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ABSTRACT We examine decision making in two-person
extensive form game trees using nine treatments that vary
matching protocol, payoffs, and payoff information. Our
objective is to establish replicable principles of cooperative
versus noncooperative behavior that involve the use of sig-
naling, reciprocity, and backward induction strategies, de-
pending on the availability of dominated direct punishing
strategies and the probability of repeated interaction with the
same partner. Contrary to the predictions of game theory, we
find substantial support for cooperation under complete
information even in various single-play treatments.

We use variations on a relatively transparent, two-person
extensive form bargaining game to examine principles of
self-evident play (1) using experimental analysis. Our game is
transparent if players can be expected to understand the
relationship between the possible sequences of plays with their
counterpart and the resulting payoffs which can be achieved.
However, developing strategy for a relatively transparent game
may not be self-evident, since it requires players to be confi-
dent about their counterparts actions and reactions. So, when
are players likely to be mutually confident?
Evolutionary psychology provides one approach to answer-

ing this question. Hoffman et al. (2) and the references therein
give a more extended discussion of the role of evolutionary
psychology in explaining many economics experiments that
exhibit anomalous behavior relative to standard theory. While
economic theory assumes that individuals employ general
purpose consciously cognitive algorithms to optimize gains in
any situation, evolutionary psychology assumes that individu-
als deploy domain-specific cognitive algorithms, with different
algorithms being used for different situations, often in non-
conscious ways. Economic theory disciplines our thinking by
requiring behaviors that maximize individual utility, whereas
evolutionary psychology disciplines our thinking by requiring
blueprints for behavioral activity which adapt under natural
selection. Of course the relative value of these blueprints from
nature depends on their subsequent development by cultural
interaction (nurture) and a continuing evaluation of behav-
ioral success through experience.
In this paper we address the following question: Can we use

principles from game theory, experimental economics, and
evolutionary psychology to better understand what is self-
evident to players playing our extensive form games?
Data and experiment instructions reported in this paper are

available by request (http://www.econlab.arizona.edu).

Principles of Behavior

The fundamental principles that underpin the propositions we
examine experimentally can be stated as follows:
(i) Nonsatiation: Players prefer more money to less.

(ii) Dominance: Given a choice between two strategies, one
of which yields potential payoffs to a player that strongly
dominate those of the other, the dominating strategy will be
chosen.
(iii) Backwards induction: In a sequential-move game tree

(as in Fig. 1), each player will analyze the game by applying the
dominance principle to the last potential subgame, then the
penultimate subgame, and so on back through the full game.
(Note, in games played with perfect information, such as Fig.
1, every decision node begins a subgame.) This principle allows
subjects to interpret the credibility of implied threats and
promises.
Single-play game theory is about anonymous strangers, who

meet once, interact strategically by applying the principles of
dominance and backward induction, and never meet again (3,
4). These strong conditions are necessary to control for the
effect of a history and a future external to the game in question
but relevant to the current outcome. Without these controls on
information, it would be extremely difficult to analyze a game
with any confidence that the analysis can be restricted to that
game.
(iv) The Folk theorem (reputations): Repeated play makes

endogenous a history and a future that can be used to enforce
threats, keep promises, and maintain credibility. Currently,
game theory cannot predict repeated play outcomes, since a
multiplicity of outcomes can be supported by some particular
admissible trigger threat or punishment strategy. Neither can
it predict which reputational equilibrium will occur. We will
illustrate this below using game 1 in Fig. 1.
Repeated play, where players have incomplete information

about the characteristics of their counterpart, enables players
to build reputations as individuals with particular sets of
characteristics (or types) who will punish or reward to achieve
cooperation.
(v) Reciprocity: Contrary to the above principles, we can

hypothesize that subjects exhibit a ‘‘habit of reciprocity’’: a
specialized mental algorithm (5, 6) in which long-term self-
interest is best served by promoting an image both to others
and yourself that cheating on cooperative social exchanges
(either explicit or implicit) is punished (negative reciprocity),
and initiation of cooperative social exchanges is rewarded
(positive reciprocity). While some players may be sensitive to
the difference between single and repeated game incentives in
applying the reciprocity principle, other players will expect
trust (cooperation without the option of punishing defection)
to be rewarded by trustworthy responses even in single-play
games. Still more players will initiate cooperation when de-
fection can be punished, provided their own cost of punish-
ment is not too high. Evolutionary psychology cannot currently
predict the initial relative strength of the reciprocity algorithm

Abbreviation: SP, subgame perfect.
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within a player population, or the short-run stability of this
behavior within a particular set of repeated interactions.

Experimental Design

In our experiments, we control for certain factors that either
theory or empirical research suggests are likely to affect
game-playing behavior. These factors are the presence or
absence of the direct ability to punish noncooperative behavior
and the protocol used to match players during repeat inter-
actions. By varying these factors, we expect to learn under what
conditions dominance or reciprocity is the mutually self-
evident principle of play. There are many experiments where
players fail to play dominating strategies; instead they seem to
be using the principle of reciprocity. But these experiments
typically do not offer players the choice between subgames
where dominance alone is the principle of choice or subgames
where reciprocity competes with dominance as the principle of
choice. For example, in standard ultimatum (3) and investment
(7) games, dominance clearly competes with reciprocity as the
principle of choice, since there is no alternative for first movers
except to make decisions that must be conditioned by the
reciprocity of second movers. In our design, the second mover,
who must make the decision whether or not to trust his
counterpart (in some treatments) or to punish his counterpart
(in other treatments), now has the option to choose instead a
subgame where the dominance principle is self-evident.
The Constituent Games: Analysis and Payoff Issues. The

