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We investigate the dynamics and spatial distribution of land use
fragmentation in a rapidly urbanizing region of the United States
to test key propositions regarding the evolution of sprawl. Using
selected pattern metrics and data from 1973 and 2000 for the state
of Maryland, we find significant increases in developed and un-
developed land fragmentation but substantial spatial heterogene-
ity as well. Estimated fragmentation gradients that describe mean
fragmentation as a function of distance from urban centers confirm
the hypotheses that fragmentation rises and falls with distance
and that the point of maximum fragmentation shifted outward
over time. However, rather than outward increases in sprawl
balanced by development infill, we find substantial and significant
increases in mean fragmentation values along the entire urban–
rural gradient. These findings are in contrast to the results of
Burchfield et al. [Burchfield M, Overman HG, Puga D, Turner MA
(2006) Q J Econ 121:587–633], who conclude that the extent of
sprawl remained roughly unchanged in the Unites States between
1976 and 1992. As demonstrated here, both the data and pattern
measure used in their study are systematically biased against
recording low-density residential development, the very land use
that we find is most strongly associated with fragmentation. Other
results demonstrate the association between exurban growth and
increasing fragmentation and the systematic variation of fragmen-
tation with nonurban factors. In particular, proximity to the Ches-
apeake Bay is negatively associated with fragmentation, suggest-
ing that an attraction effect associated with this natural amenity
has concentrated development.

land use change � landscape metrics � spatial pattern � urban gradient �
urbanization

The subject of urban sprawl—its prevalence, causes, and ef-
fects—has been hotly debated in the United States for several

decades. For many, sprawl is a judgment about one or more aspects
of excessive urban development, e.g., cities that are too extensive
(1), employment that is too dispersed (2), or urban areas that are
not sufficiently dense (3). A dearth of fine-scale land use data has
prevented spatially explicit quantification of urban land use patterns
beyond the extent of a single county or urban area. Yet it is precisely
this fine-scale pattern with which the debate over sprawl and its
impacts is principally concerned—the lack of contiguous residential
development that increases public service costs; the spatial diffu-
sion of households and jobs that magnifies traffic congestion and
increases greenhouse gas emissions; and the fragmentation of
undeveloped land that alters habitat, degrades natural resources,
and eliminates functional open spaces.

This paper is principally concerned with testing key propositions
regarding the pattern and evolution of urban sprawl. To do so, we
would ideally use highly detailed data for multiple regions of the
United States. However, as we demonstrate in the next section, the
only consistent data that are available at a spatially disaggregate
level, the National Land Cover Dataset (NLCD), are systematically
biased against recording low-density residential development, par-
ticularly in nonurban areas. Even if these data did record low-
density urban land accurately, we would still be faced with the

dilemma of translating land cover data into meaningful estimates of
sprawl. Although land cover, defined in terms of physical charac-
teristics, can be observed with aerial photography and often inter-
preted successfully from satellite imagery, it is land use, defined in
terms of human activity, that is most relevant for the study of urban
patterns. Changes in land use often lead to changes in land cover,
but there is no one-to-one mapping (4–6). Nowhere is this ambi-
guity more severe than for low-density development, as the ratio of
impervious surface to vegetative cover is exceedingly small.

Because consistent, fine-scale data on land use are not available
for the United States, we turn to a more limited geographical area,
the state of Maryland, for which land use/land cover data are
available for two points in time, 1973 and 2000 [supporting infor-
mation (SI) Fig. 2]. Maryland underwent rapid urbanization during
this time period. The proportion of developed land in the State of
Maryland increased from 8.9% to 18.2% of the State’s total land
and of the 2,211 km2 of new development, low-density residential
land accounted for 62%. These large proportionate gains in low-
density development mirror development trends in urbanizing
regions across the United States (7).

