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Abstract
Mutations in the VHL gene are associated with highly vascular tumors of kidney, brain, retina, and
adrenal gland. The ability of the VHL protein to destabilize HIF-1 plays a crucial role in malignant
angiogenesis. VHL is also associated with ECM assembly but the molecular mechanisms of this
activity remain unclear. We used expression arrays and cell lines with different VHL status to identify
ECM-associated genes controlled by VHL. One of them, adhesion-associated TGFBI, was repressed
by VHL and overexpressed in renal, gastrointestinal, brain, and other tumors. Analyzing the
mechanism of TGFBI up-regulation in clear cell carcinoma, we identified a novel VHL target, a
Kruppel-like transcriptional factor 10 (KLF10). The TGFBI promoter, which we isolated and studied
in Luc-reporter assay, was induced by KLF10 but not hypoxia. These data provide the molecular
basis for the observed VHL effect on TGFBI and stimulate further research into the KLF10 and
TGFBI roles in cancer.
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Introduction
The von Hippel-Lindau tumor suppressor (VHL) is the substrate recognition component of the
E3 ligase that ubiquitinates HIF-1α (or HIF2-α) and plays a pivotal role in the control of hypoxia
response [1,2]. We previously identified several HIF-dependent VHL targets that helped in
understanding the VHL function(s) during malignant growth [3–5]. VHL is also involved in
HIF-independent regulation of cell-cell interaction, matrix signaling, and adhesion [6–9]. In
this study, we asked if novel VHL targets related to ECM deposition can be identified.
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We previously reported STRA13 as VHL/HIF-1 target up-regulated in multiple tumors.
STRA13 can be also up-regulated by TGF-β [10]. Here we characterize two more targets
common for both VHL and TGF-β, such as TGFBI, and KLF10 (TIEG1).

The TGFBI protein (Beta-ig, big-h3, keratoepithelin) is a 68 kDa ECM protein with four
evolutionary conserved fasciclin-1 (FAS1) domains and a carboxy-terminal Arg-Gly-Asp
(RGD) sequence [11,12]. The protein is secreted into extracellular space and may bind to
fibronectin and collagen [13] as well as integrins [14,15]. TGFBI was discovered and
associated with cancer as a gene induced in the lung adenocarcinoma cell line A549 by TGF-
β [12]. The TGFBI function(s) in normal tissues is not fully understood. Mutations in this
protein have been implicated in congenital corneal dystrophies [16]. TGFBI was also reported
to stimulate adhesion, spreading, migration and proliferation in renal proximal tubular
epithelial cells [17]. The RGD peptide of TGFBI can be released from the protein and induce
apoptosis [18]. Although TGFBI was associated with cancers in various studies [19–26], the
molecular mechanisms of its transcriptional regulation remained unknown.

KLF10, a Kruppel-like transcriptional factor induced by TGF-β, BMP-2, and EGF, mimics the
effect of TGF-β in many cells [27,28]. Although over-expression of KLF10 was recently
reported in clear cell carcinomas, glioblastomas, and head-and-neck carcinomas
(www.oncomine.org), its function in tumorigenesis remains unclear. In this study, we show
that both TGFBI and KLF10 are down-regulated by VHL in 786-0 cells, and that KLF10 may
serve as a transactivator of the TGFBI promoter.

Materials and Methods
Cell lines and hypoxic exposure

Human HEK293T cells were purchased from ATCC; U-87, U-251 (astrocytomas) and LN-229
(glioma) were kindly provided by Dr D. Zagzag, and MRC-5 cells (normal untransformed
human fetal lung fibroblasts) were from Coriell Cell Repositories, Camden, NJ, USA. 1HAEo
(−) cells were described elsewhere [29]. MEF (HIF1+/+ and HIF-1−/−) were obtained from
Dr. R. Johnson (University of California San Diego). To produce hypoxia cells were exposed
to 0.5% O2, 5% CO2, and 94.5% N2 at 37ºC or incubated with 0.5 mM NiSO4 for 20 h.

Gene expression analysis
RNA samples were isolated, 32P-labeled cDNA probes generated and hybridized with
GEArrays HS-010 and HS-023 as recommended by the manufacturer (Superarray, Frederick,
MD). Human MTN blots and cancer arrays were purchased from BD Biosciences (Palo Alto,
CA). 786-0 clear cell RCC cells stably transfected with VHL transgenes were described
previously [3]. Primers for RT-PCR were generated using GeneFisher server
(http://bibiserv.techfak.uni-bielefeld.de/genefisher).