constituent games studied in this paper are shown in Fig. 1. A
play of the game begins with player 1 moving at decision node
x1. Players alternate making moves down the game tree until
a payoff box is reached. The player identification at the upper
left of each decision node indicates which player moves at that
node. The left number in each payoff box is player 1’s payoff,
while the right number is player 2’s payoff. In the text we
denote payoffs as ordered pairs with player 1’s payoff first and
player 2’s payoff second. For example, if player 1 moves right
at x1 the game ends at the outcome with the maximum joint
payoff, giving 35 to player 1 and 70 to player 2, denoted [35,
70].
In game 1 cooperation can lead to the largest symmetric

outcome resulting in the payoffs [50, 50]. To reach [50, 50],
player 2 must move left at x2. But if player 2 moves left, player
1 can defect by moving down at x3, making [60, 30] player 2’s

best choice. Alternatively, player 2 could incur a costly choice
and directly punish player 1 by choosing to move down in the
subgame at x5. But this direct punishment strategy is subgame
dominated by the strategy of choosing left at x5. This allows us
to ask if subjects play subgame-dominated strategies.When the
constituent game is repeated, players 2 can avoid playing
dominated punishing strategies and follow an indirect, indi-
vidually rational, trigger strategy: if player 1 defects in repe-
tition t, then player 2 moves left at x5, but right at x2 in
repetition t 1 1, punishing player 1 with at least the subgame
perfect outcome [40, 40], then, in repetition t 1 2, returns to
playing left at x2. By using this strategy every time player 1
defects, player 2 avoids the more costly direct punishment
outcome [20, 20]. But for player 1 to be made strictly worse off,
player 2 must punish, or credibly threaten to punish, right at
x2 more than once for each defection, since a single punish-
ment gives player 1 (60 1 40)y2 5 50.
Game 2 is identical to game 1, except that we have inter-

changed the payoffs [60, 30] and [50, 50], thus removing the
threat of direct punishment. This allows us to ask if trust,
unsupported by a direct punishment option, affects the fre-
quency of cooperation. In either game 1 or 2, the anticipated
failure of cooperation may result in player 2 moving right at x2.
Once player 2 moves right, player 1 should reason that it is in
both their interests to reach [40, 40]. We will call this outcome
SP, since it is the subgame perfect outcome (8). In both games,
the cooperative outcome [50, 50] and SP outcome (40, 40) are
symmetric, thus controlling for any payoff equity motivations
in subject choice.
The above discussion and the questions we pose for exper-

imental investigation make it clear why we selected the par-
ticular three payoffs on the left and the three on the right in
constituent games 1 and 2. But why do we choose the play-
stopping outcome [35, 70] at the top?
First, it provides an outside option that minimizes the

multiple-move cost of transacting. Second, for player 1, it
provides an outcome only five units inferior to the SP outcome.
Therefore it may be a subjectively rational outcome. If players
1 in the population want to avoid tedious multiple moves, risk,
and puzzling about what their player 2 counterparts will do and
incur a ‘‘sure thing’’ opportunity cost of only five units, then we
will observe lots of right moves at x1. The relative payoffs
available at top right allow one to examine the background
conditions under which game theoretic analysis becomes rel-
evant. Third, when any of the constituent games are repeated,
top right is a Nash equilibrium under a strategy in which player
2 always moves right at x2 and down at x6. This gives player 1
the individually rational payoff 15, and the self-interested
option to subsequently move right at x1.
This leaves the outcomes [0, 0] at nodes x7 and x8 to be

explained under repeated play. Since [20, 20] at x7 and [15, 30]
at x8 constitute punishing payoffs, why do we add the vindictive
outcome [0, 0] at both nodes? We interpret choosing down at
x7 or x8 by player 1 as a form of escalation: ‘‘if you are going
to choose a punishing strategy, I will simply counterpunish.’’
On the left, this is irrational escalation. If by moving down at
x7, player 1 is telling 2 not to punish, player 2 is not rationally
going to learn to move left at x2, then accept defection at x3.
Rather, player 2 seems more likely to conclude that player 1
is not educable; the rational lesson is to simply move right at
x2 on subsequent plays and avoid such escalation on the left
side of the tree. At x8, moving down may be a form of rational
escalation in which player 1, seeing that player 2 is attempting
to force a right move at x1, signals that she is prepared to use
deterrence tactics to neutralize player 2’s use of this strategy.
Such counterpunishment is unlikely, since we think it unlikely
that players 2 will use strategies designed to achieve [35, 70] in
the first place.
Matching Protocols. When Selten and Stoecker (9) ran-

domly paired anonymous players in ten repeated plays of a

FIG. 1. Game 1 in extensive form with initial vertex x1. Players 1
and 2 take turns moving until a payoff box is reached. Player 1 receives
the first amount, player 2 the second. Game 2 is identical to game 1
except the payoff boxes [60, 30] and [50, 50] are reversed.
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prisoner’s dilemma game, they found that cooperation begins
to unravel. This suggests that in the dominant strategy pris-
oner’s dilemma, experience causes players to update their
beliefs by giving less weight to the existence of types who would
cooperate. If they believe that it is more likely that their
opponent is only pretending to be a cooperative type, then
subjects defect sooner in anticipation of a defection by their
counterparts. A similar slow convergence to the Nash equi-
librium was found by McCabe (10) in a six-period fiat money
game, and by Smith et al. (11) in a 15-period laboratory stock
market. Thus, for finitely repeated games, there is a body of
experimental literature that shows that the backward induction
Nash equilibrium predicted by game theory does occur when
players gain sufficient experience, and cooperation is strate-
gically difficult or costly to attain. In this paper, we investigate
players’ ability to cooperate in two-person extensive form
games, under single play or repeated play where the length of
the supergame is unknown.
We examine four matching protocols for pairing players

