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The application of genetic association studies to detect mitochondrial variants responsible for phenotypic variation
has recently been demonstrated. However, the only power estimates currently available are based on the use of
mitochondrial haplogroups, which can only tag a small fraction of the common variation in the mitochondrial
genome. Here, power estimates are derived for a SNP-based study design for both disease (case-control) and
quantitative trait mapping studies. Power is estimated using simulations based on a collection of publicly available
mitochondrial sequences of European origin. The power when testing all common mitochondrial SNPs is shown to be
equivalent to that when testing only tagging SNPs, despite the relatively high ratio of tagging SNPs to total SNPs
resulting from the tagging of all SNPs with a minor allele frequency greater than 1%. The sample size requirements
of mitochondrial genome association studies are compared with that of nuclear whole-genome studies. Remarkably,
the trade off between the number of tests being performed and the proportion of phenotypic variance explained for
a fixed effect size results in approximately equal sample sizes required for both study types, although the per
individual cost for the mitochondrial association study is much less. To test the representation of the sequences used
in the power simulations, a sample of 3839 individuals from 1037 Australian families was genotyped for 69 tagging
SNPs. The strong concordance in allele frequencies and linkage disequilibrium between the European sequences and
the Australian sample indicates that the results presented here are transferable across populations of European
descent.

The human mitochondria contain a circular, haploid, and ma-
ternally inherited genome 16.6 kb in length. The genome en-
codes 13 genes involved in oxidative phosphorylation, two rRNA
genes, and 22 tRNA genes. Mitochondrial DNA (mtDNA) is
highly polymorphic, providing an aspect of the human genome
that has been thus far widely excluded from studies looking for
genetic factors involved in human variation, despite the well-
known role of mitochondria in disease (Wallace 1999).

Recently, the use of association studies to detect mitochon-
drial sequence variants responsible for variation in disease risk
has received attention (Samuels et al. 2006; Saxena et al. 2006).
Samuels et al. (2006) present an analysis of the power to detect an
association between mtDNA haplogroups and disease using
simulation-based permutation tests. Their analysis tests for dif-
ferences in mtDNA haplogroup frequency between cases and con-
trol samples using a (2 � N) contingency table, where N is the
number of haplogroups in the sample (∼10 in European samples).
Saxena et al. (2006) tested a set of tagging mitochondrial single
nucleotide polymorphisms (SNPs) for association with diabetes and
related metabolic traits. Their analysis used a SNP-based ap-
proach, where individual SNPs were tested for association with
the trait of interest, effectively using a series of (2 � 2) contin-
gency tables for disease traits and t-tests for continuous variables,
with an appropriate correction for multiple testing.

While the approach of Samuels et al. (2006) may appear to
be advantageous due to the use of a single test for association,
and thereby removing any multiple testing issues, this approach
suffers from lack of coverage of the mitochondrial genome. As-

suming the 10 common European haplogroups were genetically
independent, they could, at most, tag an equivalent number of
independent SNPs. This is only a fraction of the 64 SNPs identi-
fied by Saxena et al. (2006) as being necessary to tag common
mitochondrial variation with an r2 of 0.8, where r2 is the squared
correlation of the alleles at two SNPs and 0.8 is the usual tagging
threshold. Also, when using a haplogroup-based approach, there
is substantial within-haplogroup variation being excluded from
testing. For example, sequences of haplogroup H, the most com-
mon European haplogroup, taken from mtDB (Ingman and Gyl-
lensten 2006), contain 78 SNPs with minor allele frequency >1%,
of which nine have minor allele frequency >5%. To account for
this variation when using the haplogroup association approach
requires the continued subdivision of haplogroups into smaller
units, which, in turn, will reduce the power of the analysis.

In this study, we investigate the properties of the SNP-based
approach used by Saxena et al. (2006). Although analogies with
nuclear genome association studies may suggest this approach to
be advantageous in terms of locating the underlying genetic vari-
ant, it should be remembered that the mitochondrial DNA is
essentially a recombination “coldspot”, and this prohibits the
localization of causal variants through association. (Despite some
initial reports [Awadalla et al. 1999], there appears to be little
evidence for widespread recombination between mitochondrial
genomes [Eyre-Walker and Awadalla 2001; McVean et al. 2002].)
Here, the power of the SNP-based approach to mitochondrial
association studies is investigated and a comparison of the power
of association studies on mitochondrial DNA relative to genome-
wide association studies is made. To investigate the representation
of the available European mitochondrial genome sequences used
in the simulation studies, we genotyped a sample of 3839 individu-
als from 1037 Australian families for 69 tagging SNPs and compared
allele frequencies and linkage disequilibrium patterns.

