
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

1251

COMMENTARY

 ©  2008  Tarlinton 

The Rockefeller University Press $30.00

J. Exp. Med. Vol. 205 No. 6 1251-1254 www.jem.org/cgi/doi/10.1084/jem.20081057

    Rearrangement and assembly of B cell 
antigen receptor genes generates a di-
verse antibody repertoire in humans and 
mice. However, the complete range 
of mechanisms that generate antibody 
diversity and produce lymphocytes with 
specifi c functional and tissue-specifi c 
properties remains controversial. Somatic 
hypermutation (SHM) is a postrear-
rangement diversifi cation process in 
which point mutations are introduced 
into the DNA encoding the V gene 
through a mechanism mediated by 
the enzyme activation-induced cyti-
dine deaminase, and which typically 
occurs in an antigen-dependent man-
ner within GCs ( 1, 2 ). Recent studies 
suggested the existence of a subset of B 
cells that undergoes SHM in an anti-
gen-independent fashion outside GCs 
( 3 ), but this viewpoint has remained 
controversial. Two studies now lend 
support for this idea. Weller et al. ( 4 ) 
on p. 1331 of this issue identify a subset 
of B lymphocytes in human infants that 
undergoes repertoire diversifi cation via 
antigen-independent V gene SHM. In 
mice, Shimomura et al. ( 5 ) on p. 1343  
of this issue describe a phenotypically 
and functionally unique B cell subset 
that completes its development in the 
large intestine and shows evidence of 
postrearrangement repertoire diversi-
fi cation by SHM. Collectively, these 
results suggest that the events associated 
with B cell development in humans 

and mice may not be far removed from 
those in other species, such as sheep, 
in which antigen-independent diver-
sifi cation occurs in the gut-associated 
lymphoid tissue (GALT). 

 The  “ generation of diversity ”  question 

 In the 1980s, the structure of the 
mouse Ig loci and the mechanisms 
by which the antibody repertoire is 
diversifi ed were defi ned ( 6 ). Diver-
sity generated through combinatorial 
joining of Ig gene segments, with the 
addition of untemplated nucleotides 
at the joining ends, was calculated to 
provide binding sites suffi  cient to ac-
commodate an almost infi nite number 
of possible antigenic determinants ( 6 ). 
This explanation for the generation of 
a diverse naive antibody repertoire was 
so seemingly complete that there ap-
peared to be no room or requirement 
for alternative or additional mecha-
nisms. This view was reinforced by 
the discovery that the human Ig loci 
were structured and rearranged in a 
manner essentially identical to that in 
mice ( 6 ). But exceptions were even-
tually found, even among animals in 
which a degree of evolutionary solidar-
ity might be expected. During B cell 
development in chickens, for example, 
rearrangement involves a single V H  and 
a single V L  gene segment to form an 
essentially clonal population of cells 
that is later diversified by gene con-
version, a process by which portions 
of the rearranged V genes are replaced 
by sequences donated from an array of 
pseudo – V genes located upstream of 
the functional V segment. This occurs 

in a postdevelopment expansion phase 
in the chicken ’ s bursa, an appendage 
of the intestine ( 7 ). These V segment 
substitutions occur independently of 
antigen binding to the B cell receptor 
(BCR), although gut bacteria provide 
an antigen-independent proliferative 
stimulus. Sheep also undergo a pro-
cess of postrearrangement diversifi ca-
tion ( Fig. 1 ). This process occurs in 
the ileal Peyer ’ s patches located along 
the large intestine, and involves SHM 
rather than V gene conversion ( 8 ). Fi-
nally, rabbits diversify their limited, 
rearrangement-derived Ig repertoire 
in the appendix through both gene 
conversion (as in chickens) and SHM 
(as in sheep) ( 9 ). In each of these ex-
amples, postrearrangement diversifi ca-
tion occurs in GALT and is thought to 
be antigen independent. To date, there 
has been no defi nitive demonstration 
of antigen-independent postrearrange-
ment diversifi cation in mice, although 
mouse B cells undergo postrearrange-
ment V gene replacement in the bone 
marrow in response to interactions 
with self-antigen, a process referred to 
as receptor editing ( 10 ). 

 Hints of postrearrangement 

human Ig diversifi cation 

 The analysis of B cell development and 
diversifi cation in humans is problem-
atic and, to a degree, has been inferred 
from analyses of other mammalian spe-
cies. However, nature often provides 
material that is every bit as informative 
as that generated by laboratory genet-
icists. One example is patients with 
common variable immune defi ciencies 
(CVIDs). Among this heterogeneous 
group are individuals with mutations 
in key genes required for the forma-
tion of GCs ( 11 ), which, as mentioned, 
are sites of antigen-driven repertoire 
diversification mediated by V gene 
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tibodies are swapped to form new iso-
types — is a refl ection of the defective 
GC formation and the defi ciency of T 
cell help. Curiously, however, some of 
these patients contain IgM +  B cells that 
express CD27 ( 13, 14 ), a widely used 
marker of memory B cells in humans. 
The apparent paradox of  “ memory ”  B 
cells in CVID patients, with their in-
ability to form fully functional GCs, was 
compounded by the fact that a fraction 
of the V genes within this IgM + CD27 +  
memory B cell population showed 
evidence of SHM. This could be, and 
has been, interpreted as evidence for 
a subpopulation of human B cells that 
behave like those in the ileal Peyer ’ s 
patches of sheep and diversify their rep-
ertoire via a burst of developmentally 
regulated, antigen-independent SHM 
( 14 ). It has also been suggested that this 
mutated IgM + CD27 +  B cell compart-
ment is developmentally dedicated to T 
cell – independent (TI) responses, such 
as responses to encapsulated bacteria 
and some of their cell wall constitu-
ents ( 14 ). This suggestion was based on 
the localization of these IgM + CD27 +  
memory B cells in the marginal zone 
of the spleen, the site at which such TI 
responses typically develop in rodents 
( 15 ). Alternatively, mutations in the 
IgM + CD27 +  B cells might result from 
incomplete and abnormal TD immune 
responses in these individuals, with B 
cells exiting the GC after the onset of 
SHM but before the initiation of class 
switch recombination ( 13 ). 

