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BRIEF DEFINITIVE REPORT

    Sepsis remains the leading cause of death in 
critically ill patients, with mortality rates rang-
ing between 30 and 70% ( 1 ). The syndrome of 
sepsis develops when the initially appropriate 
host response to infection becomes excessive, 
resulting in widespread infl ammation and mul-
tiorgan failure ( 2 ). Several strategies to treat 
human sepsis have targeted proinfl ammatory 
mediators. Unfortunately, most of these ther-
apies have not proven to be effi  cacious in large 
multicenter clinical trials ( 3 ). Blockade of TNF, 
IL-1 � , bradykinin, platelet-activating factor, 
elastase, nitric oxide, and LPS has not aff ected 
outcome ( 4 ). In addition, it was recently dem-
onstrated that corticosteroid therapy for septic 
shock failed to alter survival in a randomized 
trial ( 5 ). Consequently, the current treatment 
of sepsis is largely supportive, and defi nitive 
therapies have remained elusive. 

 Septic peritonitis has a particularly high 
mortality and is characterized by a massive infi l-
tration of neutrophils into the peritoneum, 
where they act as a fi rst line of defense against 
microbial pathogens. When innate defenses be-
come overwhelmed, bacteria escape the perito-
neum and disseminate throughout the host, 

inducing an exaggerated infl ammatory response 
( 2 ). Immune recognition of bacteria occurs via 
pattern-recognition receptors that detect con-
served microbial components or products ( 6 ). 
The best-characterized pattern-recognition re-
ceptors are the Toll-like receptors (TLRs). 
There are at least 10 TLRs in mammals. TLR4 
functions as the signal-transducing receptor for 
LPS, and TLR2 detects a broad range of Gram-
positive bacterial products, including lipotechoic 
acid and peptidoglycan. The ligands for TLR9 
are unmethylated CpG motifs present in bacte-
rial DNA ( 6 ). The importance of TLRs in the 
pathogenesis of sepsis has been demonstrated in 
mice defi cient in the signaling protein myeloid 
diff erentiation factor 88 (MyD88) ( 7 ). MyD88 
has been identifi ed as a central adaptor protein 
for the signal transduction of all TLRs except 
for TLR3 ( 8 ). Although MyD88  � / �   mice have 
attenuated responses to polymicrobial infection, 
the contribution of individual TLRs seems less 
critical. In a mouse model of septic peritonitis, it 
was shown that mice with single or combined 
defi ciency in TLR2 and TLR4 had similar sur-
vival as WT mice ( 7 ). These surprising fi ndings 
raised the possibility that individual TLRs are 
dispensable for the progression of bacterial sepsis 
and instead support an alternative hypothesis 
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The reduction in cytokine levels was most evident at 12 h 
and ranged between 15- and 300-fold, depending on the 
particular cytokine. To understand the basis of protection, 
we analyzed the cellular composition of the spleen and peri-
toneum. Compared with animals undergoing sham laparot-
omy, WT mice that underwent CLP had fewer splenocytes, 
which was consistent with previous data demonstrating apop-
tosis of splenic lymphocytes during sepsis ( 9 ). In contrast, we 
found that TLR9  � / �   mice had a greater number of total 
splenocytes after CLP ( Fig. 2 A ).  The absence of lymphode-
pletion in TLR9  � / �   mice likely contributed to their protection 
because inhibiting apoptosis improves survival in sepsis ( 10 ). 
In the peritoneum, the number of lymphocytes increased 
markedly after CLP in TLR9  � / �   animals and to a lesser ex-
tent in WT mice ( Fig. 2 B ). Consistent with our fi ndings of 

that stimulation of multiple TLRs is needed for an overwhelm-
ing infl ammatory response. In this report, however, we show 
that eliminating TLR9 stimulation is suffi  cient to avert the 
unrestrained immune response in polymicrobial sepsis. 