when play is repeated. (Refer to Table 1). The protocol itself
is always common information to all players. In single protocol,
subjects play a randomly chosen counterpart once and then the
experiment is over. The single play design allows us to ask if
cooperation is possible without repeat interaction. Game
theory predicts no: players should end at SP. But reciprocity
theory implies that some players may be programmed by
culture (or the biology of their minds) to attempt cooperation
in single play as a habitual long-term strategy that increases the
individual’s long-term payoff. In repeat single protocol, sub-
jects play each counterpart in the population exactly once, with
their own role alternating between player 1 and player 2. This
protocol allows some learning about the sample while con-
trolling, in theory, for repeated game effects. Again game
theory predicts SP. In single 1 exp, experienced subjects from
repeat single 1 return to the laboratory on a different day for
a single-play session. Do increased experience and single-play
conditions increase support for the game theoretic SP out-
come?
In random matching, each time the constituent game is

played, subjects are randomly assigned a role, player 1 or
player 2, and are randomly paired. This protocol maximizes the
number of possible role pairings for any fixed sample and
makes it difficult to implement repeat game strategies, since
such responses are diffused through the entire sample. In both
repeat single and random matching, subjects remain anony-
mous and are not given their counterpart’s history.
In same pairings, subjects keep the same counterpart and

role throughout play. This design maximizes the opportunity
for coupling: learning about one’s counterpart and implement-
ing repeated game strategies.
By considering behavior across the four protocols (single,

repeat single, random, and same) using a between-players
design, we can ask if cooperation improves as you increase the
probability of playing the same counterpart as conjectured by
the Folk theorem.

Treatments and Procedure.Our treatments are summarized
in Table 1. For convenience, we adopt the convention of
naming a cell by the matching treatment and the number of the
game. Thus, same 1 designates experiments where players keep
the same counterpart and play game 1 repeatedly.
Players in repeated-play experiments are recruited for 2 hr,

even though the experiment lasts only slightly over 1 hr. Players
are not told how long the experiment will last; this makes
credible the expectation of a long series of repeated plays.
Players are paid $5.00 as a nonsalient show-up fee, and, at the
end of the experiment, their accumulated earnings. The pay-
offs shown in the boxes are in cents for the constituent games
that are repeated 20 times. In the single-play games, the
payoffs are all multiplied by 20 to maintain payoff compara-
bility with the repeated game experiments.
In the instructions we are careful to avoid using terms like

‘‘game,’’ ‘‘play,’’ ‘‘opponent,’’ ‘‘partner,’’ or other potentially
suggestive, value-laden terminology. In particular, players are
informed that they will participate in a two-person decision-
making problem involving themselves and a counterpart who
will be designated DM1 or DM2. Subjects are given computer-
programmed practice in making moves and are able to observe
the recording of moves and payoffs in a game unrelated to the
game they are to play in the experiment. They are allowed to
ask questions privately at any time during the instructions.
Subject’s decisions are executed via touch- or ‘‘mouse’’-

sensitive arrows, appearing in sequence in the game tree on
their screen displays. This procedure is intended to help
concentrate their attention on their screens.

Extending Bayesian Bernoulli Trials Theory

The data evaluations to follow will be based on conditional
probabilities applied to a Bernoulli process—e.g., in Fig. 1,
each player 2 in the sample can move right or left at node x2,
with prior uncertainty—to the experimenter—as to the
probability p (right) and (1 2 p) (left). This requires us to
first extend the parameter space of standard Bernoulli trials
theory to allow probability assessment of an extreme re-
search hypothesis. Thus the strict game theoretic prediction
is p 5 1 for right play at node x2 (also x6). But the standard
Bernoulli process generates the occurrence of r right out-
comes in n independent trials, given p defined on the open
interval 0 , p , 1. The situation is analogous to the
possibility that a coin can be biased toward ‘‘heads’’ to any
degree, including being two-headed (or two-tailed). If some-
one observes five heads in five trials, the coin cannot be
two-tailed, but can be two-headed, biased, or even fair, since
five straight heads rules out only the state of being two-
tailed. With standard Bernoulli trials theory, we cannot
conclude that this coin is two-headed: only that it is more or
less biased toward heads. In the data below, we observe many
cases in which n 5 r . 0 and n . r 5 0 and will want to assess
the probability that p 5 1 or 0.

Table 1. Experimental design: Treatments and number of pairs

Designation
Constituent
game Matching protocol

No. pairs
(observations)

Single 1 1 Single-play 26 (26)
Single 2 2 Single-play 26 (26)
Repeat single 1 1 Repeat single play* 24 (360)†
Single 1 exp 1 Single-play 17 (17)
Same 1 1 Repeat same pairs 22 (440)
Same 2 2 Repeat same pairs 23 (460)
Random 1 1 Repeat random pairs and roles 24 (480)†
Random 2 2 Repeat random pairs and roles 24 (480)†

*Each player plays each counterpart exactly once, with role alternating between player 1 and 2.
†Sessions consist of 12 players, 6 pairs matched repeatedly. Others consisted of at least 8 players.
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We denote by D9(p) anyone’s (the experimenter’s or the
reader’s) uncertainty about p before experimentation. We let
D9(p) be a beta density on (0, p, 1), with parameters (r9,n9),
P0 . 0 be the prior probability that p 5 0, and P1 . 0 be the
prior probability that p 5 1. Clearly, in Fig. 1, a game theorist
would associate some prior probability mass, P1, with p5 1, the
conditional probability that all players 2 will play right at x2 in
single 1. Likewise in the repeated game, same 1, the theorist
would find it credible with some positive probability P0. 0 that
all players 2 will move left at x2. The prior mixed densityymass
function is then:
where P0 1 P1 , 1. Since D9(p) must have unit measure over
the set, we must have:

k 5
~1 2 P0 2 P1! ~n9 2 1!!
~r9 2 1! ! ~n9 2 r9 2 1! !

