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Abstract
Dendritic cells (DCs) produce cytokines and are susceptible to cytokine-mediated activation. Thus,
interaction of resting immature DCs with TLR ligands, for example nucleic acids, or with microbes
leads to a cascade of pro-inflammatory cytokines and skewing of T cell responses. Conversely,
several cytokines are able to trigger DC activation (maturation) via autocrine, for example TNF and
plasmacytoid DCs, and paracrine, for example type I IFN and myeloid DCs, pathways. By controlling
DC activation, cytokines regulate immune homeostasis and the balance between tolerance and
immunity. The increased production and/or bioavailability of cytokines and associated alterations in
DC homeostasis have been implicated in various human inflammatory and autoimmune diseases.
Targeting these cytokines with biological agents as already is the case with TNF and IL-1 represents
a success of immunology and the coming years will expand the range of cytokines as therapeutic
targets in autoinflammatory and autoimmune pathology.
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1. Introduction
The immune system is composed of a non-antigen-specific innate limb and an antigen-specific
adaptive limb [1]. Innate immunity, borne by cells such as granulocytes and macrophages and
proteins such as complement and cytokines, includes a variety of prompt reactions in response
to infectious agents and other challenges. An excessive response results in inflammatory
processes. The adaptive immunity, borne by lymphocytes, is acquired in weeks or months. It
is characterized by an exquisite specificity for the eliciting antigen as well as memory, which
allows a faster and stronger response upon re-exposure to the antigen. Adaptive responses can
be immunogenic, leading to resistance to infections and possibly cancer, or tolerogenic
avoiding response against self.

Indeed, to efficiently protect us from invading microorganisms, the adaptive immune system
must distinguish self from non-self as immune responses against self can create a wide
repertoire of autoimmune diseases. Anti-self immune responses are prevented through a variety
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of mechanisms occurring at various levels during the development of the immune system [2].
Autoreactive lymphocytes can be deleted, rendered anergic or rendered suppressive [3–5].
Suppressor T cells, also called regulatory T cells, suppress autoreactive responses both in an
antigen-specific and a non-antigen-specific fashion. These immunological events happen either
in the primary lymphoid organs (bone marrow and thymus) and are thus collectively called
“central tolerance” or in the periphery and are then called “peripheral tolerance”. Clinical
autoimmunity arises as a result of an altered balance between the autoreactive cells and the
regulatory mechanisms designed to counterbalance them.

DCs are specialized to capture and process antigens to present their peptides to lymphocytes.
They are found in all tissues including blood and lymphoid organs [6–12]. In peripheral tissues,
DCs are found in an immature stage specialized in the capture of antigens. In response to
microbes, DCs undergo a complex process of maturation into antigen-presenting cells. This
happens while the DCs migrate from the periphery into the draining lymph node through the
lymphatics. In the steady state, DCs also migrate at a low rate without undergoing activation.
Then they present self-antigens to lymphocytes in the absence of costimulation thereby leading
to peripheral tolerance. Various mouse models have demonstrated that DCs bearing self-
antigens are able to induce autoimmune diseases [13–15]. Furthermore alterations of DC
homeostasis have been directly implicated in various human autoimmune diseases including
type I diabetes, multiple sclerosis, and systemic lupus erythematosus (SLE) [16,17].

Here we review our current understanding of dendritic cell function in tolerance and how
cytokines interfere with these processes to generate autoimmunity.

2. Dendritic cells
2.1. Dendritic cell maturation

Dendritic cells (DCs) are a heterogeneous family of cells of haematopoietic origin that are
specialized in the handling of antigens, i.e. those from infectious agents and self, and their
presentation to lymphocytes. Though most of the current knowledge relates to the presentation
of peptides to T cells in the context of MHC classes I and II molecules, DCs can present
glycolipids and glycopeptides to T cells and NKT cells as well as polypeptides to B cells. DCs
undergo a complex maturation process from antigen-capturing cells into antigen-presenting
cells. Numerous agents activate DCs including: microbes, dying cells, cells of the innate
immune system and cells of the adaptive immune system. pathogen-associated molecular
patterns (PAMPs) from microbes [18] signal DCs and other cell types through a variety of
pattern-recognition receptors (PRR) including toll-like receptors (TLRs) [19,20]; cell surface
C-type lectins receptors (CLRs) [21,22] and intracytoplasmic NOD-like receptors (NLRs)
[23,24]. TLRs have been given the most attention until now and appear to be particularly
important in the context of autoimmunity and most specifically SLE. Distinct DC subsets
display different TLRs as will be discussed hereunder. Lysates of dying cells induce the
maturation of DCs [25], and some components involved in dying cells enhance antigen
presentation by DCs leading to T cell immunity [25,26]. These endogenous activating
molecules are collectively called damage-associated molecular pattern molecules (DAMPs)
[27]. They include heat shock proteins (HSPs) [28], high mobility group box 1 protein
(HMGB1) [29], β-defensin [30] and uric acid [31].