1Corresponding author.
E-mail allan.mcrae@qimr.edu.au; fax 61-7-3362-0101.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.074872.107.

Methods

18:911–917 ©2008 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/08; www.genome.org Genome Research 911
www.genome.org



Results

Linkage disequilibrium between mitochondrial SNPs

The number of SNPs required for tagging mitochondrial genetic
variation, and thus the extent of the correction for multiple test-
ing in mitochondrial association studies, depends on the amount
of linkage disequilibrium in the mitochondrial genome. Based on
the alignment of over 900 mtDNA sequences, Saxena et al. (2006)
identified 144 variants with frequency >1% in European popula-
tions. These SNPs contain 49 of the 50 SNPs identified as segre-
gating in the founders of the CEU HapMap population (HapMap
Data Release 21, July 2006; The International HapMap Consor-
tium 2005). Of the 144 SNPs, 50 had a minor allele frequency
(MAF) greater than 5%. Furthermore, seven of the SNPs were
triallelic. As the third allele always was present at less than 1% at
all loci, occurring only once in the 928 samples for five of the
seven loci, SNPs with this allele were considered as missing values
for the purpose of this study.

The average r2 value for all pairs of SNPs was 0.04 (SD = 0.14)
without a restriction on allele frequency and 0.14 (SD = 0.26)
when MAF was restricted to >0.05. Out of the 10,296 pairwise
SNP comparisons in the complete data set, only two pairs showed
complete linkage disequilibrium (r2 = 1) and 136 pairs (1.3%)
show r2 > 0.8. These average r2 values are low when considering
that the mitochondrial genome is essen-
tially a recombination “cold-spot” and
indicate that the number of tests to be
corrected for in a mitochondrial associa-
tion study will be close to the number of
SNPs tested. The average r2 values are
smaller that those in the CEU HapMap
population, which has an average r2 of
0.12 for all SNPs and 0.22 with the re-
striction on minor allele frequency be-
ing greater than 0.05. This difference can
be attributed to an inflation in the aver-
age r2 in the HapMap population, due to
an increase of sampling variation (Hill
and Weir 1994) and the choice of SNPs
to be genotyped in the initial phase of
the HapMap project resulting in an ap-
proximately uniform distribution of
minor allele frequency instead of rela-

tively exponential distribution observed
when examining all SNPs (The Interna-
tional HapMap Consortium 2005). The
correlation between r2 and distance was
small and positive (0.005) and thus pro-
vided no evidence for mitochondrial re-
combination.

Power of whole mitochondrial genome
association studies

Figure 1 presents estimates of the power
of case-control studies to detect risk al-
leles in the mitochondrial genome.
These estimates average power differ-
ences over the observed distribution of
minor allele frequencies, an approach
consistent with the fact that the allele
frequency at the causal allele will be un-

known during study design. The differing approaches of geno-
typing all common variants (144 SNPs) and SNPs that tag those
variants with an r2 of 0.8 (64 SNPs) result in small differences in
the power to detect mitochondrial association, with genotyping
of all common variants being ∼2%–3% more powerful when
power is in the 0.8–0.9 range. Given the tagging approach re-
quires less than half the genotyping of examining all SNPs, this
power difference can readily be overcome by the additional geno-
typing of individuals that can be achieved for a fixed cost when
only using tagging SNPs. For this reason, the only power esti-
mates from the tagging SNP approach are presented in Figure 1.
From the power curves, ∼900 cases and controls will be needed to
detect an allele with a relative risk of 3 with a power of 0.8. This
sample size increases to ∼3000 for a relative risk of 2 and 10,000
for a relative risk of 1.5.

Figure 2 presents the power estimates for the detection of a
mitochondrial SNP with an effect on a quantitative trait. As
with case-control studies, the differences in power when geno-
typing all common SNPs or tagging SNPs is small (3%–4%), with
genotyping all SNPs being the more powerful approach for a
fixed number of individuals. A sample size of ∼8000 is needed
to detect a genetic variant explaining 0.25% of the phenotypic
variance, reducing to ∼2000 for a locus explaining 1% with a
power of 0.8.