. [2]

Note that if n9 5 2 and r9 5 1, then the beta density is
rectangular, and k5 12 P0 2 P1, the constant density on (0,
p , 1).
The likelihood of observing that r of n subjects move right,

conditional on p, is then:
Eq. 3 states that if p 5 1 (all players 2 would elect right at x2
or x6), then there is zero likelihood of observing r , n moves
right, a certainty of observing n 5 r moves right, the binomial

probabilities (r,n) for 0 , p , 1, and so on.
We next state the posterior distribution of p, D0(pur,n), given

the sample observation (r,n), which is proportional to the
product of the kernels (the parts that are functions of p) of Eqs.
1 and 3. The factor of proportionality, which depends on (r,n),
gives D0 the property of the unit measure over (0 # p # 1).
Using node x2 for illustration, there are three cases, depending
upon whether we observe both right and left moves, all right
moves, or all left moves. In each case we will compute D0,

assuming that D0(p)5 12 P0 2 P1, or n9 5 2 and r9 5 1 in Eq.
1.

Since both right and left are observed, none of the prior mass,
P0 or P1, on the end points can affect the posterior. The result
devolves to the standard Bernoulli process defined on 0, p,
1.

Hence, as n 5 r gets large, we become increasingly sure that
p 5 1.

Results: Posterior Expected Probabilities

Using the posterior probability functions Eqs. 4–6, we calcu-
late the expected probabilities of observing (r,n) if the prior
probability function Eq. 3 is rectangular, giving:

E0~p?n . r . 0! 5
r 1 1
n 1 2

. [7]

E0~p?n 5 r . 0! 5 S n 1 1
n 1 2D F 1 1 ~n 1 1! P1

1 1 n P1
G . [8]

E0~pun. r5 0! 5
~n1 1! ~12 P0!
11 n P0

E
0

1

p~12 p!ndp. [9]

The results applied to the outcome (r,n) in each game
treatment are shown in Tables 2 and 3 for four hypotheses: (i)
right versus left move at node x2; (ii) right move at node x6 (SP)

Table 2. Frequency of outcomes and conditional expected posterior probabilities: Single experiments

Treatment

Node x2, right
(noncooperation) Node x6, right (SP)

Node x3, down game 1
or left game 2
(defection)

Node x5, down game 1
(punish)

n r E0(pur,n) n r E0(pur,n) n r E0(pur,n) n r E0(pur,n)

Single 1 26 13 0.50 13 12 0.867 13 3 0.267 3 1 0.40
Single 2* 26 14 0.536 14 14 0.990 12 6 0.50 NA NA NA
Repeat single 1† 24 10 0.423 10 10 0.982 14 5 0.375 5 3 0.571
Single 1 exp‡ 17 4 0.263 4 4 0.938 13 5 0.40 5 2 0.429

NA, not applicable.
*Note that in game 2, the move order of the outcomes [60, 30] and [50, 50] are reversed relative to game 1.
†Data for last trial only for comparability with other single experiments.
‡Seventeen of the 24 pairs from repeat single 1 returned for a single play of game 1 with a 20-fold increase in payoffs.

D9~p! 5

P1, if p5 1
kpr921~12 p!n92r921, if 0, p, 1, where n9 . r9 . 0
P0, if p5 0,

[1]




L~r; n?p! 5

0, n. r$ 0, if p5 1
1, n5 r. 0, if p5 1
n !

r ! ~n2 r! !
pr ~12 p!n2r, n$ r$ 0, if 0, p, 1

1, n. r5 0, if p5 0
0, n$ r. 0, if p5 0.

[3]







D0~p?r,n! 5

0, p5 1
~n1 1! !
r ! ~n2 r! !

pr~12 p!n2r, 0, p, 1, if 0, n$ r$ 0

0, p5 0.
[4]







D0~p?r,n! 5

~n 1 1! P1
1 1 n P1

, p 5 1

S n 1 1
1 1 n P1

D ~1 2 P1! pn, 0 , p , 1

0, p 5 0.

[5]







D0~p?r,n! 5

0, p5 1

S n1 1
11 n P0

D ~12 P0! ~12 p!n, 0, p, 1

~n1 1! P0
11 n P0

, p5 0.

