Brown and Workman, 1980;
Workman and Brown, 1981). The large variation in uptake could
be due to the differences in stable etanidazole levels in the reaction
mixture.

[18F]FETA accumulated in all tissues analysed. The retention of
the radiotracer at 60-min postinjection was relatively low (o5%
ID g�1) in lung, heart, brain, and bone; intermediate (5–8%
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Figure 8 Vessel density, pO2, and radiation sensitivity of HT1080/26.6 and HT1080/1-3 tumours. (A–B) Typical 5mm H&E-stained histological sections
of HT1080/26.6 (A) and HT1080/1-3C (B) tumours, with arrows pointing to vessels. (C) Summary data for vessel density depicting average number of
vessels from five randomly selected fields of view (0.23 mm2; � 200 magnification) per section; three sections per tumour. (D) OxyLite pO2 measurements.
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tumours. Data are mean survival (n¼ 4). RHF, radiobiological hypoxic fraction. There was a statistically significant difference between the RHF of 1-3C and
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ID g�1) in plasma, liver, spleen, small intestines, and muscle; and
high (48% ID g�1) in kidney, bile, and urine. The highest
[18F]FETA accumulation was found in the excretory organs. Good
accumulation in tumours, 6 –10% ID g�1, would suggest the
possibility of achieving high tumour-to-background contrast in
several tumour types, including breast, lung, head and neck, and
brain tumours. Chromatographic analysis of plasma, urine, and
tissues provided some explanation for the differences in tissue
distribution. [18F]FETA was found to be stable in plasma (B93%
as parent compound at 60 min p.i.) and also excreted mainly as the
unchanged drug in urine (74% at 60 min p.i.). The radiotracer was
metabolised in liver to catabolite(s), which appeared to be
eliminated predominantly via the hepatobiliary route.

Having shown that [18F]FETA is taken up into all tissues, we
investigated whether differences in pO2 could be monitored with
the radiotracer in vivo. Two validation scenarios were explored. In
the first instance, the 60-min retention of [18F]FETA into all
tumour types as determined by g-counting was compared to
measured pO2. Radiotracer retention positively correlated with the
percentage of pO2 values o5 mmHg (r¼ 0.805, P¼ 0.027),
indicating that [18F]FETA retention is related to pO2 levels. Using
five different tumour types enabled a wide range of oxygenation
levels to be achieved (the relative frequency of pO2 values
o1.0 mmHg ranged from 28713 to 9379% (P¼ 0.008; one-
factorial ANOVA), and the relative frequency of pO2 values
o2.5 mmHg in a range from 51713 to 10070% (P¼ 0.057)). In
general, the binding of nitroimidazoles requires the presence of
nitroreductases, particularly cytochrome P450 reductase. We
found no relationship between [18F]FETA and levels of the
nitroreductases studied. Large differences in nitroreductase levels
can confound measurement of hypoxia with 2-nitroimidazole-
based probes; thus, our findings of a lack of significant differences
in nitroreductase activities between the tumour types used is a
relevant contribution to the interpretation of [18F]FETA data. The
range of nitroreductase levels observed here, p2.5-fold, is unlikely
to influence radiotracer retention due to a square-root relationship
between the binding of 2-nitroimidazoles and cytochrome P450
reductase levels (Joseph et al, 1994). Rasey et al (1999) have shown
that the half-maximal inhibition of [18F]FETA binding by oxygen
is fairly similar (up to two-fold) across cell lines in vitro. This
observation may be explained by the small differences in
nitroreductase levels between cell lines. In the second instance,
we investigated the ability of [18F]FETA to detect acute changes in
tumour oxygenation. Carbogen breathing decreased the 60-min
tumour retention of [18F]FETA by 36%, in keeping with an 11%
decrease of hypoxic pO2 values measured by OxyLite electrodes.
This finding is similar to those reported previously for other 2-
nitroimidazoles (Aboagye et al, 1997b, 1998; Rasey et al, 2000;
Bentzen et al, 2002; Seddon et al, 2002) and demonstrates that
[18F]FETA can be used to detect acute changes in pO2.