Figure 1. Power (left) and noncentrality parameter (right) of case-control studies to detect a mito-
chondrial variant encoding relative risks of 1.2 (dashed line), 1.5, 2, 3, and 4 (dotted line) at a 5%
mitochondrial genome-wide significance level. The noncentrality parameter is calculated as the dif-
ference in the mean of the distribution of the –log10 of the minimum P-value across all SNPs under the
alternative and null hypotheses.

Figure 2. Power (left) and noncentrality parameter (right) of detecting a mitochondrial variant with
effect sizes of 0.25 (dashed line), 0.5, 1, 2.5, and 5% (dotted line) of the phenotypic variance of a
quantitative trait at a 5% mitochondrial genome-wide significance level. The noncentrality parameter
is calculated as the difference in the mean of the distribution of the –log10 of the minimum P-value
across all SNPs under the alternative and null hypotheses.

McRae et al.

912 Genome Research
www.genome.org



Relative power of mitochondrial and genome-wide association
studies

As many association studies have been or are being performed on
the entire nuclear genome and with mitochondrial SNPs now
being included on some high-throughput genotyping platforms,
it is of interest to compare the relative power of mitochondrial
association studies with their nuclear counterparts. In general,
the sample size (N) required to detect a quantitative trait locus
(QTL) explaining a proportion of the trait variance (q2) is

N ≈ �z�1−��2� + z�1−���
2�q2

where � is the type I error rate, 1 � � is the power, and z is the
normal score. This formula agrees with the power estimates given
in Figure 2. Let zA and zM be the type I error z-scores for nuclear
genome and mitochondrial association scans, respectively. For
two loci with the same allele frequencies and equal effects on a
quantitative trait, one situated on an autosome and the other on
the mitochondria, q2 = 2p(1 � p)a2 for the autosomal locus and
q2 = p(1 � p)a2 for the mitochondrial locus, where p is the allele
frequency at the locus and a is the effect size in phenotypic
standard deviation units (acting additively on the nuclear locus).
Thus, the autosomal locus explains twice the amount of variance
in the trait due to the haploid nature of mitochondria. The ratio
of the same sizes required for a given power in mitochondrial
(NM) to autosomal association studies (NA) is

NM

NA
≈ 2�zM + z�1−��

zA + z�1−��
�2

.

Being conservative with respect to the difference in the
number of independent tests performed between the study types,
let an autosomal association scan use a Bonferonni correction for
300,000 tests and a mitochondrial scan for 64 tests. Thus, the
values for zM and zA for a Type I error of 0.05 are 3.36 and 5.23,
respectively. Then, at a power level of 80%, and thus z(1��) of
0.84, the ratio of sample sizes required for mitochondrial to au-
tosomal scans is approximately one. That is, mitochondrial ge-
nome-wide association studies require approximately the same
sample size as a nuclear genome association study to achieve 80%
power to detect a locus of equivalent effect size.

Efficiency of mtSNP tagging in the Australian population

The maintenance of power while use tagging SNPs requires that
the allele frequencies and intermarker linkage disequilibrium in
the tagging and sample populations are similar. To address
whether the European mitochondrial sequences from public da-
tabases formed a suitable tagging population, a sample of 3839
individuals from 1037 Australian families was genotyped at 69
polymorphic SNPs. Genotyping was successful in 260,627 of the
264,891 (98.4%) cases, and a heterozygous genotype call was
made for 75 (0.03%) of the called genotypes. Where multiple
samples were genotyped from a maternal lineage, 18 of the ap-
parent heteroplasmies were observed only once in the lineage,
and five cases were observed multiple times. Apart from hetero-
plasmy, only eight genotype mismatches within a maternal lin-
eage were observed. For the purposes of this article, heterozygous
genotype calls were considered as missing and independent mi-
tochondrial haplotypes were generated by forming a consensus
within mitochondrial lineages.