[6]






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versus all other outcomes in the right branch of game 1; (iii)
down move in game 1, or left move in game 2, at node x3
(defection from signal to cooperate) versus no defection; and
(iv) down move in game 1 at node x5 (punish defection) versus
no punishment. In each case, we assume that P0 5 P1 5 1y4,
so that half the prior mass is divided equally between p5 0 and
p5 1, while the other half is smeared over the interval 0, p,
1. The reader is free to express hisyher own prior beliefs,
before examining Tables 2 and 3, then make the calculations
from Eqs. 1–3.
Single-Play Experiments. Table 2 lists E0(pur,n) for each of

the nodal choice hypotheses i–iv corresponding to each single
treatment.
Result 1. Right moves at x2 (noncooperation) in game 1 are

far less prevalent than implied by standard game theoretic
analysis. The expected posterior probability of a right move at
x2 is 0.5 in game 1.
Result 2. Repetition of game 1 with distinct counterparts

(repeat single 1) lowers the final trial probability of right moves
at x2 to 0.423. Experience and learning slightly favor cooper-
ation. When 17 of the latter 24 subjects return for a single-play
session (single 1 exp), right move probability declines further
to 0.263. Essentially, they return for a single trial with a 20-fold
increase in stakes and play it more like another round in the
repeated game than a situation calling for noncooperative play.
Result 3. Trust accounts for almost all of the offers to

cooperate by players 2, since removing the option to punish
defection increases the frequency of right moves at x2 only
slightly. This is indicated by the observation that the posterior
probability of right moves at x2 in game 2 is 0.536 compared
with 0.50 in game 1.
Result 4. Consistent with the prediction of game theory,

there is a high probability of achieving the SP outcome,
contingent on play being on the right branch of the tree in both
games 1 and 2. Thus, the probability of SP varies from 0.867
(single 1) to 0.990 (single 2). (See Table 3 showing that this
result is also supported in the repeated-play treatments).
Result 5. Contrary to the game theoretic prediction based on

dominance, in all treatments the conditional probabilities of
defection (player 1 moves down at x3) from offers to cooperate
(player 2 moves left at x2) in game 1 are 0.4 or less.
The observation that dominance characterizes moves in the

right tree (Result 4) but not in the left tree is clear evidence in
favor of the reciprocity hypothesis, since only moves within the
left tree can reflect reciprocity responses.
Result 6. In game 2, where defection (player 1 moves left at

x3) can occur without punishment, the defection probability
rises from that in game 1, but only to 0.5 and is thus surprisingly
low. This result together with Result 3 implies that trust and
trustworthiness occur with about equal probability: the prob-
ability that a player 2 will offer to cooperate is 0.464 (Result 3),
while the probability of a positive reciprocal response by a
player 1 is 0.5. (See Table 3 showing that the higher defection
rate in game 2 relative to game 1 applies also to the repeated-
play treatments: same 2 versus same 1; random 2 versus
random 1.)

Result 7. In game 1, the expected probability of punishment
(player 2 moves down at x5) is at least 0.4 across the three
treatment conditions. This is contrary to the game theoretic
prediction based on dominance but is consistent with the
reciprocity hypothesis. Players 2, having offered to cooperate
by left play at x2, appear to feel some obligation in spite of the
cost to themselves, to punish players 1 who defect. (See Table
3 showing that the conditional probability of punishment is at
least 0.5 across all trials in the repeated-play treatments: same
1, random 1, and repeat single 1).
Repeated-Play Experiments. Table 3 lists E0(pun,r) for

choice hypotheses i–iv corresponding to each repeated-play
treatment.
Result 8. The Folk theorem that repeated play favors coop-

eration is supported; when the same pairs interact repeatedly
(same 1), the probability of a right move at x2 is 0.186, the
lowest across all treatments. Similarly, comparing single 2 in
Table 2 with same 2 in Table 3, repeated play increases
cooperation in game 2 where the direct punishment option is
not available.
Result 9. In game 1, as the probability of being matched with

the same counterpart decreases from 1 to 0 across the three
treatments, same 1, random 1, and repeat single 1, the prob-
ability of noncooperation (a right move at x2) increases (0.186,
0.328, and 0.421, respectively). Similarly, in game 2, comparing
same 2 with random 2, the probability of noncooperation
increases from 0.384 to 0.646. This is qualitatively consistent
with Folk theorem expectations.

Optimality and Efficiency of Player Choices

In Table 4, for all treatments we report calculations of the
expected payoff to a player 2 of a left move at x2, denoted
E(p2uLeft). The calculations are based on the subsequent
conditional likelihood probabilities of actual game play. Since
the SP return to a player 2 from moving right at x2 is 40, values

Table 3. Frequency of outcomes and conditional expected posterior probabilities: Repeated-play experiments

Treatment

Node x2, right
(noncooperation) Node x6, right (SP)

Node x3, down game 1 or
left game 2 (defection)

Node x5, down game 1
(punish)

n r E0(pur,n) n r E0(pur,n) n r E0(pur,n) n r E0(pur,n)

Same 1 433 80 0.186 80 68 0.841 353 41 0.118 41 27 0.651
Same 2* 423 162 0.384 162 114 0.701 261 41 0.160 NA NA NA
Random 1 471 154 0.328 154 149 0.962 317 102 0.223 102 69 0.673
Random 2* 453 293 0.646 293 278 0.946 160 70 0.438 NA NA NA
Repeat single 1 352 148 0.421 148 138 0.927 204 71 0.375 71 36 0.507

NA, not applicable.
*Note that in game 2, the move order of the outcomes [60, 30] and [50, 50] are reversed relative to game 1.