PET studies performed in tumour-bearing mice demonstrated
the feasibility of imaging hypoxia in vivo. Qualitatively, the PET
images were in agreement with the quantitative tissue radioactivity
data determined by g-counting. It was also possible to perform
semiquantitation of the dynamic PET data by ROI analysis.
Interestingly, the tumour model with higher VEGF-expression
(HT1080/26.6) showed lower fractional retention of the radiotracer
compared to that with the lower VEGF-expression (HT1080/1-3C)
despite a higher delivery of [18F]FETA into the former. This
finding is in contradiction to the current dogma of ‘hypoxia

inducing VEGF through the expression of HIF-1a’ (Harris, 2002;
Semenza, 2003) and, thus the more hypoxic tumours being those
exhibiting higher levels of VEGF expression. This observation may
be explained in part by the lower (B10-fold half-maximal
inhibition) oxygen levels required to effect binding of 2-
nitroimidazoles to cellular macromolecules vs that required to
induce VEGF production (Leith and Michelson, 1995); in this
regard, both tumour models are sufficiently hypoxic to induce
VEGF production. The findings were, however, corroborated by a
higher vessel density (explaining the higher radiotracer delivery)
and a higher pO2 (explaining the lower fractional retention) in the
HT1080/26.6 model. The impact of these findings on radiation
sensitivity was that the HT1080/26.6 tumours were more sensitive
to radiation than the HT1080/1-3C tumours as demonstrated by a
lower clonogenic radiobiological hypoxic fraction of the former.
Since the pO2 (and radiobiological hypoxic fractions) of the human
tumour models used in this study have not been previously
reported in the literature, an assessment of this (as well as the
radiobiological hypoxic fraction for the HT1080 tumours) was
made; the high and low pO2 values obtained for EMT6 and RIF-1
tumours, respectively (Moulder and Rockwell, 1984), corroborate
our measurements.

Since the PET studies required the use of anaesthesia for
immobilisation, all other in vivo studies were performed under
anaesthesia. It is conceivable that most anaesthesia will decrease
clearance of radiotracers from the body and give rise to a
systematic increase in hypoxia levels within tumours. This may
explain the very high percentage of pO2 values o2.5 mmHg seen in
our experiments. These conditions have, however, been success-
fully used in other hypoxia experiments in mice to demonstrate
nitroimidazole retention in tumours (Aboagye et al, 1997b). In
translating this work into clinical studies one needs to bear in
mind the fact that patients would be un-anaesthetised. The level of
oxygenation may therefore be higher than that measured for the
mouse tumours.

In summary we have validated an advanced-generation 2-
nitroimidazole marker of tumour hypoxia in the mouse. Our
findings indicate that [18F]FETA has suitable physicochemical
properties and is stable to nonhypoxic degradation in vivo. We
have also demonstrated that the tumour retention of the
radiotracer is related to pO2 status and radiobiological hypoxia.
These properties, as well as the ability to image hypoxia (pO2

values at 1–10 mmHg) dynamically with PET at early time points
are attractive features that support the clinical development of
[18F]FETA.
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Höckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical,
biological, and molecular aspects. J Natl Cancer Inst 93: 266 – 276

Hollander PM, Ernster L (1975) Studies on the reaction mechanism of DT
diaphorase. Action of dead-end inhibitors and effects of phospholipids.
Arch Biochem Biophys 169: 560 – 567

Honess DJ, Bleehen NM (1995) Perfusion changes in the RIF-1 tumour and
normal tissues after carbogen and nicotinamide, individually and
combined. Br J Cancer 71: 1175 – 1180

Honess DJ, Hill SA, Collingridge DR, Edwards B, Brauers G, Powell NA,
Chaplin DJ (1998) Preclinical evaluation of the novel hypoxic marker
99mTc-HL91 (Prognox) in murine and xenograft systems in vivo. Int J
Radiat Oncol Biol Phys 42: 731 – 735

Horsman MR, Overgaard J (1992) Overcoming tumour radiation resistance
resulting from acute hypoxia. Eur J Cancer 28A: 2084 – 2085

Hoskin PJ, Saunders MI (1994) ARCON. Clin Oncol (Roy Coll Radiol) 6:
281 – 282

Ilangovan G, Li H, Zweier JL, Krishna MC, Mitchell JB, Kuppusamy P
(2002) In vivo measurement of regional oxygenation and imaging of
redox status in RIF-1 murine tumor: effect of carbogen-breathing. Magn
Reson Med 48: 723 – 730

Jeavons AP, Chandler RA, Dettmat CA (1999) A 3D HIDAC-PET camera
with sub-millimetre resolution for imaging small animals. IEEE Trans
Nucl Sci 46: 468 – 473

Jerabek PA, Patrick TB, Kilbourn MR, Dischino DD, Welch MJ (1986)
Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles:
potential in vivo markers of hypoxic tissue. Int J Radiat Appl Instrum
(A) 37: 599 – 605