Figure 3 compares the allele frequency at the 69 SNPs geno-
typed in the Australian population to those from the publicly

available European sequence data. As expected, given that the
vast majority of mitochondrial lineages in the Australian sample
were European, the correlation of allele frequencies in the two
samples was very strong (� = 0.99). A comparison of the inter-
marker linkage disequilibrium between the tagging SNPs in the
European sequences to that in the Australian samples is given in
Figure 4. The distribution of linkage disequilibrium (LD) with
distance in the Australian sample (Fig. 4A) shows the low average
LD between markers that is expected with tagging SNPs. While
several marker pairs have an r2 of >0.8, the overall tagging effi-
ciency appears high. Again, no significant correlation is observed
with distance (� = 0.86, P = 0.93), providing no evidence for mi-
tochondrial recombination. Figure 4B compares the LD at a pair
of markers in the European and Australian samples. Overall,
there is a high correlation between the two data sets (� = 0.86).
The main discordances are due to markers mt11674 and
mt15884. These markers are in high LD in both populations and
both have minor allele frequencies of 0.05 in the tagging popu-
lation and 0.02 in the Australian population. The pair of discor-
dant marker-pairs with high LD in the Australian population
(r2 > 0.95) and low LD in the tagging samples (r2 ≈ 0.15) is these
two markers with marker mt12414. Similarly, the pair of discor-
dant marker-pairs with low LD in the Australian population
(r2 ≈ 0.01) and high LD in the tagging samples (r2 ≈ 0.42) is
mt11674 and mt15884 with mt5495.

Mitochondrial haplogroup prediction from tagging SNPs

We have argued for the use of a tagging SNP approach to mito-
chondrial association studies, as this approach results in compre-
hensive coverage of the genetic variation in the mitochondrial
genome. However, the traditional approach of using mitochon-
drial haplogroups has been considered to be superior, as the hap-
logroup approach uses information on the evolution of the mi-
tochondrial genome (Elson et al. 2007). As mitochondrial hap-
lotypes are defined by genetic variants and a tagging SNP set is
chosen to capture most genetic variation, it should be possible to
retrieve mitochondrial haplogroups from the use of tagging SNP
genotypes.

In order to demonstrate this, the genotypes of the tagging
SNP set used here for power calculations was determined for all
mitochondrial sequences in mtDB from the 10 most common

Figure 3. Allele frequency comparisons between tagging sample and
Australian sample. A nearly complete correlation of 0.99 is observed be-
tween the two samples.
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European mitochondrial haplogroups. A linear discriminant
function analysis with bootstrap cross-validation (see Methods)
was used to assign a haplogroup to each mitochondrial sequence.
The predicted haplogroups were compared with the known hap-
logroup from mtDB for each sequence. Figure 5 shows the high
prediction accuracy of this approach, with 95% of all cross-
validation replicates having a prediction accuracy of >98.5%. The
majority of the misclassified sequences were in rare haplogroups
that are nested in larger clades. Obviously, the prediction accu-
racy could be increased by taking into account haplogroup de-
fining variants when selecting a tagging SNP set.

Discussion

We investigated the power to detect a causal mitochondrial vari-
ant through association for both disease (case-control) and quan-
titative trait study designs. Remarkably, the sample sizes re-
quired to detect loci of moderate effect sizes was shown to be
within the range of those that are being deployed in current
nuclear whole-genome association studies. This was demon-
strated to be due to a trade-off between the number of tests per-
formed and the reduced phenotypic variance explained by a mi-
tochondrial locus compared with a nuclear locus with equivalent
effect size. This is an important facet to consider when using the
Illumina HumanHap550 Genotyping BeadChip and Affymetrix
Genome-Wide SNP Array 6.0, both of which include mitochon-

drial SNPs, as most studies using these genotyping platforms will
be designed with the power of nuclear association in mind. Both
the Illumina HumanHap300 Genotyping BeadChip and the Af-
fymetrix GeneChip Human Mapping 500K Array Set contain no
mitochondrial SNPs, so any association study performed with
these chips is uninformative for a mitochondrial association
study. Given that mitochondrial association studies require
∼0.02% of the genotyping required for a nuclear genome asso-
ciation study, the addition of the mitochondrial SNPs to an as-
sociation study will only trivially increase its overall cost.