TGFBI Promoter and KLF10 construct
The TGFBI promoter was identified using the Genomatix software
(http://www.genomatix.de) and isolated via PCR on human DNA with primers 5′-
ggtaccTGTGTCTCCCCAGGGCTAG-3′, and 5′-aagcttTGCAGCACCAGCTGGTAG-3′.
The promoter was cloned into KpnI/HindIII-digested pGL3-Basic vector and verified by
sequencing. The KLF10/TIEG1 expressing construct in pCDNA4/TO was described earlier
[28]. Luc-reporter assay was used as described previously [30].

Ivanov et al. Page 2

Biochem Biophys Res Commun. Author manuscript; available in PMC 2009 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://bibiserv.techfak.uni-bielefeld.de/genefisher
http://www.genomatix.de


RESULTS
Identification of the adhesion-related VHL targets

To assess the VHL effect on adhesion-associated genes we took advantage of the renal clear
cell carcinoma cell lines developed by us and successfully used for identification of novel VHL
targets [3,5,30]. Original 786-0 cells express VHL devoid of functional domains. These cells
were compared to 786-0 stably transfected with wtVHL (786-0/wt2) or mutVHL (786-0/mut2).
We used mutVHL that lacks the elongin C-binding alpha domain as a negative control. The
results of these experiments and subsequent validation of the VHL targets are shown in Fig.
1, Suppl. Fig. 1, and Table 1.

Five out of nine adhesion-related genes identified by us as VHL-dependent, ITGA5,
SERPINE1, IGFBP3, FN1, and TIMP2, turned out to be already associated with VHL targets
(see refs in Table 1). STAT1 (number 9 in Fig. 1 and Table 1) that showed up-regulation by
wtVHL in this study, was recently characterized by us as a VHL target that is controlled via
STRA13 [30]. Identification of all these previously known VHL targets validated our approach
as a reliable tool for finding genes transcriptionally modulated by VHL. We then focused on
TGFBI (BIGH3, betaig-h3, keratoepithelin) that encodes a secreted matrix protein with
apoptotic and adhesion-related growth activities. This gene, as we show by RT-PCR (Suppl
Fig. 1A) and Northern analysis (Suppl Fig. 1B), was down-regulated by wtVHL but not by
mutant in 786-0 cells.

Classical TGF-β components are not involved in the VHL-dependent effects
Expression of TGF-β1 (location f25), -β2 (h25), and -β3 (a26) was barely detectable (Fig. 1
and Suppl. Table 1), and no VHL effect was seen on these genes at a longer exposure (data not
shown). The type II activin A receptor (ACVR2), c15; type I activin A receptors ALK-1,
ALK-5, endoglin, Smad1–7, and Smad9 were also not affected. In a separate experiment on
the same cells, no VHL-dependent changes in the amounts of phosphorylated SMAD1/5/8 or
SMAD2 were detected (data not shown).

KLF10 is a VHL target that regulates the TGFBI promoter
Seeking novel possible mediators of the VHL effect on TGFBI we focused on recently
characterized transcriptional regulators KLF10 and KLF11 controlled by TGF-β [36,37]. We
found that KLF10 but not KLF11 was repressed in 786-0 cells by wtVHL but not mutVHL
(Suppl Fig. 1B and data not shown) suggesting that it may also serve as a VHL target. We then
identified the TGFBI promoter, isolated it via PCR, and assessed if KLF10 can transactivate
it in a Luc-reporter assay. In this promoter, we identified a potential KLF10 binding site, which
is also recognized as an Sp1-binding site and is very similar to the one found within the CD11d
promoter [38]. This site in the TGFBI promoter is localized 89-80 nucleotides upstream from
the transcription initiation site (Suppl. Fig. 2). No HRE motif typical for most of hypoxia-
stimulated VHL targets was found in the promoter arguing against its direct activation by
HIF-1. Co-expression of TGFBI-Luc reporter plasmid with KLF10 produced ~1.4–7-fold
stimulation in 2 different cell lines (Fig. 2) suggesting that KLF10 may transactivate the TGFBI
promoter in a cell type-specific manner. In agreement with the lack of the HRE site, no
induction was observed by hypoxic mimetics and atmospheric hypoxia.