Joseph P, Jaiswal AK, Stobbe CC, Chapman JD (1994) The role of specific
reductases in the intracellular activation and binding of 2-nitroimida-
zoles. Int J Radiat Oncol Biol Phys 29: 351 – 355

Kaanders JH, Wijffels KI, Marres HA, Ljungkvist AS, Pop LA, van den
Hoogen FJ, de Wilde PC, Bussink J, Raleigh JA, van der Kogel AJ
(2002) Pimonidazole binding and tumor vascularity predict for
treatment outcome in head and neck cancer. Cancer Res 62:
7066 – 7074

Koh WJ, Bergman KS, Rasey JS, Peterson LM, Evans ML, Graham
MM, Grierson JR, Lindsley KL, Lewellen TK, Krohn KA, Griffin WG
(1995) Evaluation of oxygenation status during fractionated radio-
therapy in human nonsmall cell lung cancers using [F-18]fluoromiso-
nidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:
391 – 398

Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C, Evans
S, Ibrahim H, Le QT, Terris DJ, Giaccia AJ (2000) Candidate genes for the
hypoxic tumor phenotype. Cancer Res 60: 883 – 887

Leith JT, Michelson S (1995) Secretion rates and levels of vascular
endothelial growth factor in clone A or HCT-8 human colon tumour cells
as a function of oxygen concentration. Cell Prolif 28: 415 – 430

Mannan RH, Somayaji VV, Lee J, Mercer JR, Chapman JD, Wiebe LI (1991)
Radioiodinated 1-(5-iodo-5-deoxy-beta-D-arabinofuranosyl)-2-nitroimi-
dazole (iodoazomycin arabinoside: IAZA): a novel marker of tissue
hypoxia. J Nucl Med 32: 1764 – 1770

Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors:
experimental techniques, methods of analysis, and a survey of existing
data. Int J Radiat Oncol Biol Phys 10: 695 – 712

Nordsmark M, Overgaard J (2000) A confirmatory prognostic study on
oxygenation status and loco-regional control in advanced head and neck
squamous cell carcinoma treated by radiation therapy. Radiother Oncol
57: 39 – 43

Nordsmark M, Overgaard M, Overgaard J (1996) Pretreatment oxygenation
predicts radiation response in advanced squamous cell carcinoma of the
head and neck. Radiother Oncol 41: 31 – 39

Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging
hypoxia. Eur J Nucl Med 22: 265 – 280

[18F]fluoroetanidazole for PET imaging of tumour hypoxia

H Barthel et al

2241

British Journal of Cancer (2004) 90(11), 2232 – 2242& 2004 Cancer Research UK

E
x
p

e
ri

m
e
n

ta
l

T
h

e
ra

p
e
u

ti
c
s



Powell ME, Collingridge DR, Saunders MI, Hoskin PJ, Hill SA, Chaplin DJ
(1999) Improvement in human tumour oxygenation with carbogen of
varying carbon dioxide concentrations. Radiother Oncol 50: 167 – 171

Rasey JS, Casciari JJ, Hofstrand PD, Muzi M, Graham MM, Chin LK (2000)
Determining hypoxic fraction in a rat glioma by uptake of radiolabeled
fluoromisonidazole. Radiat Res 153: 84 – 92

Rasey JS, Hofstrand PD, Chin LK, Tewson TJ (1999) Characterization of
[18F]Fluoroetanidazole, a new radiopharmaceutical for detecting tumor
hypoxia. J Nucl Med 40: 1072 – 1079

Rasey JS, Koh WJ, Evans ML, Peterson LM, Lewellen TK, Graham MM,
Krohn KA (1996) Quantifying regional hypoxia in human tumors with
positron emission tomography of [18F]fluoromisonidazole: a pretherapy
study of 37 patients. Int J Radiat Oncol Biol Phys 36: 417 – 428

Rasey JS, Nelson NJ, Chin L, Evans ML, Grunbaum Z (1990) Characteristics
of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res
122: 301 – 308

Rockwell S, Moulder JE (1990) Hypoxic fractions of human tumors
xenografted into mice: a review. Int J Radiat Oncol Biol Phys 19: 197 – 202

Ruth T, Wolf A (1979) Absolute cross sections for the production of 18F via
the 18O(p,n)18F reaction. Radiochim Acta 26: 21 – 25

Seddon BM, Honess DJ, Vojnovic B, Tozer G, Workman P (2001)
Measurement of tumor oxygenation: in vivo comparison of a lumines-
cence fibre-optic sensor and a polarographic electrode in the P22 tumors.
Radiat Res 55: 837 – 846