On initial inspection, the average r2 between mitochondrial
SNPs appears to be low considering it is essentially a 16.6-kb
recombination cold-spot. This is confirmed with coalescent
simulations using the program “ms” (Hudson 2002), using an
effective population size (Ne) of 5000 (Wilder et al. 2004), and
mutation rates varying between 10�7 and 10�8 (Ingman et al.
2000; Wilder et al. 2004). For minor allele frequencies of >1%, an
average r2 between SNPs of ∼0.16 is obtained, increasing to be-
tween 0.32 and 0.34 (depending on mutation rate) when the
minor allele frequency is restricted to >5%. However, the ob-
served linkage disequilibrium is within the range of simulation
replicates, confirming the consistency of the observed data with
estimates of genetic parameters.

In order to compare power estimates to those obtained by
Samuels et al. (2006), a conversion is needed to a common mea-
sure of disease penetrance. Using the formula given in the Meth-
ods section, a relative risk of 2.0 is equivalent to a change in allele
frequency of 42%, 80%, and 96% for haplogroups H, I, and J,
respectively. From Figure 2D in Samuels et al. (2006) the required
sample sizes to detect these differences with 90% power are ∼300,
600, and 3000, respectively. For a relative risk of 2.0, the simu-
lations presented here estimate ∼4000 individuals are needed to
gain 90% power. The differences can be attributed to two factors,
namely, the number of tests performed and the allele frequency
of the causal variant. Samuels et al. perform only one test com-
pared with the 64 or 144 performed here. However, as discussed
above, their test only covers a fraction of the variation in the
mitochondria, so their assumption that the causal variant will be
tagged by the haplogroup is reducing their required sample sizes.
Second, the simulations presented here average over the distri-
bution of common allele frequencies. The frequencies of the H, I,
and J haplogroups in European populations are 0.41, 0.11, and

Figure 4. Linkage disequilibrium between mitochondrial SNPs in the
Australian population. (A) Distribution of linkage disequilibrium with dis-
tance. (B) Comparison of LD in the Australian and tagging populations.

Figure 5. Distribution of haplogroup prediction accuracy as deter-
mined using bootstrap cross-validation of the linear discriminant function
analysis on sequences from the common European haplogroups in mtDB.
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0.02, respectively. Given that ∼65% of common mitochondrial
polymorphisms have minor allele frequencies in the range of
from 0.01 to 0.05, the sample size required for haplogroup J is a
more realistic measure of the size required to detect an unknown
genetic variant and is in the same order of magnitude as that
determined here.

The power estimates given here provide an average measure
over the minor allele frequencies of all SNPs. This is consistent
with the allele frequency of the causal SNP not being known
during study design. However, if an assumption can be made
regarding the allele frequency of the causal variant, a simple cor-
rection can be made to adjust the required sample size for a given
power. From the equation relating required sample size and vari-
ance explained by a QTL, it can be seen that N�1/[p(1 � p)],
where p is the allele frequency of the locus. Thus, for a locus with
assumed allele frequency pg, the value of N can be adjusted by a
factor of 0.042/[pg(1 � pg)], where 0.042 is the average of
p(1 � p) over the 64 tagging SNPs.

Saxena et al. (2006) selected 64 tagging SNPs that tagged all
144 mtSNPs with a minor allele frequency of >1% using an r2 of
0.8. The use of these tagging SNPs on a fixed number of indi-
viduals was shown to have only a slight loss in power when
compared with genotyping all mtSNPs. Thus, for a fixed number
of samples, the genotyping budget can be approximately halved
with minor loss of power, or equivalently, for a fixed genotyping
budget, the number of individuals genotyped can be doubled.
The reduction of the numbers of SNPs through tagging by a fac-
tor of approximately two appears low compared with the usual
numbers used to describe tagging in nuclear genome association
studies in European populations (Barrett and Cardon 2006).
However, the mitochondrial tagging set covers 94 SNPs with mi-
nor allele frequencies between 0.01 and 0.05, a range that is
typically not covered in tagging of variation in the nuclear ge-
nome.