Describing and explaining landscape patterns are two separate
endeavors, each posing their own difficulties. The latter involves
untangling the myriad of factors evolving at different spatial and
temporal scales, many of which are endogenously determined
within the same system that determines land use change. This
challenge is beyond the scope of our paper. Attempts to identify
causal mechanisms, however, depend first on careful measurement
and description. Thus, a goal of this paper is to identify important
empirical regularities with respect to land fragmentation that can be
used to guide and test process-based models of land use change.
Here our analysis underscores the importance of a spatially explicit
approach in which the full heterogeneity of land use patterns can be
explored.

Results
Dataset Comparisons. Our contention that the NLCD data are
inappropriate for measuring low-density development is based in
part on published literature (8, 9). Researchers (10, 11) have found
that NLCD accuracy declines significantly as the number of con-
tiguous cells of the same land cover class within a 3 � 3 cell window
around a target cell declines and as the number of different land
cover classes occurring in that 3 � 3 cell window increases.
Low-density, fragmented development at the urban–rural fringe is
characterized by both of these features. According to one study (7),
75% of residential development between 1994 and 1997 in the
United States occurred on lots of �1 acre. Given that the size of an
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NLCD grid cell is 900 m2 (�0.22 acre) and the average house leaves
a footprint of �200 m2, picking up low-density residential devel-
opment even at densities of one dwelling unit per acre requires
recognition of an impervious surface patch of no more than a
quarter of a cell in a field of 4.5 cells. Thus in theory, NLCD should
encounter difficulties in recognizing low-density development.

To investigate this claim empirically, we compare the 2001 NLCD
satellite imagery data with planimetric data that represent the
major sources of constructed surfaces (hereafter, HCP) for Howard
County, Maryland, an urbanizing county located between Wash-
ington, D.C., and Baltimore (SI Fig. 2). By overlaying the NLCD
and HCP data, the amount of building footprint, road footprint, and
parking lot footprint intersecting each NLCD 30 � 30 m cell is
calculated.§ Table 1 reports a comparison of developed cells
according to the HCP data and the percentage of those cells that
the 2001 NLCD data record as belonging to any developed cate-
gory. Success rates are reported by development density categories,
where the development density of each cell is determined by
Howard County parcel boundary data. The correspondence be-
tween NLCD and HCP data is quite good for high-density devel-
opment and for major roads and parking lots, with the NLCD
correctly reporting development for at least 80% of the developed
cells. However, the lower the development density, the lower is the
success rate. In particular, for the low-density development cate-
gory (0.5- to 5-acre housing lots), the NLCD recognizes only 26%
of developed cells. Errors of omission (those labeled developed by
the HDP data but not by the NLCD) exceed errors of commission
(those labeled developed by the NLCD but not by the HDP data)
by more than 2 to 1, suggesting that large amounts of development
are simply missed by the NLCD. Success rates by distance from the
nearest major city (Baltimore in this case) reveal that within 20
miles of the city center, errors of omission exceed those of com-
mission by only �30%, but between 20 and 32 miles from Balti-
more, the errors of omission exceed those of commission by more
than 4 to 1.

As an alternative to the NLCD data, we consider Maryland
Department of Planning (MDP) land use/land cover data from
2000, developed through a combination of aerial photography and
geocoded tax data. To assess its ability to recognize low-density
development, we compare MDP’s map for Howard County with the
HCP data and with Howard County’s digitized parcel boundary
map. The latter reflects the boundaries of owned parcels, not just
building footprints and, as such, land use can be ascribed to the
landscape.

This comparison must be based on a different approach, as the
MDP maps are made up of polygons drawn around land uses of
similar type. The third column of Table 2 reports the percentage of

buildings (using HCP data) found within any developed-use poly-
gon in the MDP maps, by type of land use. Almost 90% of all
buildings on residential lots of �0.5 acre and on commercial,
industrial, and institutional land (rows 1 and 2) are located within
MDP ‘‘developed’’ land use polygons. A full 80% of low-density
residential houses are similarly recorded as developed by MDP.