DCs can secrete a diversified panel of chemokines that attract different cell types at different
times of the immune response [32]. They also express a unique set of costimulatory molecules
which permit the activation of naïve T cells and thus allow the launching of primary immune
response. Through the cytokines they secrete, e.g.: IL-12, IL-23 or IL-10 as well as the surface
molecules they express, e.g.: OX40-L [33] or ICOS-l [34] DCs can polarize naïve T cells into
Th1, Th2, Treg or Th17.
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2.2. Dendritic cell subsets
There are two main pathways of DC ontogeny from hematopoietic progenitor cells (HPCs).
One pathway generates myeloid DCs (mDCs); while another generates plasmacytoid DCs
(pDCs), a subset capable of secreting large amounts of type I IFN in response to viral
stimulation [35,36] (Fig. 1). At least six DC subsets have been described in mouse spleen and
lymph nodes, including conventional DCs (formerly designated myeloid DCs and lymphoid
DCs) and plasmacytoid DCs [11,37]. They are distinguished according to surface markers such
as CD11b, CD8a and CD11c, as well as by their functions [38–40]. Myeloid DCs are found in
three compartments: (1) peripheral tissue, (2) secondary lymphoid organ and (3) blood. In the
skin, two distinct types of mDCs are found in two distinct layers. Langerhans cells (LCs),
which express CD1a and Langerin reside in the epidermis, while interstitial DCs (intDCs),
which express DC-SIGN and CD14 reside in the dermis [41]. Plasmacytoid DCs, circulating
in the blood and secondary lymphoid organs by crossing high endothelial venules, express
BDCA2, ILT-7 and CD123, and secrete large amounts of type I interferons (IFNs) in response
to viruses and/or TLR7−9 ligands [9]. Blood plasmacytoid DCs express TLR1, 6, 7, 9 and 10,
but nor TLR4, while blood myeloid DCs express TLR1, 2, 3, 4, 5, 6, 7, 8 and 10, but not TLR9
[42,43]. Epidermal Langerhans cells isolated from skin lack the expression of TLR4 and TLR5,
while dermal interstitial DCs express many TLRs including TLR2, 4 and 5 [44]. In the human,
CLRs permit to distinguish DC subsets with BDCA2 specifically expressed on plasmacytoid
DCs [45], Langerin expressed on Langerhans cells [46], and DC-SIGN expressed on interstitial
DCs [47]. Many other C-type lectins are more promiscuous, and are, as is the case with TLRs,
expressed on various cell types including endothelial cells and neutrophils. C-type lectins
expressed on DCs act as anchors for a large number of microbes including viruses, bacteria,
parasites and fungi, and allow their internalization, but they also act as adhesion molecules
between DCs and other cell types including endothelial cells, T cells and neutrophils.
Abnormalities in dendritic cell homeostasis have been implicated in various human diseases,
including cancer, autoimmune diseases, allergy and infections.

2.3. Dendritic cells and immune tolerance
Central tolerance, induced in the thymus or bone marrow, plays a pivotal role in the prevention
of undesired attacks against self. Anti-self immune responses are prevented through a variety
of mechanisms occurring at various levels of the immune system development [2].
Autoreactive lymphocytes can be either deleted, or rendered anergic or rendered suppressive
[3–5]. Suppressor T cells also called regulatory T cells are also generated which suppress
autoreactive responses both in an antigen-specific fashion and a non-antigen-specific fashion.
Many peripheral auto-antigens through their expression in thymic medullary epithelial cells (a
process regulated by the autoimmune regulator AIRE) are known to be responsible for the so-
called negative selection [48]. Moreover, cytokines like thymic stromal lymphopoietin (TSLP)
produced by epithelial cells of thymic Hassall's corpuscles promote the conversion of
CD4+CD25-thymocytes into CD4+CD25+Foxp3+ T regulatory cells (Tregs) [49]. Dendritic
cells in the thymus are also involved in the process of central tolerance [50].