  RESULTS AND DISCUSSION  

 TLR9  � / �   mice are resistant to polymicrobial sepsis 

 To determine the relative importance of TLR9 stimulation 
in polymicrobial sepsis, we performed cecal ligation and 
puncture (CLP) in TLR9  � / �   mice. Strikingly, nearly all 
TLR9  � / �   mice survived, whereas WT mice died at a median 
of 24 h ( Fig. 1 A ).  The increased survival of TLR9  � / �   mice 
was associated with enhanced clearance of bacteria from the 
blood ( Fig. 1 B ) and peritoneal cavity ( Fig. 1 C ), as well as a 
dramatic decrease in serum infl ammatory cytokines ( Fig. 1 D ). 

  Figure 1.     TLR9  � / �   mice have less infl ammation and increased 

survival after CLP.  (A) The survival rates of WT B6 and TLR9  � / �   mice were 

monitored for 6 d after CLP (15 mice per group, with data pooled from 

three experiments, each of which had similar statistical signifi cance). 

Dilutions of blood (B) or peritoneal lavage fl uid (C) obtained from TLR9  � / �   

or WT mice 12 h after CLP were cultured on BHI agar plates, and the 

number of bacterial colonies was counted (fi ve mice per group). The col-

ony count indicated is of 1 ml of blood and 1 ml of peritoneal fluid. 

(D) Serum cytokine levels were determined 6 and 12 h after CLP by using 

a cytometric bead array (fi ve mice per group). Data shown are means of 

values  ±  SEM obtained from individual mice and are representative of at 

least two independent experiments. *, P  <  0.05.   

  Figure 2.     TLR9  � / �   mice have increased lymphocyte infi ltration and 

decreased local infl ammatory cytokine production after CLP.  12 h 

after CLP or sham laparotomy, the numbers of viable splenocytes (A) and 

infi ltrating peritoneal lymphocytes (B) were counted on a hemocytometer 

(BrightLine; Hausser Scientifi c) after Trypan blue staining (three to fi ve 

mice per group). Peritoneal cells are expressed per milliliter of peritoneal 

fl uid. (C) Peritoneal cells pooled from three to fi ve mice 12 h after CLP 

were cultured without restimulation for 24 h, and the supernatant cyto-

kine levels were determined with a cytometric bead array. Peritoneal cells 

from mice that underwent sham laparotomy secreted a minimal amount 

of cytokines (not depicted). Data shown are means of values  ±  SEM ob-

tained from individual mice (except for cells pooled in C) and are repre-

sentative of at least two independent experiments. *, P  <  0.05.   
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 TLR9  � / �   DCs are protective during sepsis 

 A variety of cells express TLR9, most notably those of mye-
loid lineage. In mice, TLR9 is primarily expressed on DCs, 
B cells, and, to a lesser extent, macrophages ( 11, 12 ). DCs 

reduced serum cytokine levels in TLR9  � / �   mice ( Fig. 1 D ), 
the peritoneal cells of TLR9  � / �   mice isolated 12 h after CLP 
and cultured without restimulation made fewer cytokines 
than peritoneal cells from WT mice ( Fig. 2 C ). 

  Figure 3.     TLR9  � / �   DCs reduce the sepsis-induced lethality of WT mice.  (A) 12 h after CLP or sham laparotomy, the number of conventional DCs 

(CD11c high MHCII + ) were determined by fl ow cytometry in the spleen and peritoneal fl uid of WT or TLR9  � / �   mice (three to fi ve mice per group). (B) The 

survival rates of WT mice receiving WT or TLR9  � / �   DCs were monitored for 6 d after CLP (23 mice per group, with data pooled from two experiments, 

each of which had similar statistical signifi cance). (C) 10 7  Flt3L-expanded WT or TLR9  � / �   DCs (CD45.2 + ) were injected i.v. into CD45.1 WT recipients (three 

to fi ve mice per group). 12 h after transfer, the mice underwent CLP or sham laparotomy, and 12 h later the number of CD45.2 +  DCs were enumerated 

from the peritoneal cells by fl ow cytometry. (D) Dilutions of blood or peritoneal lavage fl uid obtained from WT mice pretreated with WT or TLR9  � / �   DCs 