Table 4. Expected profits from a left move at x2 and
from defection

Treatment E(p2uLeft)* E(p1uDown)† Efficiency‡, %

Single 1 44.6 46.7 85.5
Single 2§ 40.0 NA 86.9
Single 1 exp* 40.7 44.0 86.4
Same 1 46.6 31.3 90.6
Same 2§ 46.9 na 90.3
Random 1 40.7 30.8 82.6
Repeat single 1 41.5 42.0 85.1
Random 2§ 41.2 NA 84.7

NA, not applicable.
*Expected payoff to player 2 from moving left at x2, given the relative
frequencies of subsequent play by player 1s and 2s.
†Expected payoff to player 1 from defecting at node x3, game 1.
‡Efficiency is the percentage of the cooperative [50, 50] total payoff
that is realized by all pairs.
§Note that in game 2, the move order of the outcomes [60, 30] and [50,
50] are reversed relative to game 1.
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of E(p2uLeft) .40 imply that left at x2 increases the expected
payoff to player 2. Conditional on a left move at x2, we also
calculate the expected payoff to a player 1, E(p1uDown), of
defecting (moving down at x3) in Game 1. If (p1uDown) is .50
(the return if player 1 does not defect), then defection is a best
choice. Efficiency, appearing in the last column for each
treatment, is the expected payoff, to a pair of subjects based
upon observed conditional likelihoods from game play (be-
yond node x2) divided by the cooperative joint payoff (50 1
50 5 100). Thus, an efficiency of 80% implies that the
individual pairs receive an average return equal to the SP joint
payoff (40 1 40 5 80).
Result 10. From the first column of data in Table 4, it is clear

that players 2 who move left at x2 earn a higher return than
those moving right for the SP outcome. This is the case for all
the treatments whether single or repeated play. Even Single 2
achieves an expected payoff of 40 on the left, equal to the SP
payoff. The message is that those players who move left at x2
are, on average, reading their counterparts correctly. It pays to
initiate acts that invite positive reciprocity (trust), because
such acts tend to be rewarded by positive reciprocation (trust-
worthiness), particularly when the invitation is reinforced by
the option of punishing defection.
Result 11. Referring to the second column of entries in Table

4 for E(p1uDown), it is seen that defection never pays. The
defector, player 1, in all treatments receives a return ,50. The
claim by Cosmides (5) that people’s mental modules are
programmed to punish cheaters is alive and well in our
experiments. Defection is not always punished, but it is often
enough to keep defection from being profitable.
Result 12. In all treatments, players jointly achieve more

efficient outcomes—they collect more money from the exper-
imenter—than is predicted by noncooperative game theory.

Evolution of Game Play over Repetitions

Tables 5–9 report conditional likelihood probabilities, aggre-
gated over blocks of five repetitions each, for each payoff
outcome corresponding to the repeated-play experiments.
Result 13. In repeat single 1 (Table 5), there is no obvious

and important trend in any of the outcomes, although in the
last repetition block, the probability of punishment increases
and the return from defection declines. It is not possible to say
that players are ‘‘learning to play SP’’ over time. Neither are
they learning to cooperate, although in every block the average
return to a left move at x2 is .40.
Result 14. In same 1 (Table 6), left moves at x2 followed by

cooperation starts high and trends upward across repetitions,
while support for right moves to SP declines. Defection
declines only slightly across repetitions blocks. More interest-
ing is that punishment begins at a modest 57% (8 in 14) in the
first five repetitions, then increases to over 91% (11 in 12) in
the next five repetitions, and goes through a similar cycle in the
last two blocks. It appears that defection is at first tolerated—
players 2 are forgiving—then punishment is strongly invoked,
and the effect is to reduce total defection from 14 to only 8 in
the last block as defectors find that it does not pay.
Result 15. In same 2 (Table 7), the proportion of left moves

at x2 starts at only 0.45, much lower than in same 1 (0.716), and
rises steadily to 0.743 in the last five repetitions; defection
declines correspondingly. Hence, the substantial role of trust
in achieving cooperation through reciprocity when the same
pairs meet repeatedly. The expected profit from moving left at
x2 rises steadily from 42.9 to 48.2 across all blocks.
Result 16. The proportion of left moves at x2 in random 1

(Table 8) begins at 0.624 and rises to 0.746, uniformly below
the corresponding results in same 1 (Table 6), and demon-
strating the game-theoretic Folk principle that the same coun-

Table 5. Conditional outcome probabilities by repetition block repeat single 1

Repetitions

Conditional outcome probabilities*

Left
branch†

50
50

60
30

20‡
20

Right
branch†

30
60

40
40

15‡
30 E(pxuLeft) E(p1uDown)

1–5 68y116 43y68 12y25 13y13 48y116 7y48 41y41 0 40.7 39.2
5 0.586 5 0.632 5 0.48 5 1 5 0.414 5 0.146 51

6–10 71y117 46y71 15y25 10y10 46y117 2y46 43y44 0y1 41.6 44.0
5 0.607 5 0.648 5 0.60 51 5 0.393 5 0.043 5 0.977 5 0

11–15 65y119 44y65 8y21 13y13 54y119 0y54 54y54 0 41.4 35.2
5 0.546 5 0.677 5 0.381 5 1 5 0.454 5 0 5 1

*The conditional probabilities are likelihoods, based on (ryn) 5 (realizationsyno. of observations).
†Moves right at x1 ending with payoff [35, 70] can be inferred from the left and right branch denominators shown in these entries—e.g., 116 of
120 moved right or left in repetition blocks 1–5, implying that four pairs ended at [35, 70].
‡Moves ending with payoffs [0, 0] at these nodes can be inferred from these entries—e.g., if 0 of 1 end at [15, 30], then 1 of 1 ended at [0, 0].