It is clear, however, that negative selection in the thymus does not eliminate all autoreactive
cells. Thus, tolerance induced in the periphery becomes a very important mechanism to
maintain control of emerging autoreactivity. The mechanisms involved in peripheral tolerance
are not entirely understood, but there is evidence that “resting” immature DCs that capture self-
antigens in the steady state play an important role in this process. Indeed, under these
conditions, DCs capture apoptotic bodies and/or cellular debris arising from normal cell
turnover, migrate to draining lymph nodes and silence T cells reacting to these antigens [51].
The myeloid DC subset appears to be the most potent cell able to capture self-apoptotic bodies.
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This phenomenon needs to be tightly regulated, as an unusual load of apoptotic bodies can
induce systemic autoimmune disease [52]. Indeed, dead cells may also contribute to DC
maturation, as it has been shown for necrotic or late apoptotic cells, but no early apoptotic cells.
As discussed above, endogenous activating molecules are collectively called damage-
associated molecular pattern molecules [27]. There is evidence that plasmacytoid DCs in their
resting state are involved in tolerance induction [53–55]. pDCs stimulated via CD40 induce
IL-10-secreting regulatory CD4+ T cells [34] as well as suppressor CD8+ T cells [56].

Recently, the concept that “immature DCs are tolerogenic whereas mature DCs are
immunogenic” has been challenged by several studies showing that fully mature DCs can
induce tolerance and differentiation of regulatory T cells [57–59]. In fact, the integration of
different signals by the DCs, including Ag dose, cytokine milieu at sites of inflammation,
encountered pathogen etc., will determine whether DCs will become tolerogenic vs.
immunogenic. Possibly, peripheral tolerance is actively maintained by “tolerogenic” DCs
[60]. In addition to deleting T cells, tolerogenic DCs induce the differentiation and proliferation
of T cells with regulatory/suppressor functions [3,61]. Some pathogens have a capacity to
actively render DCs tolerogenic [62]. Although the specific markers of tolerogenic DCs are
yet to be determined, expression of inhibitory immunoglobulin like transcript (ILT) receptors
might be their feature [63]. In vitro-generated DCs exposed to IL-10 express ILT-3, which is
associated with their tolerogenic functions [64]. Studies in mice suggest that DCs might be
used in the treatment of autoimmunity through their ability to induce regulatory T cells. Thus,
repetitive injections of “semi-mature” DCs induce antigen-specific protection of mice from
experimental autoimmune encephalomyelitis and thyroiditis [57,58]. In NOD mice which
spontaneously develop diabetes, DCs can induce the generation of Tregs in vitro which provide
a therapeutic benefit even after onset of disease [59]. Indeed, Tregs appear to suppress DCs
that induce autoimmunity by presenting autoantigens [59,65].In keeping with this, animals
which are depleted of Tregs show autoimmunity that is associated to expansion of activated
DCs [66,67]. While immunogenic DCs have been used in clinical trials to treat mainly patients
with cancer, understanding the mechanisms underlying the tolerogenic functions of DCs, such
as those generated with IL-10 [68,69] or those infected with RSV [70], opens new avenues for
the treatment of autoimmunity or the induction of specific tolerance in organ transplants.

Cytokines secreted to induce a specific immune response against an invading pathogen might
interfere with DC homeostasis and induce an autoimmune response that can be responsible for
tissue pathology. Indeed, clinical and epidemiological studies have suggested a link between
infectious agents and chronic inflammatory disorders, including autoimmune diseases [71].

3. Cytokines, inflammation and autoimmunity
Cytokines represent critical mediators of the autoimmune process. They may represent
products of DCs and/or induce the differentiation of immature DCs into mature DCs that can
select autoreactive lymphocytes (Fig. 2).