A comparison of Howard County parcel boundaries with the
MDP land use polygons provides an alternative means of evaluating
the latter. Almost 70% of acreage in low-density residential parcels
is identified as developed by the MDP maps. Surprisingly only 61%
of high-intensity acres is identified as developed by MDP, princi-
pally because several very large parcels made up almost entirely of
open space are actually owned by institutions or the public sector.
In terms of parcel acres, MDP errors of omission are twice as large
as errors of commission. However, the errors are largely due to an
inability to recognize from aerial photography the extent of parcels
in a particular use, as compared with a high reliability in correctly
registering the location of the structures on these large parcels.

Measuring Fragmentation. To examine the spatial pattern of sprawl
and its change over time, we identify a set of pattern metrics that
capture different dimensions of land fragmentation (Table 3): (i)
patch density, (ii) mean patch size, (iii) mean perimeter-to-area
ratio, (iv and v) contrasting edge length between developed and
undeveloped land, and (vi) mean dispersion of developed and
undeveloped land within a local area.¶ The first is a straightforward
measure of fragmentation at the patch level. The next two capture
the mean size and shape of patches, holding constant the total
number of patches. Decreases in the mean patch size of a given
(focal) land use reflect increases in the fragmentation when the
total amount of the focal land use is nondecreasing. Increases in the
mean perimeter-to-area ratio of a focal land use reflect either
increasing complexity of patch shapes or the addition of smaller-
than-average patches to the landscape. The fourth and fifth metrics
measure the interspersion of a focal and contrasting land use (e.g.,
developed and undeveloped land) by measuring the total length of
their shared border. Because the total edge increases with the total
focal land use area, regardless of its pattern, the measure is
normalized, first by the length of like edges of the focal land use
(contrasting edge ratio) and then by the total length of contrasting
and like edges (contrasting edge proportion).� The final metric
measures the mean proportion of a contrasting land use within a
given neighborhood of a focal land use cell. To measure develop-

§The 2001 NLCD includes four ‘‘developed’’ categories that vary in terms of percentage of
‘‘constructed materials’’: �20% (developed open space, including large-lot, single-
family), 20–49% (low-intensity, single-family), 50–79% (medium-intensity, single-family),
and 80–100% (high-intensity, multifamily and commercial/industrial). For ease of presen-
tation, we aggregate these into one ‘‘developed’’ category.

¶The first three measures are frequently used in landscape ecology (12–15) to capture
various dimensions of fragmentation based on patch characteristics. The contrasting edge
measures are also commonly used, although we normalize these in a new way to make the
metric unitless. These measures have been applied to measuring land use fragmentation
in urbanizing landscapes [e.g., see refs. 16–20 and several of the articles in the special issue
introduced by Nagendra et al. (21)]. The last measure is the statistic used by Burchfield et
al. (22) to measure residential scatteredness.

�This normalization requires a raster representation (see Data and Methods). We also
computed a contrasting edge measure weighted by total area of the focal land use. This
produced very similar results.

Table 1. Comparison of 2001 NLCD land cover and HCP data

Actual land use*
(density or road type)

No. of developed cells
(from 2001 HCP data)†

% labeled developed
by 2001 NLCD

Nonresidential development, high-density residential 19,639 83
Medium-density residential (0.125- to 0.5-acre lots) 28,297 62
Low-density residential (0.5- to 5-acre lots) 26,836 26
Very low density, including farmsteads (�5 acres) 6,720 8
Federal and state roads, parking lots 35,792 80
County and smaller roads 57,494 56
Undeveloped (530,494 cells) 6

*Cells with multiple land uses are attributed to the dominant category; 5% minimum impervious surface.
†Grid cells are 30 � 30 m.
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ment dispersion, the relative number of undeveloped (contrasting)
cells within a given neighborhood of each developed (focal) cell is
summed, and the mean value across all developed cells is taken. We
also reverse the contrasting edge and dispersion measures, defining
undeveloped land as the focal and development as the contrasting
land use. The entire set of pattern statistics is applied to the 1973
and 2000 MDP maps for the state of Maryland. Residential and
nonresidential developed land uses are grouped into a single
developed category and agricultural and forest land uses comprise
the undeveloped use. In addition, the fragmentation of low- and
higher-density residential land uses is measured by using a land use
map in which patches belonging to each of these classes are treated
as distinct.