Table 6. Conditional outcome probabilities by repetition block same 1

Repetitions

Conditional outcome probabilities*

Left
branch†

50
50

60
30

30‡
20

Right
branch†

30
60

40
40

15‡
30 E(p2uLeft) E(p1uDown)

1–5 78y109 64y78 6y14 8y8 31y109 2y31 28y29 0y1 45.4 37.2
5 0.716 5 0.821 5 0.429 5 1 5 0.284 5 0.065 5 0.966 5 0

6–10 88y108 76y88 1y12 7y11 20y108 0y20 19y20 0y1 45.1 16.6
5 0.815 5 0.864 5 0.083 5 0.636 5 0.185 5 0 5 0.95 5 0

11–15 94y106 87y94 4y7 3y3 12y106 0y12 12y12 0 48.2 42.8
5 0.887 5 0.926 5 0.571 5 1 5 0.113 5 0 5 1

16–20 93y110 85y93 3y8 4y5 17y110 1y17 9y16 4y7 47.5 32.5
5 0.845 5 0.914 5 0.375 5 0.8 5 0.155 5 0.059 5 0.563 5 0.571

*The conditional probabilities are likelihoods, based on (ryn) 5 (realizationsyno. of observations).
†Moves right at x1 ending with payoff [35, 70] can be inferred from the left and right branch denominators shown in these entries—e.g., 116 of
120 moved right or left in repetition blocks 1–5, implying that four pairs ended at [35, 70].
‡Moves ending with payoffs [0, 0] at these nodes can be inferred from these entries—e.g., if 0 of 1 end at [15, 30], then 1 of 1 ended at [0, 0].
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terparts can better coordinate cooperation. Defections are
higher in random 1 than in same 1, but, in random 1, players
2 tend to persist in left moves at x2 but increase their
punishment rates: without the same role and pairs, players 2
encounter many more defecting counterparts but proceed to
incur the personal cost of punishing them. This strengthens the
results in Cosmides (5), where cheaters are punished, but at no
cost to the punisher.
Result 17. Random 2 yields lower likelihoods of left play

(Table 9) than same 2 (Table 7) in every repetition block, and
the modest growth in left play to 0.405 drops to 0.330 in the
final block. Initially, the expected profit from left play is high
then declines. This correlates with a modest increase in left
game play in repetitions 6–10 and 11–15, but defections
increase in these blocks, and the expected return from left play
falls, leading to a decline in left game play in repetitions 16–20.

Other Results

Generally, players 1 move down at x1. Thus in repeat single 1,
of 360 constituent game plays (See Table 1), 352 show right or
left moves at x2 (See Table 3), implying that only 8 moves by
players 1 were right at x1.
We also observe that moving down at x6 is quite rare; it is

most frequent in same 2 where 21 (not shown) out of a total
of 460 plays of game 2 involve moving down at x6. These appear
to have been intended to induce a right move at x1 on the
subsequent play, since total moves right at x1 were 37.

Do Trusting People Tend to Be Trustworthy?

In repeat single 1, subjects alternate between the roles of
player 1 and player 2. Consequently, we have data on each

Table 7. Conditional outcome probabilities by repetition block same 2

Repetitions

Conditional outcome probabilities*

Left
branch†

60
30

50
50

20‡
20

Right
branch†

30
60

40
40

15‡
30 E(p2uLeft)

1–5 45y100 16y45 29y29 0 55y100 7y55 42y48 6y6 42.9
5 0.450 5 0.356 5 1 5 0.550 5 0.127 5 0.875 5 1

6–10 65y110 10y65 55y55 0 45y110 11y45 26y34 8y8 46.9
5 0.591 5 0.154 5 1 5 0.409 5 0.244 5 0.765 5 1

11–15 73y108 8y73 65y65 0 35y108 6y35 23y29 6y6 47.8
5 0.676 5 0.110 5 1 5 0.324 5 0.171 5 0.793 5 1

16–20 78y105 7y78 71y71 0 27y105 3y27 23y24 1y1 48.2
50 .743 5 0.090 5 1 5 0.257 5 0.111 5 0.952 5 1

*The conditional probabilities are likelihoods, based on (ryn) 5 (realizationsyno. of observations).
†Moves right at x1 ending with payoff [35, 70] can be inferred from the left and right branch denominators shown in these entries—e.g., 116 of
120 moved right or left in repetition blocks 1–5, implying that four pairs ended at [35, 70].
‡Moves ending with payoffs [0, 0] at these nodes can be inferred from these entries—e.g., if 0 of 1 end at [15, 30], then 1 of 1 ended at [0, 0].

Table 8. Conditional outcome probabilities by repetition block random 1

Repetitions

Conditional outcome probabilities*

Left
branch†

50
30

60
30

20‡
20

Right
branch†

30
60

40
40

15‡
30 E(p2uLeft) E(p1uDown)

1–5 73y117 47y73 15y26 10y11 44y117 0y44 44y44 0 41.1 42.3
5 0.624 5 0.644 5 0.577 5 0.909 5 0.376 5 0 5 1

6–10 78y117 50y78 8y28 17y20 39y117 0y39 37y39 1y2 39.5 29.3
5 0.667 5 0.641 5 0.286 5 0.85 5 0.333 5 0 5 0.949 5 0.5

11–15 78y119 51y78 6y27 17y21 41y119 1y41 38y40 2y2 39.4 25.9
5 0.655 5 0.654 5 0.222 5 0.810 5 0.345 5 0.024 5 0.95 5 1

16–20 88y118 67y88 4y21 14y17 30y118 0y30 30y30 0 42.6 24.7
5 0.746 5 0.761 5 0.190 5 0.824 5 0.254 5 0 5 1

*The conditional probabilities are likelihoods, based on (ryn) 5 (realizationsyno. of observations).
†Moves right at x1 ending with payoff [35, 70] can be inferred from the left and right branch denominators shown in these entries—e.g., 116 of
120 moved right or left in repetition blocks 1–5, implying that four pairs ended at [35, 70].
‡Moves ending with payoffs [0, 0] at these nodes can be inferred from these entries—e.g., if 0 of 1 end at [15, 30], then 1 of 1 ended at [0, 0].