The power to detect a causal genetic variant on the mito-
chondria was compared with that of a locus with equivalent ef-
fect size on the nuclear genome. This comparison is affected by
the different number of tests performed in the two types of stud-
ies and the variance explained by the causal variant. The much-
reduced number of tests required for a mitochondrial association
study results in sample size requirements for a given power in a
mitochondrial association scan being approximately half that
required for a nuclear genome-wide association scan, when a
fixed amount of phenotypic variance is explained by the causal
locus. In order to compare the power to detect a locus with de-
fined effect size in the mitochondria to that of a nuclear genome
locus, the question of how to define “equivalence” in effect size
arises. For example, an argument can be made for either equating
the effect size of the mitochondrial locus to the additive effect of
the locus in the nuclear genome (a) or to the difference between
the two homozygous genotypes of the nuclear locus (2a). When
defining the effect size for the nuclear locus as its additive effect
size, then the genetic variance explained by the autosomal locus
is twice that of a mitochondrial locus with the same allele fre-
quency and effect size. This is the measure of the effect size used
in the comparisons made here. However, if instead the mito-
chondrial effect size is equivalent to the difference between the
two homozygous genotypes, then the variance explained by a
mitochondrial locus becomes 4p(1 � p)a2, or twice that of an
equivalent autosomal locus. With this measure, mitochondrial
genome scans would need only a quarter of the sample size re-
quired for autosomal genome scans to achieve 80% power of

detecting a locus. Empirical data on effect sizes for both nuclear
and mitochondrial genetic variants will be required to resolve the
correct parameterization.

When appropriate corrections are made for nuclear genetic
relationships, familial data will be useful in increasing the power
of mitochondrial association studies. As all individuals sharing
the same maternal lineage will also share the same mitochondrial
genotype (apart from rare mutation events), additional pheno-
typic information can be used in an analysis without further
genotyping. Using this information, more accurate estimates of
the genetic effect of a locus can be obtained, increasing the power
of the test.

It has been shown that nuclear genome tagging SNPs can be
transferred across different population samples with little loss in
power (de Bakker et al. 2006). However, the transferability of the
mitochondrial tagging SNPs chosen to cover variation in a col-
lection of sequences from European samples to other populations
required investigation, since the representation of the sequenced
individuals has been questioned due to the high proportion of
Finnish sequences and disease samples (Elson et al. 2007). There
was a strong correlation between the allele frequencies estimated
from the Australian sample and the European sequences. This is
in agreement with a previous study that found the frequencies of
mitochondrial haplogroups in the Australian population were
similar to those in European populations (Manwaring et al.
2006). The Australian population showed similar levels of inter-
marker linkage disequilibrium between tagging SNPs to that in
the European sequences, with major discordances being caused
by two markers with low allele frequencies. While these could be
genuine differences between the two “populations”, any small
nonrandomness in the collection of sequences could cause a dif-
ference in LD, as all SNPs with minor allele frequency >0.01 (i.e.,
occurring in only 10 of the 928 sequences) were tagged.

In summary, mitochondrial genetic association studies are a
relatively inexpensive addition to nuclear genome-wide associa-
tion studies, requiring only 64 SNPs to tag mitochondrial SNPs
with an allele frequency of greater than 1% in European popu-
lations with an r2 of 0.8. Also, mitochondrial association studies
for a trait have been shown to be at least as powerful as their
nuclear counterparts for a given effect size. This allows the reuse
of previous study sets and provides a potentially valuable addi-
tion to ongoing genetic association studies. The success of trans-
ferring mitochondrial tagging SNPs across populations of similar
ancestry was demonstrated using a sample of Australian indi-
viduals. This allows the continued use of the tagging set proposed
by Saxena et al. (2006) for mitochondrial association studies in
populations of European descent, which will increase the ability
to make comparisons across studies.

Methods

Mitochondrial sequences
Saxena et al. (2006) compiled a collection of >1200 mitochon-
drial sequences from the GenBank and MitoKor databases. From
these sequences, 928 sequences of European origin were aligned,
identifying 144 SNPs with a minor allele frequency greater than
1% (Saxena et al. 2006). The hypervariable D-loop region was
excluded due to the comparatively high mutation rate in this
region of the mitochondrial genome, indicating that tagging this
region is not an optimal strategy, especially when tagging for use
across populations; therefore, direct sequencing should be used
instead.

Power of mitochondrial association studies
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Power estimation
The power to detect loci in both case-control and quantitative
trait settings was investigated using simulation. For each simula-
tion replicate, one of the 144 common SNPs was randomly se-
lected as a causal polymorphism affecting the trait of interest.
The power of studies examining both case-control and quantita-
tive trait data was investigated with 1000 replicates for sample-
sizes of 2i � 10, where i took values from 0 to 12 (n = 10, 20,
40, . . . , 20,480, 40,960).