Land conversion in the state of Maryland subsequent to 1973
led to a substantially more complex land use pattern by 2000**
(Table 4). The first three measures of pattern reveal substantial
increases in fragmentation, with higher-density residential de-
velopment exhibiting even more dramatic changes in mean patch
size and shape complexity than low-density development. The
contrasting edge measures also show dramatic increases in
fragmentation, but here low-density residential changes domi-
nate. These results reflect a key difference between the patch-
and edge-based measures, as the former do not capture the
relative spatial distribution of patches. The smaller changes in
the contrasting edge of high-density residential land indicate that
new high-density residential development often occurred con-
tiguous to other development and thus, despite its substantially
smaller patch size, conversion of land to high-density residential
development did not contribute substantially to increases in
fragmentation between developed and undeveloped land. Just
the opposite is true of low-density residential land. The high level
of contrasting edges in 1973 indicates that the then existing
pattern of low-density residential development was already much
less contiguous than the high-density pattern. Relatively small
changes in patch size combined with the substantial increases in
contrasting edges show that new low-density residential devel-
opment occurred in an even less contiguous pattern than it did
previously. In contrast to the patch- and edge-based measures,
the dispersion statistic does not reflect dramatic changes in the
development pattern and, if anything, indicates that the relative
dispersion of residential land diminished somewhat over time.
Although undeveloped land is much less fragmented than de-
veloped land, precipitous declines in the mean size of undevel-
oped land patches and large percentage increases in the relative
amount of contrasting edges point to rapid changes in the pattern
of agricultural and forest land. In contrast to the mean dispersion
of development, the mean dispersion of undeveloped land
relative to neighboring development increased markedly. Taken
together, the statistics reported in Table 4 are consistent with a

fixed landscape filling up with more distinct and complex
patches, demonstrating increasing fragmentation.

Spatial Heterogeneity. Because we are primarily interested in the
spatial distribution of fragmentation and its changes over time,
we use the contrasting edge proportion metric (Table 3), which
when differenced over time, quantifies both infill, defined here
as new development that is contiguous to existing development
(negative values), and increased fragmentation (positive values)
for a given area. The statistic is calculated for each nonoverlap-
ping 2 � 2 km window in the landscape, yielding 6,647 obser-
vations for a given point in time. This measure is regressed on
distance to the nearest urban center, measured as the distance
(km) along the roads network from the window centroid to the
edge of the nearest city with 10,000 or more population. Because
our fragmentation measure reflects the interspersion between
developed and undeveloped land uses, it will reach a maximum
where the mix of undeveloped and developed land is highest: the
urban–rural fringe. A squared term is included to account for
this nonlinear association. By using both spatial sampling and a
parametric correction to account for spatial error dependence in
this and all subsequent estimations, the model is estimated
separately for 1973, 2000, and the change in fragmentation during
this time period (n � 2,007). Fragmentation is found to vary
significantly and nonlinearly with distance from urban centers. The
null hypothesis of equality between the 2000 and 1973 parameter
estimates is rejected by using standard t tests (Table 5).

The specific shapes of the estimated gradients are plotted by
using the predicted fragmentation values as functions of distance
to the nearest city boundary (Fig. 1). The mean level of
fragmentation is higher in 2000 than in 1973 along the entire
distance gradient. The level of peak fragmentation is 60%
greater in 2000 as in 1973 and shifted outward from a distance
of 40 km in 1973 to 55 km in 2000. Fragmentation increased the
most between 1973 and 2000 in nonurban areas located �80 km
from the nearest city.