12 h after CLP were cultured on BHI agar plates, and the number of bacterial colonies was counted (fi ve mice per group). (E) Serum cytokine levels were 

determined 12 h after CLP by cytometric bead array (fi ve mice per group). Data shown are means of values  ±  SEM obtained from individual mice and are 

representative of at least two independent experiments. *, P  <  0.05.   
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 To ascertain whether TLR9  � / �   DCs were protective, we 
transferred them into WT mice before CLP. Although adop-
tive transfer of WT DCs did not aff ect survival, the transfer 
of TLR9  � / �   DCs signifi cantly decreased mortality ( Fig. 3 B ). 
This coincided with greater accumulation of transferred 
TLR9  � / �   DCs than WT DCs in the peritoneum of WT 
mice after CLP ( Fig. 3 C ). The reduced mortality after adoptive 
transfer of TLR9  � / �   DCs was also associated with a decrease 
in the burden of blood and peritoneal bacteria ( Fig. 3 D ), as 
well as lower serum levels of infl ammatory cytokines ( Fig. 3 E ). 
Thus, the adoptive transfer of TLR9  � / �   DCs was suffi  cient 
to reduce the extent of bacterial infection and the associated 
infl ammatory response in WT mice. 

 TLR9  � / �   mice have a greater infl ux of granulocytes 

into the peritoneum 

 Early clearance of bacteria is mediated by granulocytes and is 
critical for the prevention of an overwhelming immune response 
( 18 ). Because TLR9  � / �   mice had enhanced bacterial clearance, 
we assessed their peritoneal granulocyte content. CLP was asso-
ciated with a robust recruitment of granulocytes to the perito-
neum in TLR9  � / �   mice and to a lesser extent in WT mice ( Fig. 
4 A ).  To determine if granulocytes were required for the en-
hanced survival observed in TLR9  � / �   mice, we performed CLP 
in WT and TLR9  � / �   animals after antibody-mediated deple-
tion of granulocytes. Indeed, depletion of granulocytes abro-
gated the survival advantage of TLR9  � / �   mice ( Fig. 4 B ). 

play a pivotal role in sepsis, and DC recruitment to sites of 
infl ammation in response to chemotactic stimuli is necessary 
for an optimal immune response ( 13, 14 ). During sepsis in mice 
and humans, the number of DCs is reduced ( 2, 15 ). In addition, 
depletion of the remaining DCs in an inducible model of DC 
ablation demonstrated that DCs are protective during sepsis 
( 16 ). Furthermore, intrapulmonary transfer of DCs to mice 
2 wk after sublethal CLP has been shown to reverse the sepsis-
induced susceptibility to  Aspergillus  infection ( 17 ). 

 We therefore determined whether DCs were altered in 
TLR9  � / �   mice during sepsis. As expected, DCs were reduced 
in the spleen and peritoneum of WT mice after CLP. However, 
the reverse was seen in TLR9  � / �   mice, as sepsis actually in-
creased the number of DCs in both the spleen and peritoneum 
( Fig. 3 A ).  We then examined the maturation, function, and 
subset composition of DCs 12 h after CLP. There was no diff er-
ence in DC maturation between WT and TLR9  � / �   mice after 
sham laparotomy, as measured by CD40, CD80, and CD86 ex-
pression. However, CLP induced a similar increase in the matu-
ration of DCs from WT and TLR9  � / �   mice (Fig. S1 A, available 
at http://www.jem.org/cgi/content/full/jem.20080162/DC1). 
DCs from TLR9  � / �   mice that underwent CLP induced greater 
alloproliferation (Fig. S1 B). There was no diff erence in 
the composition of myeloid (CD11b + CD8 �   �  ), lymphoid 
(CD11b  �  CD8 �  + ), and plasmacytoid (mPDCA-1 + ) DCs from 
the spleen (Fig. S1 C) or peritoneum (not depicted) between 
WT and TLR9  � / �   mice after CLP. 