TGFBI is commonly over-expressed in cancers
We found that TGFBI is broadly expressed in normal tissues with highest expression levels
detected in placenta, leukocytes, and heart. TGFBI expression is moderate in kidney where it
is localized predominantly to the epithelial cells of collecting ducts and distal as well as
proximal tubules (Suppl. Fig. 3). TGFBI expression in brain was practically undetectable (Fig.
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3A). Studying TGFBI expression in cancer we compared between matched tumor/normal RNA
samples. As a result, 4 out of 10 renal, 5/7 pancreatic, 4/10 lung, 9/10 colon, 9/10 rectal, and
4/7 small intestine cancers showed TGFBI over-expression (Fig. 3BC). Our
immunohistochemical study showed that in normal kidney TGFBI is expressed in distal and
proximal tubular epithelium and in collecting duct epithelium. We also detected TGFBI
expression in clinical specimens of renal clear cell carcinoma and glioblastoma (Suppl. Fig.
3). Analysis of the public cancer expression database Oncomine (http://www.oncomine.org)
supported these observations and helped to identify more tumors that overexpress TGFBI, such
as head-and-neck squamous cell carcinoma and seminoma (Suppl. Table 2).

TGFBI and KLF10 expression in cells with different HIF status
After showing that the TGFBI promoter does not possess HRE we asked if endogenous TGFBI
can be induced by hypoxia and if KLF10 may mediate this effect. Endogenous TGFBI
expression levels were compared by RT-PCR with the VHL/HIF targets CA9, CA12, and
STRA13 characterized by us previously [3,5] (Suppl. Fig. 4). While STRA13 showed
consistent but moderate hypoxic up-regulation in each cell line studied, CA12 was induced in
2/5, and CA9 in 4/5. TGFBI showed a limited response to hypoxia in HAEo(−) cells only.
KLF10 expression was not affected by hypoxic conditions.

To directly assess HIF involvement in regulation of endogenous TGFBI and KLF10, we
compared their expression in Hif-1α-deficient and proficient MEFs (Fig. 4). Tgfbi expression
in these cells was slightly elevated by hypoxia in a Hif-1α-dependent manner, while KLF10
was not affected by hypoxia. Altogether, these results suggest that the KLF-10 effect on TGFBI
is hypoxia-independent, and that TGFBI shows a moderate response to hypoxia in a limited
set of cell lines.

Cell specificity of TGFBI response to hypoxia was further evaluated on 26 cancer cell lines
that represented 13 different types of common tumors (Suppl. Fig. 5). Treatment with a hypoxia
mimetic desferrioxamine induced TGFBI expression in 6 out of 26. This finding further
substantiated high cell-specificity of the hypoxic effect on TGFBI.

To assess if HIF can be specifically involved in up-regulation of TGFBI in clinical renal
carcinoma specimens, we stripped the membrane shown in Fig. 3B and re-hybridized it with
CA9, a well-characterized hypoxia-inducible gene [4]. As seen from Fig. 4C, TGFBI was
strongly stimulated in 1 and moderately induced in 3 out of 6 CA9-positive tumors. Taken
together, all these results suggest that the up-regulation of TGFBI commonly observed in tumor
specimens and cancer cell lines cannot be fully and reliably explained by hypoxic stimulation.

Expression of TGFBI in cancer cell lines in response to stress factors and chemotherapeutic
agents

Since TGFBI was previously associated with apoptosis [18,39] and apoptosis is linked with
cell survival in general and with hypoxia in particular, we asked if TGFBI expression can be
induced by stress-related stimuli. To this end, we studied TGFBI expression in 26 cancer cell
lines exposed to 26 chemotherapeutic agents (Suppl. Fig. 5). Among all cancer types, breast
(MDA-MB-435S, MCF-7), skin (SK-N-SH), and epidermal (A-431) cancer cells showed the
highest amplitude of TGFBI induction in response to different treatment conditions. In 9/26
cell lines TGFBI expression was up-regulated by UV irradiation, heat shock, desferrioxamine,
hydrogen peroxide, and gamma irradiation. TGFBI was also induced by common
chemotherapeutic agents, e.g. a ribonucleotide reductase inhibitor hydroxyurea, a
topoisomerase 2 inhibitor etoposide, a DNA synthesis inhibitors 5′-fluoracil, and cisplatin.
Chemoresistant H460 non-small cell lung cancer cells turned out to be the most responsive
showing TGFBI induction in 23 out of 26 conditions. Using the Gene Expression Omnibus
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repository at NCBI we found Tgfbi overexpression during ischemic/hypoxic brain and lung
injury (accession ## GDS1017 and GDS247, respectively), lung hyperoxic and inflammatory
injury (GDS247 and GDS1239), as well as allergic reactions in lung (GDS42 and GDS958).
All these data relate TGFBI expression with stress response suggesting that hypoxia is one of
multiple stress-related stimuli that may induce TGFBI expression.