To investigate the link between fragmentation and land use,
we regress the change in fragmentation on the percentage
change between 1973 and 2000 in selected land use categories
(n � 2,007). With the exception of nonresidential urban changes,
which is not significant at the 0.05 level, the estimates (SI Table
6) are all statistically significant at the 0.001 level and demon-
strate the importance of low-density residential land: A 1%
increase in the amount of low-density residential land within a
2 � 2 km area is associated with an average 0.14 increase in the
proportion of contrasting edges, as quantified by our fragmen-
tation measure. In comparison, a 1% increase in high-density
residential land is associated with an average 0.04 reduction in
the proportion of contrasting edges.

Finally, we investigate the association of the 2000 fragmenta-
tion pattern with other spatially heterogeneous landscape fea-
tures by using a multiple regression model, estimated with a
spatial subsample of 2 � 2 km windows that contained any
developed land as of 2000 (n � 697). In addition to distance from

**The spatial resolution of the 2000 data was modified to improve comparison between
the 1973 and 2000 data. See Data and Methods for details.

Table 2. Comparison of 2000 MDP land use data with HCP and Howard County parcel boundary data

Actual land use*
(density)

No. of buildings
(from 2000 HCP data)

% labeled
developed

by MDP

Acres developed
(from 2000 Howard County

parcel boundary data)

% labeled
developed

by MDP

Nonresidential development, high-density residential 10,830 86 17,259 61
Medium-density residential

(0.125- to 0.5-acre lots)
30,434 91 9,043 91

Low-density residential (0.5- to 5-acre lots) 20,701 80 28,309 69
Very low density, including farmsteads (�5 acres) 7,451 29 9,099 39
Undeveloped (85,614 acres) 11

*Roads are not an MDP category and are omitted from the analysis.
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urban centers, two other distance variables measure proximity to
potentially important features of the built and natural landscape:
distance to the nearest major road (clearly an endogenous
variable) and distance to the Chesapeake Bay coastline. Binary
indicator variables are included to represent land with soils that
are well suited for development, poorly draining soils, and slopes
steeper than 15% grade. Lastly, we include the minimum lot size
required for residential development as determined by zoning, a
variable that is likely endogenous. The model explains 25% of
the total variation in the 2000 fragmentation pattern (SI Table
7). Fragmentation is found to increase significantly with distance
from the Chesapeake Bay coastline (significant at the 0.001
level) and with distance to the nearest road (although significant
only at the 0.07 level). Two of the three physical land attributes,
land that is well suited for development (0.01 level) and poorly
draining soils (0.001 level), are found to be positively and
significantly associated with fragmentation, as is minimum lot
size zoning (0.001 level).

Discussion
Our investigation of sprawl, measured as the fragmentation of
developed and undeveloped land use patches, suggests two
critical characteristics of areas that experienced the largest gains
in fragmentation: (i) they are located relatively far from urban
areas and (ii) they experienced concomitant increases in their
proportion of low-density residential land. The results under-
score the linkages among fragmentation, low-density develop-
ment, and exurban growth and the limitation of measuring
sprawl with data that do not fully capture these features. Our
comparison of the HCP data and the 2001 NLCD data provides

strong support for what others have found at a more general level
by using the 1992 NLCD data: the inability of these data to
recognize low-density development, which we find to be the
essential footprint of sprawl.

In examining the usefulness of various pattern measures
intended to measure fragmentation, we find some distinct dif-
ferences in the trends reported by the patch, edge, and dispersion
measures (Table 4). Unlike the patch metrics, the edge and
dispersion statistics are similar in that both consider a focal land
use relative to a contrasting one. However they differ in their
implicit weighting of the landscape. The dispersion statistic
measures the amount of undeveloped land within a local neigh-
borhood of each developed cell and is thus conditional on the
location of development. The implication is that the mean value
of this statistic is weighted toward higher-density areas that
contain a greater number of developed cells. However, the
edge-based measures do not weight any particular area of the
landscape, as each edge length is counted only once regardless
of its location. Thus, the contrasting edge measures are more
likely to reflect changes in land use patterns in low-density areas,
precisely the areas that are most strongly associated with frag-
mentation increases.