  Figure 4.     Peritoneal granulocytes are increased by CLP and are necessary for protection.  (A) 12 h after CLP or sham laparotomy, the number of 

peritoneal granulocytes in WT or TLR9  � / �   mice (three to fi ve mice per group) was determined by fl ow cytometry. (B) WT or TLR9  � / �   mice received 500  μ g 

anti-GR1 antibody or isotype control 24 and 2 h before CLP, and the survival rates were monitored for 6 d after CLP (15 mice per group, with data pooled 

from three experiments, each of which had similar statistical signifi cance). (C) 2  ×  10 6  CD45.1 splenic granulocytes were injected i.v. into WT or TLR9  � / �   

(CD45.2) recipients (three to fi ve mice per group). 12 h after transfer, the mice underwent CLP or sham laparotomy, and 12 h later the number of CD45.1 +  

granulocytes were enumerated from the peritoneal cells by fl ow cytometry. (D) 12 h after CLP or sham laparotomy, the number of granulocytes (Ly6G + ) 

was determined by fl ow cytometry in the peritoneal fl uid of WT mice pretreated with 10 7  Flt3L-expanded WT or TLR9  � / �   DCs (three to fi ve mice per 

group). Treatment with anti-GR1 antibody achieved  > 97% depletion of granulocytes at the time of and 24 h after CLP (not depicted). Data shown are 

means of values  ±  SEM obtained from individual mice and are representative of at least two independent experiments. *, P  <  0.05.   
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tective innate immunity, whereas in polymicrobial peritonitis 
there is widespread TLR stimulation that leads to an exag-
gerated infl ammatory response. Nevertheless, in certain settings, 
stimulation of individual TLRs can be lethal. For instance, ad-
ministration of bacterial DNA or LPS after sensitization 
with  d -galactosamine is rapidly lethal ( 24, 25 ). In CLP, a 
more relevant model of clinical sepsis ( 26 ), the diverse path-
ogens residing in the enteric tract stimulate multiple TLRs, 
but inhibition of TLR9, as we have shown, and not TLR2 
or TLR4 ( 7 ), aff ects the outcome. In polymicrobial infection, 
it has generally been assumed that the stimulation of multiple 
TLRs collectively promotes the pathological hyperinfl am-
matory response. Our fi ndings, however, suggest a hierarchy 
of TLR responses, with TLR9 having a major role in the 
immunopathogenesis of polymicrobial sepsis. This is exem-
plifi ed by the near abrogation of serum infl ammatory cytokines 
in TLR9  � / �   mice, a fi nding also observed in MyD88  � / �   
mice, which are largely devoid of TLR signaling ( 7 ). 

 Collectively, our data demonstrate that the absence of 
TLR9 signaling during peritoneal sepsis promotes the local 
infl ux of DCs, which is associated with an enhanced granu-
locyte response that is necessary for survival. The dependence 
on granulocytes may be independent of TLR9 or DC in-
volvement. Nevertheless, we speculate that DCs mediate the 
enhanced granulocyte recruitment into the peritoneum, be-
cause adoptive transfer of TLR9  � / �   DCs into WT recipients 
enhanced granulocyte recruitment ( Fig. 4 D ). DCs are known 
to produce high levels of chemokines, and their ability to do 
so has been shown to enhance the recruitment and activation 

 Activated DCs have been shown to promote granulocyte 
chemotaxis in vivo by the secretion of chemokines ( 19 ). 
TLR9  � / �   mice demonstrated accumulation of peritoneal DCs 
during CLP ( Fig. 3 A ), and transfer of TLR9  � / �   DCs was suf-
fi cient to protect WT animals from CLP ( Fig. 3 B ). We there-
fore sought to determine if preferential granulocyte recruitment 
occurs in TLR9  � / �   animals and if DCs from TLR9  � / �   mice 
increased granulocyte traffi  cking to the peritoneum. After 
adoptive transfer of congenic WT granulocytes into WT and 
TLR9  � / �   mice before CLP, a greater number of WT granu-
locytes accumulated in the peritoneum of TLR9  � / �   versus 
WT recipients after CLP ( Fig. 4 C ). Furthermore, there was 
no signifi cant diff erence in the number of adoptively trans-
ferred granulocytes in the blood or spleen between WT and 
TLR9  � / �   mice after CLP (unpublished data). Adoptive trans-
fer of TLR9  � / �   DCs enhanced granulocyte recruitment, as 
treatment of WT mice with TLR9  � / �   DCs before CLP led to 
a signifi cantly increased number of peritoneal granulocytes 
than adoptive transfer of WT DCs ( Fig. 4 D ). 

