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Abstract

Phytochelatins, heavy-metal-binding polypeptides, are

synthesized by phytochelatin synthase (PCS) (EC

2.3.2.15). Previous studies on plants overexpressing

PCS genes yielded contrasting phenotypes, ranging

from enhanced cadmium tolerance and accumulation

to cadmium hypersensitivity. This paper compares the

effects of overexpression of AtPCS1 and CePCS in

tobacco (Nicotiana tabacum var. Xanthi), and demon-

strates how the introduction of single homologous

genes affects to a different extent cellular metabolic

pathways leading to the opposite of the desired effect.

In contrast to WT and CePCS transformants, plants

overexpressing AtPCS1 were Cd-hypersensitive al-

though there was no substantial difference in cadmium

accumulation between studied lines. Plants exposed to

cadmium (5 and 25 mM CdCl2) differed, however, in the

concentration of non-protein thiols (NPT). In addition,

PCS activity in AtPCS1 transformants was around 5-

fold higher than in CePCS and WT plants. AtPCS1

expressing plants displayed a dramatic accumulation

of g-glutamylcysteine and concomitant strong deple-

tion of glutathione. By contrast, in CePCS transform-

ants, a smaller reduction of the level of glutathione

was noticed, and a less pronounced change in g-

glutamylcysteine concentration. There was only a mod-

erate and temporary increase in phytochelatin levels

due to AtPCS1 and CePCS expression. Marked changes

in NPT composition due to AtPCS1 expression led to

moderately decreased Cd-detoxification capacity re-

flected by lower SH:Cd ratios, and to higher oxidative

stress (assessed by DAB staining), which possibly

explains the increase in Cd-sensitivity. The results

indicate that contrasting responses to cadmium of

plants overexpressing PCS genes might result from

species-dependent differences in the activity of phyto-

chelatin synthase produced by the transgenes.

Key words: Cadmium, c-glutamylcysteine, glutathione,

phytochelatins, tobacco.

Introduction

Phytochelatins (PCs) are small, heavy metal-binding,
cysteine-rich polypeptides with the general structure of
((c-Glu-Cys)nGly (n¼2–11)), present in plants, fungi, and
other organisms (Grill et al., 1985; Gekeler et al., 1988;
Piechalak et al., 2002). They are synthesized from
glutathione (GSH) in the presence of heavy metals by the
enzyme phytochelatin synthase (PCS) (Grill et al., 1989;
Tomaszewska et al., 1996; Vatamaniuk et al., 2000) and
form complexes with some of those ions, subsequently
transported from the cytosol into the vacuole (Salt and
Rauser, 1995).
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PCs are necessary for cadmium tolerance in plants and
all the mutants reported to lack the ability to synthesize
those peptides are Cd hypersensitive (Howden et al.,
1995). Thus, it was reasonable to expect that over-
expression of PCS in plants, with the aim of over-
producing these metal-chelating peptides, may result in
higher Cd tolerance and accumulation. It was considered
that such transgenic plants could be used in the phyto-
remediation of cadmium-contaminated soils. The results on
overexpression of PCS reported in the last few years, have
been contradictory, however. For example, as expected,
overexpression of the AtPCS1 gene in Escherichia coli
(Sauge-Merle et al., 2003) and Saccharomyces cerevisiae
(Vatamaniuk et al., 1999), enhanced cadmium tolerance
and accumulation. Surprisingly, its overexpression in
Arabidopsis thaliana led to Cd-hypersensitivity despite
the enhanced phytochelatin production (Lee et al., 2003a,
b; Li et al., 2004). By contrast, expression of the wheat
phytochelatin synthase gene TaPCS1 in tobacco (Nicoti-
ana glauca) resulted in increased Cd and Pb tolerance and
accumulation (Gisbert et al., 2003; Martinez et al., 2006).
However, as recently reported by Pomponi et al.(2006),
Nicotiana tabacum expressing AtPCS1 displayed en-
hanced cadmium tolerance and accumulation, but only
when plants were cultivated in culture medium supplied
with GSH. Interestingly, expression of the same gene in
Brassica juncea led to higher Cd and Zn tolerance, but
significantly lower accumulation of those elements in both
root and shoot tissues (Gasic and Korban, 2007). Despite
the vast literature on the role of phytochelatins in heavy
metal detoxification, it is still impossible to explain such
differences among the reported phenotypes. Researchers
used different PCS genes and plant species for trans-
formation, which could have contributed to the observed
disparities. Therefore, overexpression of PCS genes from
different species in one model organism could yield
important insights into their functions and answer some
of the questions raised by the researchers.

This work addresses the mechanisms underlying the
variation in response to cadmium reported for PCS over-
expressing plants. It attempts to determine if the plant
phenotype resulting from PCS overexpression could depend
on the gene used for transformation. Two phytochelatin
synthase genes: AtPCS1 from A. thaliana (Ha et al., 1999)
and CePCS from Caenorhabditis elegans (Clemens et al.,
2001; Vatamaniuk et al., 2001) were introduced into one
model species, tobacco (N. tabacum var. Xanthi). This is
the first study comparing the effects of the overexpression
of two different PCS genes in the same organism.