Seddon BM, Maxwell RJ, Honess DJ, Grimshaw R, Raynaud F, Tozer GM,
Workman P (2002) Validation of the fluorinated 2-nitroimidazole SR-
4554 as a non-invasive hypoxia marker detected by magnetic resonance
spectroscopy. Clin Cancer Res 8: 2323 – 2335

Semenza GL (2003) Angiogenesis in ischemic and neoplastic disorders.
Annu Rev Med 54: 17 – 28

Sharp SY, Kelland LR, Valenti MR, Brunton LA, Hobbs S, Workman P
(2000) Establishment of an isogenic human colon tumor model for
NQO1 gene expression: application to investigate the role of DT-
diaphorase in bioreductive drug activation in vitro and in vivo. Mol
Pharmacol 58: 1146 – 1155

Song CW, Lee I, Hasegawa T, Rhee JG, Levitt SH (1987) Increase in pO2 and
radiosensitivity of tumors by Fluosol-DA (20%) and carbogen. Cancer
Res 47: 442 – 446

Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C,
Tannapfel A, Sabri O (2003) 18)F]Fluoroazomycinarabinofuranoside
((18)FAZA) and [(18)F]Fluoromisonidazole ((18)FMISO): a comparative
study of their selective uptake in hypoxic cells and PET imaging in
experimental rat tumors. Nucl Med Biol 30: 317 – 326

Stratford IJ, Workman P (1998) Bioreductive drugs into the next
millennium. Anticancer Drug Des 13: 519 – 528

Tewson TJ (1997) Synthesis of [18F]fluoroetanidazole: a potential new
tracer for imaging hypoxia. Nucl Med Biol 24: 755 – 760

Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient
supply, and metabolic microenvironment of human tumors: a review.
Cancer Res 49: 6449 – 6465

Walton MI, Smith PJ, Workman P (1991) The role of NAD(P)H: quinone
reductase (EC 1.6.99.2, DT-diaphorase) in the reductive bioactivation
of the novel indoloquinone antitumor agent EO9. Cancer Commun 3:
199 – 206

Wilson HK (2003) A simplified synthesis of 2,3,5,6-tetrafluorophenyl 2-(2-
nitroimidazol-1-yl) acetate. J Labelled Compound Radiopharm 46:
511 – 513

Winski SL, Hargreaves RH, Butler J, Ross D (1998) A new screening system
for NAD(P)H : quinone oxidoreductase (NQO1)-directed antitumor
quinones: identification of a new aziridinylbenzoquinone, RH1, as a
NQO1-directed antitumor agent. Clin Cancer Res 4: 3083 – 3088

Workman P (1982) Lipophilicity and the pharmacokinetics of nitroimida-
zoles. In Advanced Topics on Radiosensitizers of Hypoxic Cells, Breccia A,
Rimondi C, Adams GE (eds). pp 143 – 163. Pienum Press: Amsterdam

Workman P, Brown JM (1981) Structure – pharmacokinetic relationships
for misonidazole analogues in mice. Cancer Chemother Pharmacol 6:
39 – 49

Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J,
Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J
(1998) United kingdom coordinating committee on cancer research
(UKCCCR) guidelines for the welfare of animals in experimental
neoplasia (second edition). Br J Cancer 77: 1 – 10

Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A,
Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ,
Harris AL (2000) Hypoxia-inducible expression of tumor-associated
carbonic anhydrases. Cancer Res 60: 7075 – 7083

Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA
(1995) Development of F-18-labeled fluoroerythronitroimidazole as a
PET agent for imaging tumor hypoxia. Radiology 194: 795 – 800

Young WK, Vojnovic B, Wardman P (1996) Measurement of oxygen
tension in tumours by time-resolved fluorescence. Br J Cancer 27(Suppl):
S256 – S259

Ziemer LS, Evans SM, Kachur AV, Shuman AL, Cardi CA, Jenkins WT,
Karp JS, Alavi A, Dolbier Jr WR, Koch CJ (2003) Noninvasive imaging of
tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur J Nucl
Med Mol Imaging 30: 259 – 266

[18F]fluoroetanidazole for PET imaging of tumour hypoxia

H Barthel et al

2242

British Journal of Cancer (2004) 90(11), 2232 – 2242 & 2004 Cancer Research UK

E
x
p

e
rim

e
n

ta
l

T
h

e
ra

p
e
u

tic
s