 Inhibitory CpG (iCpG) reduces the mortality 

of polymicrobial sepsis 

 Because TLR9  � / �   mice survived septic peritonitis, we 
postulated that TLR9 blockade in WT mice may protect 
them from sepsis. A single 100- μ g dose of an iCpG se-
quence ( 20 ) administered immediately before CLP signifi -
cantly improved the survival of WT mice ( Fig. 5 A ).  It is 
possible that multiple or higher iCpG doses would achieve 
even greater survival in WT mice subjected to CLP. Using 
lower doses, we found that 50  μ g achieved 30% survival in 
10 mice (P = 0.1), whereas a 5- μ g dose did not yield any 
survivors (unpublished data). In vitro, iCpG also inhibited 
the production of infl ammatory cytokines when WT sple-
nocytes were cultured directly with heat-inactivated contents 
from mouse cecum (Fig. S2, available at http://www.jem
.org/cgi/content/full/jem.20080162/DC1). 

 Because there is often a delay in the diagnosis of sepsis in 
humans, we determined the window of time during which 
iCpG could off er protection. Dramatically, we found that iCpG 
protected against mortality up to 12 h after CLP ( Fig. 5 B ). 
Thus, continued TLR9 stimulation was necessary for progres-
sion to death, because WT mice could be rescued at 12 h de-
spite already being burdened by high bacterial counts and 
widespread infl ammation ( Fig. 1 ). 

 TLR9  � / �   mice have been shown to be highly suscepti-
ble to Gram-negative bacterial pneumonia ( 21 ), Gram-pos-
itive pneumonia ( 22 ), and infection with the intracellular 
parasite  Toxoplasma gondii  ( 23 ). In contrast, we have found 
TLR9  � / �   mice to be markedly resistant to septic peritoni-
tis. One potential explanation for this apparent discrepancy 
may be the diversity and magnitude of TLR stimulation 
between infection with a single pathogen and polymicrobial 
peritonitis. TLR stimulation may be protective up to a cer-
tain threshold, beyond which it becomes detrimental. It is 
conceivable that during infection by a single pathogen there 
is a restricted degree of TLR stimulation that initiates pro-

  Figure 5.     TLR9 inhibition protects WT mice from CLP.  (A) Immedi-

ately before CLP, WT mice received 100  μ g iCpG or control oligodeoxy-

nucleotide (ODN), and survival rates were monitored for 6 d. (B) 12 and 18 h 

after CLP, WT mice received 100  μ g iCpG or control ODN, and survival 

rates were monitored for 6 d. Survival curves of mice treated with iCpG at 

3 and 6 h were similar to the one shown for the 12-h iCpG group (not 

depicted). Data shown include 15 mice per group, pooled from three ex-

periments, each of which had similar statistical signifi cance.   
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cytometry used in these experiments. Supplemental materials and methods 

provides information about antibodies used and the mixed leukocyte reac-

tion performed. Online supplemental material is available at http://www

.jem.org/cgi/content/full/jem.20080162/DC1. 
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of granulocytes ( 19 ). Finally, the availability of inhibitors to 
human TLR9 provides the opportunity to translate our fi nd-
ings to the treatment of human sepsis. 