3.1. IL-1 and its family
The IL-1 family plays an important role in inflammation and host defense. Up to 11 members
of this family have been identified to date [72,73]. Of those, only five have been thoroughly
studied: IL-1α, IL-1b, IL-18, IL-1RA and the recently reported IL-33. The remaining six
(IL-1F5; IL-1F6; IL-1F7; IL-1F8; IL-1F9; IL-1F10) have been shown to be expressed in
various cell types or tissues but their functions remain to be determined.

IL-1α and IL-1β are pro-inflammatory cytokines. Both are synthesized as precursor molecules
(pro-IL-1α and pro-IL-1β) by many different cell types. Pro-IL-1α is biologically active and
needs to be cleaved by calpain to generate the smaller mature protein. By contrast, pro-IL-1β
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is biologically inactive and requires enzymatic cleavage by caspase-1 in order to become active.
IL-1α is primarily bound to the membrane whereas IL-1β is secreted and thus represents the
predominant extracellular form of IL-1 (reviewed in Ref. [74,75]). IL-33 is a new member of
the IL-1 family that is produced as a propeptide requiring cleavage by caspase-1. It binds to
IL-1R4 (ST2) and stimulates T helper 2 (Th2) responses [73]. IL-1 is an activator of DCs,
though it is not yet clear whether such IL-1-activated DCs display unique biological functions
[73].

Interleukin-1 is involved in the pathogenesis of numerous diseases with an inflammatory
component [76]. This is best demonstrated by the therapeutic benefits of treatment of patients
with IL-1 antagonists such as IL-1-RA. These diseases include Systemic onset Juvenile
Idiopathic Arthritis (SoJIA) [77], which represents up to 20% of chronic inflammatory arthritis
in childhood. IL-1RA has also shown therapeutic efficacy in gout [78], type II diabetes [79]
as well as a series of hereditary diseases causing periodic inflammatory symptoms and grouped
under the term “familial autoinflammatory syndromes” [80]. Whether the beneficial effects
are due to the inhibition of DC activation is not demonstrated.

3.2. IL-6 and its family
The IL-6 family is composed of IL-6, IL-11, leukaemia inhibitory factor (LIF), oncostatin M
(OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1) and cardiotrophin-like
cytokine (CLC). Members of this family display pro- but also anti-inflammatory effects and
play a central role in hemopoiesis as well as in innate and adaptive immune responses.

Activation of IL-6 signalling is mediated through the IL-6/sIL-6R complex, a process known
as “trans-signalization” and a unique example of a soluble cytokine receptor displaying
agonistic effects. IL-6 is secreted by many cell types, including B and T lymphocytes,
monocytes, fibroblasts, keratinocytes, endothelial cells, mesenchymal cells and certain types
of tumor cells. IL-6 induces the differentiation of B lymphocytes into plasma cells as well as
the proliferation of T lymphocytes, differentiation of cytotoxic T cells and IL-2 production.
IL-6 also induces the differentiation of macrophages and megakaryocytes [81].

Recently, IL-6 has been described to participate in the differentiation of a novel T cell subset,
Th17, which displays pro-inflammatory functions [82,83]. IL-23 is responsible for the
expansion of Th17 previously differentiated, while IL-6 and TGF-β are responsible for the
differentiation of Th17 from their naïve precursors. TGF-β induces Foxp3 which leads to the
formation of Tregs, while IL-6 inhibits Foxp3 expression induced by TGF-β, and favors the
formation of Th17 together with TGF-β [84–86].

IL-6 is likely to be involved in the pathogenesis of inflammatory and autoimmune diseases. It
plays an important role in bone biology by inducing the differentiation and activation of
osteoclasts and it mediates periarticular destruction of bone and cartilage in experimental
models of arthritis [87]. IL-6 levels are increased in the serum of children with Systemic onset
Juvenile Arthritis in a disease activity-dependent manner [88], and blocking its receptor is
emerging as an effective therapy both in SoJIA [89] as well as in adult RA [90].

3.3. IL-12 and its family
IL-12, a heterodimeric cytokine produced mainly by activated myeloid DCs, plays a pivotal
role in the differentiation and expansion of Th1 cells [91–95].The recent discovery of IL-23
has led to a re-evaluation of interleukin-12 biology, as they share a common p40 subunit. In
animal models, predisposition to autoimmunity can be explained by abnormal levels of IL-12
secreted by APCs [96]. Furthermore, IL-12 administration has been shown to switch tolerance
mediated by intravenous or orally administered antigens into immunity [97]. In addition
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blocking IL-12 in patients with active Crohn's disease using a specific antibody can induce
stable remission [98].