These results call into question the analysis by Burchfield et al.
(22) and their conclusion that ‘‘the extent of sprawl remained
roughly unchanged between 1976 and 1992.’’ Their analysis relies
on NLCD data that are systematically biased against recording
low-density development and on the mean dispersion measure,
which, when applied to developed land, undercounts the pattern
of low-density development. Any such assessment of sprawl is, at
best, incomplete and the question remains: How has the extent
of sprawl changed over time?

Table 3. Explanation of pattern measures

Pattern measure Definition Explanation

Patch density nk

A
nk � total number of patches in land use k; A � total landscape area; units � 1/km2

Mean patch size �i aik

nk

aik � area of patch i with land use k; nk � total number of patches in land use k;
units � km2

Mean perimeter-to-area ratio
�i

lik
aik

nk

lik � total perimeter length of patch i with land use k; units � m/km2

Contrasting edge ratio ekj

ekk

ejk � total length of edge shared between cells with the focal land use k and
contrasting land use j; ekk � total length of edge shared between cells with the
same land use k; measured as the summation of lengths of 100 m � 100 m cells

Contrasting edge proportion ekj

ekj � ekk

Same definitions as above; varies between 0 and 1

Mean dispersion �i pjik

nk

pjik � proportion of cells of contrasting land use j that are within a specified
distance of cell i with focal land use k; nk � total number of cells with land use k;
varies between 0 and 1

Table 4. Aggregate land use pattern measures

Developed land use pattern
Undeveloped land use

patternAll development High-density residential Low-density residential

Pattern measure 1973 2000 % change 1973 2000 % change 1973 2000 % change 1973 2000 % change

Patch density 0.14 0.33 132.0 0.04 0.11 157.2 0.12 0.33 172.9 0.03 0.06 86.5
Mean patch size 0.60 0.52 �14.3 0.94 0.56 �40.4 0.27 0.25 �4.3 25.74 12.24 �52.4
Mean perimeter-to-area ratio 13.23 15.02 13.5 11.31 14.46 27.8 13.68 16.10 17.7 13.78 17.27 25.4
Contrasting edge ratio* 0.51 0.81 60.5 0.13 0.16 25.8 0.53 0.86 63.1 0.03 0.09 177.8
Contrasting edge

proportion*
0.22 0.35 54.9 0.06 0.08 37.2 0.21 0.35 63.6 0.03 0.06 138.8

Mean dispersion* (1 km2) 0.37 0.38 2.7 0.23 0.21 �10.1 0.57 0.53 �6.3 0.03 0.08 131.9
Mean dispersion* (25 km2) 0.52 0.50 �3.0 0.39 0.33 �15.4 0.70 0.65 �7.2 0.07 0.12 62.5

*For developed (residential) land use measures, focal land use � developed (residential), and contrasting land use � undeveloped; for the undeveloped land
use measures, focal land use � undeveloped, and contrasting land use � developed. Refer to Table 3 for pattern measure definitions.
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Our analysis (Table 5 and Fig. 1) reveals systematic variation
in fragmentation with distance from urban centers and a signif-
icant upward and outward shift in the peak level of fragmenta-
tion. The nonlinear shape of the fragmentation gradient is
consistent with the basic urban economic model’s prediction of
a negative density gradient (23–25) and the outward shift in peak
fragmentation is consistent with the application of this model to
a growing region. However, we find very little evidence that the
evolution of sprawl conforms to the dynamic extension of this
basic model (e.g., refs. 26 and 27), which predicts temporary
patterns of leapfrog development that diminish over time be-
cause of development infill. Rather than outward increases in
sprawl balanced by infill development, the results show large and
statistically significant increases in the fragmentation gradient at
every distance except those areas that are within or immediately
adjacent to a city boundary. In addition, we find that the largest
increases in fragmentation occurred in areas located far, �80
km, from urban centers. These results are consistent with the
hypothesis that the diminished pull of urban centers, e.g., due to
declining transportation costs (3), relocation of jobs to suburban
areas (28), central city fiscal and social problems (29), and
advances in communications and information technologies (30),
as well as the subsequent growth in exurban areas (31–33), has
led to a substantial increase in the amount and spatial extent of
sprawl.