Table 9. Conditional outcome probabilities by repetition block random 2

Repetitions

Conditional outcome probabilities*

Left
branch†

60
30

50
50

20‡
20

Right
branch†

30
60

40
40

15‡
30 E(p2uLeft)

1–5 32y110 9y32 23y23 0 78y110 4y78 73y74 0y1 44.4
5 0.291 5 0.281 5 1 5 0.709 5 0.051 5 0.986 5 0

6–10 43y112 17y34 26y26 0 62y112 0y69 66y69 2y3 42.1
5 0.384 5 0.395 5 1 5 0.616 5 0 5 0.957 5 0.667

11–15 47y116 26y47 21y21 0 69y116 1y69 66y68 2y2 38.9
5 0.405 5 0.553 5 1 5 0.595 5 0.014 5 0.971 5 1

16–20 38y115 18y38 20y20 0 77y115 2y77 73y75 0y2 40.5
5 0.330 5 0.474 5 1 5 0.670 5 0.026 5 0.973 5 0

*The conditional probabilities are likelihoods, based on (ryn) 5 (realizationsyno. of observations).
†Moves right at x1 ending with payoff [35, 70] can be inferred from the left and right branch denominators shown in these entries—e.g., 116 of
120 moved right or left in repetition blocks 1–5, implying that four pairs ended at [35, 70].
‡Moves ending with payoffs [0, 0] at these nodes can be inferred from these entries—e.g., if 0 of 1 end at [15, 30], then 1 of 1 ended at [0, 0].
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subject in both positions, matched repeatedly against distinct
persons. It is natural to hypothesize that, since subjects are
matched anonymously from a particular population of like
individuals (undergraduates), then each can consider them-
selves as a sample of size 1 from the characteristics of that
population. If a person is a cooperative type and assumes that
heyshe is matched with a cooperative type, then offers to
cooperate are expected to be reciprocated by cooperative
responses. This assumes that trusting persons are also trust-
worthy (see discussion in Result 6). Do our data confirm this?
That is, if a person in the player 2 role moves left, is that person,
when in the player 1 role, less likely to be a defector in the left
tree? Similarly, is a person who moves right as a Player 2, likely
to be a defector as player 1 in the left tree?
The results from repeat single 1 are compiled in Table 10.

There were 48 subjects (24 pairs). One subject never recorded
an outcome in the left tree branch as player 1. The remaining
47 recorded left branch outcomes in each role at least once,
and the joint relative frequencies for the choices (cooperate as
player 2, reciprocate as player 1) corresponding to moves left
at x2, and left at x3, are shown in Table 10 aggregated by
one-thirds. Thus, 21.2% of the subjects exhibit the lowest
frequency, 0–0.33, of cooperation and reciprocation. In the
upper right corner, the modal outcome 29.8%, falls into the
highest frequency range of cooperationyreciprocation. As
expected, if trust goes with trustworthiness and vice versa, most
of the probability mass is on the diagonal (63.8%).

Discussion and Conclusions

This paper explores conditions that reinforce subjects’ pro-
pensity to reciprocate or not. In our design, we allow subjects
to choose between a subgame where backward induction is
self-evident and a subgame where reciprocity can be used as a
means of achieving a cooperative outcome. We find substan-
tial support for cooperation under complete information even
in various single-play treatments. This support increases when
play of the constituent game is repeated whether or not there
is an opportunity to directly punish defection. This is consis-
tent with the Folk theorem argument that repetition promotes
cooperation. Game principles also explain the qualitative
result that in repeat interaction as the probability of being
matched with the same person increases from 0 to 1, cooper-

ation increases. Also strongly consistent with the predictions of
game theory is the observation that under all treatments,
conditional upon right game play, almost all players end up at
the subgame perfect equilibrium. The considerable coopera-
tion we observe in single-play and repeat single play games is
consistent with reciprocity being an innate characteristic of
many people who are prone to cooperative behavior, because
they treat single play games as part of a repeated series of
different games across which they seek to establish ‘‘lifetime’’
reputations. To the extent that is the case, then the standard
game theoretic distinction between single and repeated play
games may not be as strongly meaningful as customarily
assumed.
It is important, however, in interpreting these results that

subjects, although matched anonymously, are matched with
like individuals. An important characteristic of the human
mind may be a friend-or-foe detector, with a cooperative
posture reserved for those who are at least not perceived as
foes. There should be no presumption that our results would
carry over when individuals are matched with those in an
outgroup, who are seen as opponents ready to exploit any
opportunity for gain.
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Table 10. Joint relative frequency of cooperation (trust) and reciprocation (trustworthy): Repeat
single 1

Relative frequency,
reciprocation (1 2 PD)

Relative frequency, cooperation (1 2 PN)

0–0.33 0.34–0.66 0.67–1.0 Total

0.67–1.0 6y47 5 0.128 5y47 5 0.106 14y47 5 0.298 25y47 5 0.532
0.34–0.66 1y47 5 0.021 6y47 5 0.128 4y47 5 0.085 11y47 5 0.234
0–0.33 10y47 5 0.212 0y47 5 0 1y47 5 0.021 11y47 5 0.234
Total 17y47 5 0.362 11y47 5 0.234 19y47 5 0.404 47y47 5 1

PN, frequency of noncooperation (right move) at x2; PD, frequency of defection (down move) at x3.
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