 The paper by Weller et al. adds to 
this debate. The authors studied im-
munocompetent children younger than 
2 years old, before humans acquire the 
ability to respond to TI antigens ( 16 ), 
making it unlikely that the IgM + CD27 +  
cells found in these infants are the result 
of this type of response ( 4 ). All of the 
children in this study had been vaccinated 
with TD antigens at least once and thus 
would have generated functional GCs 
and traditional memory B cells. When 
the authors compared the distribution of 
V gene mutations between IgM + CD27 +  
and IgM  �  CD27 +  (i.e., conventional and 
isotype-switched) memory B cell popu-
lations in these infants, they found that 
the frequency of mutations (mutations 

distribution is thus an indication of 
antigen-mediated selection among B 
cells. Analysis of patients with GC de-
fi ciencies has revealed mutations in the 
genes encoding proteins associated with 
the provision or receipt of T cell help 
during immune responses, including 
CD40, CD40L, SH2D1A, and induc-
ible T cell co-stimulator ( 11 ). These 
patients do not respond appropriately 
to T cell – dependent (TD) antigens, and 
are defi cient in both serum Ig isotypes 
other than IgM and B cells express-
ing isotypes other than IgM and IgD. 
The defi ciency in class switch recom-
bination — an antigen-driven process by 
which the constant regions of IgM +  an-

SHM ( 1, 2 ). GC B cell survival and 
entry into the memory compartments 
is selective and depends on the affi  nity 
with which their receptors bind antigen 
( 12 ), with higher affi  nity cells expand-
ing preferentially. This antigen-medi-
ated selection results in a distribution 
of mutations in the V gene segments 
of memory B cells that is significantly 
different from the distribution that 
would be predicted if mutations were 
inserted at random; changes encoding 
amino acid replacements are enriched 
in the antigen-binding regions of the 
V segments of memory cells, whereas 
such changes are reduced in the Ig 
framework regions ( 2 ). This skewed 

  Figure 1.     Comparison of proposed and proven mechanisms of B cell diversifi cation in dif-

ferent species.  Early B cell development in all species occurs in the bone marrow, where diversifi ca-

tion is generated by recombination activating gene (RAG) – mediated combinatorial joining of the Ig 

gene segments. In sheep (pathway 1), immature B cells seed the ileal Peyer ’ s patches, where they 

undergo further repertoire diversifi cation by SHM. This is independent of antigen (Ag) binding to the 

BCR. These cells then enter the peripheral pool, where they are available for immune responses. 

An overall similar scheme is followed by rabbits and chickens (see The “generation of diversity” ques-

tion). The study by Weller et al. (pathway 2; reference  4 ) proposes an unconventional pathway of 

diversifi cation in which immature B cells undergo repertoire diversifi cation by SHM in an antigen-

independent manner. The location at which this process may occur is uncertain. These B cells appear 

within the CD27 + IgM +  population. Conventional B cell development in humans and mice (pathway 3) 

relies on antigen-driven diversifi cation in GCs to produce CD27 + IgM +  and CD27 + IgM  �   memory B 

cells. Shimomura et al. (pathway 4) fi nd a distinct subset of B cells that completes its phenotypic 

maturation in the GALT. There is evidence of SHM among these cells, but it is at a low frequency and 

of uncertain timing in their development.   
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anatomically, and functionally distinct 
subset of lymphocytes usually suggests 
a specialized role in the immune sys-
tem. However, as with the B1 popu-
lation, it may take some time to 
determine the exact function of these 
intestinal B cells. 

 Conclusions 

 Our current understanding of the im-
munology of lymphocyte subsets, as de-
fi ned by phenotype and/or location, is 
that they have evolved to fulfi ll a partic-
ular immunological need. The assump-
tion is that, to some extent, function 
follows form such that if we understand 
the developmental behavior of the lym-
phocytes, we will gain insight into their 
purpose. Thus, the identifi cation of B 
cell subsets that apparently develop in 
distinct fashions relative to the vast ma-
jority of B lymphocytes may suggest 
distinct, evolutionarily conserved func-
tions. The challenges raised by the stud-
ies of Weller et al. ( 4 ) and Shimomura 
et al. ( 5 ) are to determine with certainty 
which processes are being used to di-
versify these populations and which 
functions they carry out. A unique de-
velopmental strategy may indeed refl ect 
a unique function. 
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 Hints of postrearrangement 
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gested by the human data from Weller 
et al. ( 4 ) and by B1 cells in mice, which 
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