In the case-control study setting, the control sample was
generated by randomly selecting a sample with replacement
from the 928 mitochondrial sequences. The case sample was gen-
erated by determining the frequency of the minor allele at the
causal SNP using the relationship to the relative risk (RR). Assum-
ing that the disease under study is rare, the relative risk of a
disease at a mitochondrial locus can be expressed as RR ≈
(pd(1 � p))/(p(1 � pd)), where p is the allele frequency in the
control samples and pd is the frequency in the case samples. Us-
ing the calculated minor allele frequency in the case samples, the
number of samples containing each allele at the causal SNP is
determined using a random draw from a binomial distribution.
The case sample is then generated by sampling with replacement
haplotypes from the subset of the 928 mitochondrial sequences
with the relevant allele at the causal SNP to achieve the previ-
ously determined number of samples with each allele. Power was
estimated for SNPs that confer a relative risk of 1.2, 1.5, 2, 3, and
4 on the disease trait.

The power to detect a locus affecting a quantitative trait was
examined by randomly drawing a sample of mitochondrial hap-
lotypes with replacement. A quantitative trait was then simu-
lated by calculating the required effect at the causal SNP by re-
arranging the formula �A

2 = p(1 � p)a2, where �A
2 is the genetic

variance explained by the causal SNP, p is the allele frequency at
that SNP, and a is the effect of the SNP in phenotypic standard
deviation units. Note that this variance is half the value for an
autosomal locus with the same additive effect and allele fre-
quency, due to the haploid nature of the mitochondria. As the
samples are considered to be unrelated, the remaining pheno-
typic variance was simulated as random normal deviates. The
power was estimated for SNPs explaining 0.25, 0.5, 1, 2.5, and 5%
of the variance in a trait.

The effect of each SNP on the trait of interest was tested
using Fisher’s exact test (Fisher 1922) in the case control setting
and a two-sample t-test (Student 1908) for quantitative traits.
Significance was determined at the 5% experiment-wide level
using a threshold obtained using 10,000 simulation replicates
under the null hypothesis. The noncentrality parameter for the
tests are calculated as the difference in the mean of the distribu-
tion of the –log10 of the minimum P-value across all SNPs under
the alternative and null hypotheses. The analysis was performed
on all 144 common SNPs and results compared with those ob-
tained using the 64 tagging SNPs from Saxena et al. (2006).

Australian sample
A total of 3839 individuals from 1037 Australian families con-
sisting of adolescent twins, their siblings, and parents were geno-
typed for a panel of mitochondrial SNPs. The vast majority of
these samples were of northern European ancestry, primarily An-
glo-Celtic, and so are expected to be comparable to the sequence
data described above. Further details of this sample, including
recruitment strategy, are found in Zhu et al. (2007) and Duffy et
al. (2007). Due to the familial relationships, these samples pro-
vided 1693 independent mitochondrial haplotypes. The SNP
panel consisted of 61 out of the 64 tagging SNPs used by Saxena

et al. (2006) supplemented with nine SNPs to tag variation that
was captured with an r2 of 0.8 in Saxena’s study only when using
multi-SNP haplotypes. Additionally, a common variant in the D
loop region, mt16189, was included (Poulton et al. 1998). Two
SNPs (mt4928 and mt8251) were monomorphic in our sample,
leaving 69 polymorphic SNPs in total.

Prediction of mitochondrial haplogroups
A total of 1074 complete sequences from the 10 most common
European haplogroups (H, I, J, K, M, T, U, V, W, and X) were
downloaded from mtDB (http://www.genpat.uu.se/mtDB/).
From these sequences, the genotypes at tagging SNP loci were
determined and used as predictors in a linear discriminant func-
tion analysis in the R statistical package (www.r-project.org). The
accuracy of prediction of haplogroup was determined using a
bootstrap cross-validation approach. For each of 1000 replicates,
a bootstrap sample of sequences was chosen to form the predic-
tion model, and the unsampled sequences had their haplogroups
predicted. The prediction accuracy was then determined simply
as the proportions of sequences whose haplogroups were cor-
rectly predicted.
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