IL-23 is a cytokine that drives autoimmune diseases, including psoriasis and inflammatory
bowel diseases [99,100]. IL-23 is secreted by human DCs exposed to gram-negative bacteria
[101]. As mentioned above, IL-23 promotes the development and expansion of activated
CD4+ T cells that produce IL-17, IL-17F, IL-6 and TNF and are called Th17. Their
differentiation is inhibited by IFN-gamma, IL-4 and IL-2 [102]. Genetic analysis of these Th17
cells identified a unique expression pattern of pro-inflammatory cytokines and revealed a
unique role in different mouse models of autoimmune inflammation [103]. Given that the levels
of IL-23 p19 and IL-17 are elevated in human diseases including multiple sclerosis, psoriasis
and Crohn's disease, it is possible that these cytokines mediate human diseases [104–106].
Indeed, the therapeutic efficacy of an IL-12/23 p40 monoclonal antibody in psoriasis has
recently been established [107]. The Th17 pathway has also been implicated in multiple
sclerosis (MS) [108]. DCs, i.e. monocyte-derived DCs from MS patients, secrete more IL-23
but equivalent amounts of IL-12 compared to healthy controls [104]. Patients with MS also
appear to have increased numbers of IL-17-expressing cells [109]. Finally, a subset of
infiltrating T cells express IL-17 in RA synovium [110].

The implication of IL-27 in autoimmunity is less clear as this cytokine can have pro- and anti-
inflammatory properties [111,112].

3.4. TNF-α
TNF-α was among the first cytokines whose dysregulation was proposed to contribute to the
pathogenesis of various autoimmune disorders. More importantly, TNF blockers have been
extensively used and validated as an efficacious treatment for RA, Crohn's disease and psoriasis
[113,114]. This clearly represents one of the greatest successes of immunology though the
mechanisms of action remain unclear. Inasmuch as TNF induces many cell types, including
DCs, to secrete pro-inflammatory cytokines, it is likely that TNF blocking results in their
decreased secretion. Alternatively, anti-TNF-α therapy might generate a newly differentiated
population of Treg cells distinct from natural Tregs, which seem to be defective in RA patients
[115].

However, TNF antagonists are not without adverse effects, including reactivation of
tuberculosis and induction of reversible systemic autoimmunity like SLE. In fact TNF blockers
enhance the production of type I IFNs by pDCs exposed to viruses whereas TNF inhibits it.
Type I IFNs, as described below, have been implicated as important mediators of autoimmune
diseases in humans. Interestingly, transcription of type I IFN-inducible genes is observed in
juvenile arthritis patients treated with TNF blockers. These data suggests that TNF represent
an endogenous mechanism to control IFN production by pDCs [116]. Indeed, TNF produced
by pDCs in response to viral activation acts as an autocrine maturation factor for these cells.
Once they mature, pDCs are unable to secrete type I IFNs. It is therefore conceivable that
blocking TNF would keep pDCs at an immature stage where they can continue to produce type
I IFNs. Thus, based on these observations, immunity can be viewed as a dynamic system driven
by opposite vectors, i.e. TNF-type I IFNs. The sum of the vectors yields an equilibrium point
which allows protective immunity when vectors are equal. This dynamic system can
accommodate the prevalence of either vector to a certain extent. However, when one of the
vectors prevails beyond a certain threshold, the equilibrium point moves into a zone of
immunopathology, including arthritis when the TNF vector prevails and SLE and others when
type I IFN production prevails (Fig. 3) [16].

Blanco et al. Page 6

Cytokine Growth Factor Rev. Author manuscript; available in PMC 2009 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.5. Type I interferons (IFNs)
Type I IFNs (IFN-α/β), major controllers of viral infections, play a role in several human
autoimmune diseases, most particularly SLE. Indeed, SLE is the first autoimmune disorder
where alterations in the type I IFN system were reported. In 1979, Notkins and colleagues
described the presence of IFN activity in the serum of patients with SLE [117]. More
importantly, induction of autoimmunity, including appearance of anti-nuclear antibodies and
occasionally clinical symptoms of SLE, were reported during repeated administration of
recombinant IFN-α to patients with various malignancies or chronic viral infection [118].
Recent studies have identified an “IFN signature” in the majority of patients with active SLE
[119-121]. IFN-α in SLE patients is mainly secreted by pDCs and understanding what drives
its unabated secretion in SLE patients remains an area of intense investigation. Type I IFNs
can contribute to the breaking of tolerance through different mechanisms including direct effect
on APCs, T cells and B cells.