DISCUSSION
The molecular mechanisms of VHL effect(s) on tumor progression are not fully defined and
novel HIF-independent VHL targets identified recently, such as recently characterized secreted
tumor marker clusterin [40] or PL6 (our study [41]) provide more insight into the VHL tumor
suppressor function. Research into the molecular mechanisms of the VHL effect on the
extracellular matrix may provide novel therapeutic approaches against stroma-supported tumor
growth and invasion [42]. In this study, using our assay for identification of novel VHL targets,
we characterized ITGA5, SERPINE(PAI-1), IGFBP3, TGFBI, FN1, LAMB, and TIMP2 as
common VHL and TGF-β transcriptional targets. Our research was then focused on TGFBI,
an important extracellular matrix protein with as yet unknown function in cancer. Our data
linked TGFBI over-expression with mutations in the von Hippel-Lindau gene and VHL-
associated cancers, such as clear cell carcinoma and hemangioblastoma. We demonstrated that
KLF10, a yet another novel VHL target that we identified, may potently transactivate the
TGFBI promoter independently of hypoxia. This finding suggests that the KLF10 may mediate
up-regulation of TGFBI in VHL-deficient tumors and other cancers.

Addressing clinical significance of our findings we found TGFBI up-regulation in 40% of
kidney, 90% of the colorectal and ~60% of intestinal cancers. TGFBI was also highly expressed
in brain tumors but not in normal brain tissue suggesting that it may serve as a diagnostic
marker. Since similar observations were reported by other investigators [43,44], we suggest
that it is now imperative to see if TGFBI protein can be secreted by malignant brain cells into
the cerebrospinal fluid and serve for early detection of brain tumors. What role(s) may TGFBI
play in tumorigenesis? Our finding that TGFBI is expressed in epithelial cells of normal kidney
is in agreement with the role suggested for TGFBI in promoting adhesion, migration, and
regeneration of these cells [17]. Likewise, up-regulation of TGFBI in cancer cells may
stimulate their survival via ECM-dependent signaling. Indeed, a TGFBI ortholog periostin is
also linked with tumorigenesis where it may promote angiogenesis and metastasizing [45,
46]. In this regard, our study provides the first evidence that TGFBI expression in tumors may
be controlled by stress-associated pathways.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Identification of adhesion-associated TGF-β targets modulated by VHL. Extracellular Matrix
and Adhesion (rows 1–14) and TGF-β/BMP (rows 15–28) arrays after hybridization with RNA
samples extracted from the VHL-positive or VHL-negative cells. Open triangles indicate genes
repressed by wtVHL while arrows show wtVHL-stimulated genes. Full gene charts can be
obtained from http://www.superarray.com.
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Fig. 2.
Stimulation of the TGFBI promoter by KLF10 in HAEo(−) and 293 cells.
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Fig. 3.
Expression of TGFBI in normal and cancer tissues. A. Northern analysis with MTN blots. B.
Expression analysis of 19 tumor types represented by paired tumor (T) and matched normal
(N) RNA samples arranged in columns. Right bottom column shows TGFBI-expressing cancer
cell lines. C. Comparison of TGFBI and CA9 expression in the set samples framed in B. Arrows
show samples where both TGFBI and CA9 are induced.
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Fig. 4.
Hif-1α effect on endogenous Tgfbi and Klf10 expression in mouse fibroblasts.

Ivanov et al. Page 12

Biochem Biophys Res Commun. Author manuscript; available in PMC 2009 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ivanov et al. Page 13

Table 1
VHL targets involved in regulation of cell adhesion

Pos. on Fig. 1 pVHL effect Gene GeneBank #, Ref. RT-PCR evaluation, Fold
1 ⇓ ITGA5 NM_002205 [31,32] 2.0
2 ⇓ SERPINE1 NM_000602 [33,34] 10.0
3 ⇓ COL3A1 NM_000090 Not supported
4 ⇓ IGFBP3 NM_000598 [7] 2.0
5 ⇓ TGFBi NM_000358 3.5
6 ⇑ FN1 NM_002026 [7] Not done
7 ⇑ LAMB1 NM_002291 1.7
8 ⇑ TIMP2 NM_003255 [35] Not done
9 ⇑ STAT1 NM_007315 [30] 2.5
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