Other explanations of land use fragmentation center on
physical land heterogeneity (34–36), land use externalities (14,
37–40), and government policies, including roads (41) and
large-lot zoning (42, 43). Results from the multiple regression
model (SI Table 7) confirm the significance of heterogeneous
soil and slope characteristics and the importance of large-scale

natural features. Proximity to the Chesapeake Bay is negatively
associated with fragmentation. Because the Bay is located away
from most of the urban areas, this suggests an attraction effect
associated with the coastline that has concentrated development,
a result that is consistent with other empirical evidence of
large-scale natural amenities (44–46).

In examining the influence of roads and zoning, two policy
variables that are clearly endogenous to the development pro-
cess, we find that proximity to roads is associated with reduced
fragmentation, but the estimate is not significant at the 0.05 level.
However, larger minimum-lot-size zoning is associated with
increases in fragmentation. We use the term ‘‘endogenous’’ to
indicate that with these covariates in particular, we are unable to
identify the direction of causality. Because roads follow devel-
opment and development follows roads (47), a positive estimate
is consistent with concentrated development attracting roads as
well as roads spurring concentrated development. Likewise,
although zoning affects the pattern and likelihood of develop-
ment (48, 49), zoning changes are also responsive to the land
market (50). Here we find a result that is consistent with
minimum lot size increasing fragmentation, but it’s unclear
whether this result would hold once the endogeneity of zoning
is controlled. It is possible, for example, that large-lot zoning may
actually reduce fragmentation among land parcels because with
larger lots each house provides its own open space amenity (51),
thus reducing the ‘‘repelling’’ effects of neighboring develop-
ment that induce fragmentation (38).

Given that Maryland is one of the most urbanized states in the
United States, is it reasonable to extrapolate our results to other
regions of the United States? As we have discussed, the factors
that we find to be significantly related to land use fragmentation
are consistent with much of the related empirical evidence on
urbanization. These findings provide grounds for hypothesizing
that the dynamics of sprawl and its correlates in other regions of
the United States may be similar to those we document here, but
ultimately this remains an empirical question.

Data and Methods
Data Description. For a complete description of the data, see the SI Appendix.
1973 and 2000 MDP land use data. These are vector data derived from aerial
photography (52, 53). Developed categories include residential densities of
0.2–2 dwelling units per acre (low density); 2–8 dwelling units per acre
(medium density); �8 dwelling units per acre (high density); and nonresiden-
tial development. Although the published minimum mapping unit for the
1973 and 2000 MDP data is 10 acres, the 2000 data were augmented by tax
assessment data, which resulted in a substantial number of land use polygons
�10 acres. For comparison purposes, we adjusted the minimum polygon size
by dissolving all polygons �10 acres and replacing them with their majority
neighboring land use. This adjustment reduces the absolute level of fragmen-
tation recorded by the 2000 data but is necessary for comparability of the
datasets.
2001 NLCD land cover data. These are raster data derived from remotely sensed
Landsat Thematic Mapper (TM) satellite imagery with a spatial resolution of
30 � 30 m2 (54). Urban land is classified as developed open space (�20%
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Fig. 1. Predicted fragmentation gradients.