3.5.1. IFN-α and DC alteration—We have shown that SLE blood constitutes a DC-inducing
environment, as it promotes the differentiation of healthy monocytes into mDCs. The DC-
inducing property of SLE sera is mainly mediated through IFN-α [122]. Indeed, blood SLE
monocytes display DC-like functions as they capture antigens and autoantigens and present
them to CD4+ and CD8+ T cells. Thus, type I IFN-induced unabated DC activation could
promote the expansion of autoreactive T cells. SLE DCs are characterized by their unique in
vitro ability to promote the differentiation of CD8+ T lymphocytes in CTLs able to generate
nucleosomes and granzyme B-dependent autoantigens. Interestingly, terminally differentiated
effector CD8+ T lymphocytes (CCR7− , CD45RA+) are expanded in the blood of SLE patients
and this expansion correlates with disease activity as assessed by the SLE Disease Activity
Index (SLEDAI) [123]. These cells can induce direct tissue damage as they represent the main
cell subset infiltrating the kidney in lupus nephritis, where they adopt a periglomerular
localization. A direct correlation is found between the lupus nephritis activity score and the
number of periglomerular infiltrating CD8+ T lymphocytes. No correlation was found,
however, with the chronicity score. In a similar way, autoreactive CD8+ T lymphocytes directed
against myelin epitopes are expanded in patients with CNS lupus involvement. None of those
autoreactive cells were found in a control population without neurologic involvement or in
SLE patients in whom thrombosis was responsible for the neurologic symptoms. IFN also
appears to be associated to other autoimmune diseases including myositis [124,125], Sjogren's
syndrome [126,127] and the initial phase of psoriasis [128].

3.5.2. IFN-α and B cell activation—The key role of B lymphocytes in SLE has been known
for a long time and it has recently been reinforced by the observation that treatment of patients
with the B cell depleting CD20 antibody leads to disease improvement [129]. Through their
direct effect on B cells, type I IFNs enhance primary antibody responses to soluble proteins
and induce the production of all subclasses of IgG in mice [130]. IFN-α up-regulates CD38, a
germinal center B cell and plasma cell marker, on B lymphocytes and BAFF (B cell activating
factor) on monocytes and mDCs. BAFF in turn contributes to the survival of autoreactive B
lymphocytes [131]. In addition, IFN-α promotes the differentiation of activated B lymphocytes
into plasmablasts. pDCs activated with viruses secrete IFN-α and IL-6, which permits
plasmablasts to become antibody-secreting plasma cells [132]. The same effect is observed
when pDCs are activated with SLE immune complexes containing nucleic acids that bind TLRs
[133,134]. This could contribute to amplify the production of type I IFNs and subsequently
the differentiation of autoreactive plasma cells that would further secrete autoantibodies, thus
perpetuating this pathogenic loop.
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4. Toll-like receptor (TLR) ligands and autoimmunity
Infections frequently precede the occurrence of either organ-specific or systemic autoimmune
diseases. Molecular mimicry, however, cannot account for all the autoimmune responses that
have been linked to infectious diseases. TLRs are key components of the innate immune
system. These receptors activate multiple pathways of inflammation that eventually permit to
eradicate invading pathogens [135]. Microbial-derived TLR ligands include a wide range of
molecules with strong adjuvant activity that can activate DCs, macrophages and other APCs
[136]. TLRs are involved in the pathogenesis of autoimmune disorders [14], and endogenous
ligands also activate these receptors [137–139]. Exposure to TLR3 or TLR7 ligands is required,
for example, to induce autoimmune diabetes in transgenic mice that harbour large numbers of
pancreatic islet-reactive cytotoxic T cells. In this model, TLR-induced local production of IFN-
α triggers the recruitment of autoreactive T cells into the pancreatic islets [140]. TLR3 and
TLR9 ligation are also key events in the development of autoimmune myocarditis by inducing
the maturation of DCs pulsed with heart-specific self-peptide [14]. In humans, TLR activation
has been reported as a pathogenic event mainly in the context of systemic autoimmune diseases
such as SLE. Early studies demonstrated that immune complexes were potent stimuli for IFN-
α secretion by pDCs in an Fc receptor (CD32)-dependent manner [141,142]. Indeed, chromatin
and/or ribonucleoprotein-containing immune complexes are internalized by pDCs via FcgRIIa,
reach the endosomal compartment and activate IFN-α secretion through TLR9 and/or 7-
dependent pathways [143,144]. Sera from SLE patients can also induce IFN-α secretion in a
TLR7/8-dependent manner [133]. Accordingly, there is a correlation between the presence of
an IFN gene signature in blood leukocytes and the detection of autoantibodies directed against
ribonucleoproteins in the sera of SLE patients [145]. Since INF-α induces the transcription of
TLR7 itself, a self-amplifying loop could take place at this stage as well, thus explaining the
above-described correlation.