 MATERIALS AND METHODS 
 Animal procedures.   6 – 10-wk-old WT CD45.1 and CD45.2 C57BL/6 

(B6) mice were purchased from the Jackson Laboratory. TLR9  � / �   mice on 

a B6 background (obtained from S. Akira, Osaka University, Osaka, Japan) 

were bred in our laboratory. For CLP, the surgeon was blinded to the ex-

perimental groups, and a midline laparotomy incision was performed in an 

aseptic fashion and the cecum was ligated distal to the ileocecal valve, taking 

care not to disrupt bowel continuity. The ligated cecum was punctured once 

with an 18-gauge needle, as previously described ( 27 ). Mice subjected to 

sham laparotomy underwent the same procedure without the CLP. Mice 

were monitored every 8 h for 6 d to determine survival. Granulocyte deple-

tion was accomplished with an i.p. injection of 500  μ g anti-GR1 antibody 

(RB6.8C5; Monoclonal Core Facility, Sloan-Kettering Institute) 24 and 2 h 

before CLP. In vivo blockade of TLR9 was accomplished with a subcutane-

ous injection of 100  μ g iCpG or control DNA sequence (InvivoGen) ( 28 ). 

The animals were maintained in a pathogen-free animal housing facility at 

the Memorial Sloan-Kettering Cancer Center. All procedures were ap-

proved by the Institutional Animal Care and Use Committee. 

 Cell isolation and adoptive transfer.   Peritoneal cells were isolated by 

injecting 5 ml PBS i.p. and retrieving the fl uid 1 min later. The data de-

picted in the fi gures indicate the cell or bacterial count per milliliter of the 

retrieved peritoneal fl uid. Spleens were mechanically disrupted, digested in 

0.05% type IV collagenase (Sigma-Aldrich), and rendered free of erythro-

cytes by treatment with a hypotonic solution of ammonium chloride. In 

vivo expansion of DCs was accomplished with daily i.p. injections of 10 

 μ g of recombinant human fms-like tyrosine kinase 3 ligand (Flt3L; Amgen) 

for 10 d. Expanded splenic DCs were purifi ed with anti-CD11c immuno-

magnetic beads (Miltenyi Biotec). Splenic granulocytes were purifi ed from 

CD45.1 mice with an anti-Ly6G (1A8) biotinylated antibody and streptavi-

din microbeads (Milteny Biotec). 10 7  expanded WT or TLR9  � / �   CD45.2 

splenic DCs or 2  ×  10 6  splenic CD45.1 granulocytes were injected into the 

lateral tail vein of CD45.1 or CD45.2 WT and TLR9  � / �   mice, respectively. 

Adoptively transferred cells were also labeled with 50  μ M CFSE (Invitrogen) 

to facilitate their proper identifi cation. 

 Flow cytometry.   Flow cytometry was performed on a FACSAria (BD 

Biosciences). Fc receptors were blocked with 1  μ g anti-Fc � RIII/II antibody 

(2.4G2; Monoclonal Core Facility, Sloan-Kettering Institute) per 10 6  cells. 

Conventional DCs were defi ned as CD11c high MHCII +  and granulocytes 

were defi ned as Ly6G +  (Fig. S3, available at http://www.jem.org/cgi/content/

full/jem.20080162/DC1). Cells were stained with fl uorescent-conjugated 

CD11c (HL-3), MHCII (AF6-120.1, I-Ab), CD45.1 (A20), CD45.2 (104), 

and Ly6G (1A8) antibodies (BD Biosciences). Dead cells were excluded with 

7-amino-actinomycin D (BD Biosciences). 

 Measurement of cytokines and CFUs.   For cytokine measurement, peri-

toneal cells were cultured at a concentration of 10 6  cells/ml in media for 24 h. 

Blood was obtained by direct cardiac puncture. Supernatant and serum cyto-

kine levels were determined using a cytometric bead array (BD Biosciences). 

Aerobic bacterial CFUs were determined by plating serial dilutions of blood 

and peritoneal fl uid on brain – heart infusion (BHI) agar plates. 

 Statistics.   Statistical signifi cance was determined by the Student ’ s  t  test and 

the log-rank test using statistical software (Prism 4.0; GraphPad Software, 

Inc.). P  <  0.05 was deemed signifi cant. 

 Online supplemental material.   Fig. S1 shows DC maturation, func-

tion, and subset composition in WT and TLR9  � / �   mice after CLP. Fig. 

S2 shows that iCpG blocks cytokine secretion by WT splenocytes cultured 

with cecal contents in vitro. Fig. S3 shows representative gating for fl ow 
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