Table 5. Spatial error models of fragmentation and distance to urban centers

Estimate (SE)

Variable 2000 1973 2000 – 1973 t statistic

Constant 0.21299 (0.01857) 0.1900 (0.0193) 0.0218* (0.0208) 30.9
Distance to nearest urban center 0.0064 (0.00083) 0.0028 (0.0009) 0.0037 (0.00094) 109.6
(Distance to nearest urban center)2 �0.00006 (0.00001) �0.00003 (0.000007) �0.00002 (0.000008) �77.5
Spatial error correlation coefficient 0.3470 (0.0274) 0.3642 (0.0270) 0.2669 (0.0293) —
Moran’s I with residuals �0.0126 (P � 0.208) �0.0116 (P � 0.240) �0.0066 (P � 0.336) —
R2 0.154 0.139 0.078 —

Dependent variable: proportion of contrasting edges within a 2 � 2 km window; n � 2,007; W � inverse distance weighting function
with 5,000-m maximum cutoff; all coefficients are significant at the 0.005 level except for *, which is not significant. t test of null
hypothesis: �̂2000 � �̂1973 � 0.
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impervious cover), low-intensity developed (20–49% impervious cover), me-
dium-intensity developed (50–79% impervious cover), and high-intensity de-
veloped (�80% impervious cover). The analysis reported in Table 1 aggregates
these into one ‘‘developed’’ category.
2003 Howard County parcel boundary and 2003 HCP data. The parcel boundaries
(55) are geocoded versions of the county’s tax maps that delineate the
boundaries of all privately and publicly owned parcels. These vector maps are
linked to the tax assessment database that includes an array of attribute data.
Given the parcel size and use, each parcel is assigned to one of the following
categories: nonresidential or high-density (more than eight dwelling units per
acre) residential use, medium-density residential (two to eight dwelling units
per acre), low-density residential use (fewer than two dwelling units per acre),
very low density (houses on �5 acres), and undeveloped. The HCP data (56)
include footprints of all structures, parking lots, and roads in the county. In
both cases, the data can be linked with construction dates, allowing adjust-
ment of the datasets to be comparable with the 2001 NLCD and 2000 MDP
data. For comparison, both datasets were overlaid with the 2001 NLCD 30 �
30 m grid. A minimum of 5% impervious surface was required for a cell to be
classified as ‘‘developed’’ according to the HCP source.

Statistical Methods. We follow well established methods from landscape
ecology (12–15) to quantify land use patterns based on patches, where a
‘‘patch’’ refers to a discrete and contiguous area of the same land use. The
measures of contrasting edge are normalized versions of total edge contrast
statistics. This normalization requires a raster representation of the landscape,
so that the edges between contiguous cells belonging to the same focal land
use can be summed to derive a measure of like edges. We used a 100 � 100 m
grid to perform the calculations for both the contrasting edge proportion and
mean local dispersion statistics. ArcInfo software (57, 58) was used to perform
all landscape metric calculations. As detailed elsewhere (e.g., ref. 59), land-
scape metrics are subject to certain limitations, including reliance on categor-
ical data, scale dependence, and aggregation bias. Our measure of contrasting

edge is subject to these same limitations. In addition, because it is based on
raster data, the length of edge is biased upward (12). However, the normal-
ization by ‘‘like’’ edges offsets this bias.

Spatial error autocorrelation is found to be highly significant in all three of
the regression models (Table 5 and SI Tables 6 and 7). To control for this
dependence, a subsample is drawn in which the nearest neighbors of ran-
domly drawn observations are omitted from the sample. Despite this, mod-
erate levels of spatial error dependence persist, and thus we control for the
remaining spatial error autocorrelation using a spatial error model. We also
estimated spatial error models with the full sample, but the parametric
correction did not fully eliminate the error correlation. The form of the spatial
error dependence is assumed to follow a first-order, autoregressive process: �

� �W� � �, where � is a vector of spatially correlated errors, � is a spatial error
autocorrelation coefficient that is estimated, W is an N � N inverse distance
weights matrix defined with a maximum cutoff of 5 km, and � is a vector of
i.i.d. errors. We consider different distance decay specifications of the ele-
ments of W and also estimate the model with different spatial subsets and find
the results to be robust to both. In each case, a test of the residuals using
Moran’s I indicates no further spatial error dependence. GeoDa spatial anal-
ysis software (60) was used to construct spatial weights matrices, estimate the
spatial error models, and perform Moran’s I tests of significance.
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