The contribution of immune complexes and TLR signalling to the generation of autoantibodies
characteristic of SLE has been the purpose of several studies in murine SLE models.
Chromatin-containing IC activate transgenic autoreactive B cells via sequential engagement
of the B cell antigen receptor (BCR) and TLR9. In vivo, TLR9 contributes to the development
of anti-dsDNA antibodies, as lupus-prone (Fas-deficient) mice that lack TLR9 on the mixed
MRL-B6−129 background fail to generate these antibodies [146]. Unexpectedly, in another
mouse model (MRL/lpr), TLR9 deficiency leads to an increased production of autoantibodies
and a more severe lupus-like disease [147]. Thus, depending on the genetic background, TLR9
seems to deliver a pathogenic or a protective signal. TLR7 signalling contributes in turn to
induce an SLE-like syndrome in most of the murine models so far studied. Indeed, as shown
for pDCs, immune complexes that contain TLR7 ligands (RNA and RNA-associated
autoantigens) activate autoreactive B cells in vitro [148]. In vivo, FcRIIb−/− mice develop
enhanced autoimmunity when crossed to the Y-linked autoimmune accelerator (Yaa) locus
which harbours a duplication in the TLR7 gene [149]. Thus, naturally occurring differences in
expression of the TLR7 gene as well as environmental factors that induce TLR7 expression
(CD40-L and/or IFN-α) could contribute to SLE pathogenesis.

5. High mobility group box 1 protein and SLE
High mobility group box 1 protein, an abundant nuclear protein displaying potent pro-
inflammatory effects when released extracellularly, can mediate the activation of TLR9 by
DNA-containing immune complexes through a mechanism involving the immunoglobulin
superfamily member RAGE, which is the best-characterized receptor for HMGB1. Necrosis
or tissue injury causes HMGB1 to be released from cells; it then binds to DNA-containing
immune complexes in serum and then the resultant complexes regulate the expansion of
autoreactive B cells and the production of IFNα by pDCs. RAGE is involved in the recognition
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of HMGB1- and DNA-containing immune complexes [150], and the DNA-dependent
association of TLR9 and RAGE, along with the endosomal localization of RAGE, raise the
possibility that RAGE determines the subcellular localization and/or retention of DNA-TLR9
complexes in the endosome (Fig. 4). These effects may be important in perpetuating
inflammatory amplification loops in SLE.

6. Conclusions
Much progress has occurred in the understanding of the biological basis of autoimmunity in
the past decade leading to identification of cytokines as the major regulators of immune
homeostasis and the balance between tolerance and immunity. This permitted generation of
new treatments with TNF and IL-1 antagonists on top (Table 1). TNF blockade is clinically
useful in several autoimmune diseases. Blocking IL-1 effectively treats patients with juvenile
arthritis, familial periodic fever syndromes and type II diabetes. New cytokine targets are being
identified including: IL-12/23 blockade in Crohn's disease, multiple sclerosis and psoriasis and
type I IFNs in SLE, Sjogren's syndrome, autoimmune myositis and perhaps early stages of
psoriasis (Table 1).

Yet, the causative links between cytokine imbalance and alterations in DC homeostasis remain
to be determined for many of the cytokines identified. Likewise, the precise mechanisms of
action of cytokine blockade remain unclear. Are we targeting a cytokine that represents a
product of activated DCs and which triggers the cascade of inflammation by acting on other
cells? Or are we targeting a cytokine that drives uncontrolled DC activation leading to break
in tolerance? These scientific challenges will keep us busy for a while!
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Fig. 1.
Dendritic cells are composed of subsets. DC progenitors originate from bone marrow
CD34+FLT3+ hematopoietic progenitor cells (HPCs). A myeloid pathway generates both
Langerhans cells (LCs), found in stratified epithelia such as the skin, and interstitial (int)DCs,
found in all other tissues. It also generates mDCs circulating in the blood. Upon inflammation
monocytes can yield mDCs. Another pathway generates plasmacytoid DCs (pDCs), which
secrete large amounts of IFN-α/β after viral infection. Activated (mature) mDCs and pDCs
traffic to secondary lymphoid organs either via afferent lymphatics (mDCs) or blood (pDCs).
Langerhans DCs home to cell zones while interstitial DCs home to follicles consistent with
their functional specialization, i.e. generation of cellular (Langerhans DCs) and humoral
(interstitial DCs) immunity, respectively. The origin of resident lymph node DCs remains to
be determined.
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Fig. 2.
Cytokines and dendritic cell activation. DCs both produce cytokines and are susceptible to
cytokine-mediated activation. Thus, exposure to DC activators, for example TLR ligands or
microbes, triggers secretion of pro-inflammatory cytokines including type I interferons (IFN),
acute phase cytokines such as TNF and IL-6, IL-1 as well as IL-12 family (left panel). Several
cytokines are able to trigger DCs activation (maturation) either in autocrine or paracrine fashion
including IL-1, TNF, type I IFNs and TSLP (right panel).
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Fig. 3.
Cross-regulation of TNF and IFN-α in autoimmune diseases. TNF and IFN-α represent
opposite vectors (paths) of immune responses. The sum of the vectors yields an equilibrium
point, which allows protective immunity when vectors are equal. When one of the vectors
prevails beyond a certain threshold, the equilibrium point moves into a zone of autoimmunity:
an excess of IFN-α/β is pathogenic in SLE, Sjogren's, dermatomyositis and early stages of
psoriasis while excess of TNF is pathogenic in rheumatoid arthritis, inflammatory bowel
disease (IBD), Crohn's disease and psoriasis.
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Fig. 4.
Nucleic acids regulate activation of DC subsets. Interaction of resting immature pDCs with
nucleic acids leads to a cascade of cytokine secretion including high amounts of type I IFN as
well as TNF. This leads to generation of activated (mature) DCs derived from pDCs, via
autocrine TNF, and from immature mDCs, via paracrine type I IFN, both of which drive T and
B cell responses. Nucleic acids, abundant in autoimmune diseases such as SLE, can be
presented to pDCs via several pathways such as i) immune complexes containing double
stranded DNA (green) or single stranded RNA (red) which are taken up via Fc receptors; ii)
viruses (for example RNA viruses) taken up via surface receptors; and iii) complexes of nuclear
protein HMGB1 bound to DNA-containing immune complexes which are taken up by pDCs
via the interaction of HMGB1 with surface protein of the immunoglobulin superfamily RAGE.
Ultimately, captured nucleic acids are targeted to endocytic compartments where they bind
TLR7 (RNA) or TLR9 (DNA) resulting in activation of signalling pathways that trigger
transcription of inflammatory cytokines.
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Table 1
Cytokine targets in human inflammatory and autoimmune diseases

Cytokine Disease Therapeutic effect References

IL-1 NOMID Yes [151]
FCA Yes [152]
Muckle-Wells Yes [153]
SoJIA Yes [77]
Gout Yes [78]
Type II diabetes [79]

IL-6 SoJIA Yes [89]
RA Yes [90]

IL-12/23 Crohn's Yes [98]
MS Yes [154]
Psoriasis Yes [107,155]

IL-17 RA Not tested
MS Not tested

TNF-α RA Yes [113]
JIA Yes [156]
Crohn's Yes [157]
Psoriasis Yes [114]

IFN-α SLE Not tested
Myositis Not tested
Psoriasis Not tested
Sjogren's Not tested
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