Materials and methods

Plant expression constructs, transformation and selection

The AtPCS1 and CePCS gene constructs used for transformation
derived from constructs used for functional expression in

Schizosaccharomyces pombe (Cazalé and Clemens, 2001; Clemens
et al., 2001, respectively). The expression cassettes were subcloned
into pRT100 between the CaMV 35S promoter and the CaMV
polyadenylation signal. The resulting cassettes were transferred as
HindIII fragments into the binary plasmid vector pCB302 (Xiang
et al., 1999). The constructs were introduced into Agrobacterium
GV3101 strain. Tobacco (N. tabacum var. Xanthi) plants (seeds
from stock of the Institute of Biochemistry and Biophysics PAS,
Warszawa, Poland) were transformed by the standard leaf disc
method (Horsh et al., 1985). F1 seeds were collected from
generation F0 with confirmed gene presence (PCR) and expression
(RT-PCR). The primer sequences used for the PCR reaction were:
AtPCS1 forward 5#-GGTGGCTGAGATCCGAATTA-3#; reverse
5#-TGAGCTGCTTCATTTCATGC-3#; CePCS forward 5#-GCAA-
AATGTAATCGTCTAAAATCTACAG-3#; reverse 5#-TTCTAAT-
GGATCACATAATAAGAATTGA-3#.

Expression analysis (RT-PCR)

Total RNA was extracted from around 100 mg of frozen tissue
using an RNeasy Plant Mini-Kit (Qiagen). Following DNase
digestion (Invitrogen), 1 lg of RNA from each sample was used
for 20 ll RT-reaction (as recommended by the manufacturer,
Fermentas). The RT-PCR product for the Tac9 actin gene was used
as a control to confirm that equal amounts of RNA were used in
each reaction. PCR was carried out with 2 ll of the RT reaction
product using the specific primers for AtPCS1 and CePCS as
described above and for Tac9 as: Tac9 forward 5#-CCTCCCA-
CATGCTATTCTCC-3#; reverse 5#-AGAGCCTCCAATCCAGA-
CAC-3#.

Experimental plant material and hydroponic conditions

Tobacco seeds were sterilized and germinated on agar plates,
positioned vertically, on quarter-strength Knop’s medium, 1% (w/
v) agar, and 2% (w/v) sucrose. For the selection of transgenic plants
and to determine the segregation ratio of Basta-resistant:Basta-
sensitive seedlings, the herbicide Basta was added to the medium at
a concentration of 10 lg ml�1. Seedlings were grown for 3 weeks
in a climate chamber; temperature 24 �C, photoperiod 16/8 h day/
night; quantum flux density (PAR) 250 lmol m�2 s�1 fluorescent
Flora tubes, and subsequently transferred to 2.0 l pots containing
quarter-strength Knop’s liquid medium. In addition, to check the
efficiency of the selection, after 2 d of growth in hydroponics the
seedlings were sprayed with Basta (100 lg ml�1) for three
consecutive days, and grown under control conditions for the next
8–10 d. The presence of the transgene was then checked by PCR.

All experiments were performed on Basta-resistant plants grown
in hydroponics on quarter-strength Knop’s medium under the
conditions described above. The aerated nutrient solution was
changed weekly. Initially, experiments were conducted on seven
and 10 independent lines representing AtPCS1 and CePCS tobacco
transformants, respectively. For further detailed studies the follow-
ing lines (with 3:1 segregation ratio of Basta-resistant:Basta-
sensitive T1 seedlings) were selected: four lines expressing AtPCS1
(PaII3, PaII4, PaII8, PaII12), five lines expressing CePCS (Pc30,
PcII1, PcII3, PcII4, PcII5), and wild-type Xanthi.

Cadmium treatments

For each cadmium treatment, 5-week-old plants were placed in pots
containing nutrient solution as described above, with five replicate
pots per treatment. After 1 week of growth the nutrient solution was
replaced by a fresh one of the same composition and cadmium
chloride was added to achieve a final concentration of 5–35 lM.
Untreated plants were grown in parallel under the same conditions.
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At the end of the incubation period (2–6 d) shoots and roots were
used for further analysis.

Cadmium tolerance determination: hydroponic experiments

Appearance assessment and growth assay: After 6 d of growth at 0,
25 lM CdCl2 or 35 lM CdCl2, the condition of the plants was
assessed (leaf colour, presence of necrosis). They were photo-
graphed, then shoots and roots were separated and dried for 4 d at
60 �C in an oven and their dry matter was determined. Based on dry
weight, the tolerance index was calculated separately for shoots and
roots of cadmium exposed plants as the percentage of dry weight of
untreated (control) plants of the same line.

Pigment analysis: One of the first effects of cadmium toxicity on
plants is chlorosis. Thus, the determination of photosynthetic
pigment concentrations could be used to assess cadmium tolerance.
After 2 d of growth at 0 or 25 lM CdCl2, the fourth leaf (counting
from the top) was collected, frozen, and stored at –80 �C.
Chlorophyll a and b and carotenoid contents were measured
spectrophotometrically in acetone extracts according to Lich-
tenthaler and Wellburn (1983).

Cadmium tolerance determination: growth of plants on

contaminated soil

To assess the tolerance of plants to the presence of Cd, Zn, and Pb
in industrially contaminated soil, 4-week-old hydroponically grown
tobacco seedlings were planted in pots containing 2.5 kg of
contaminated industrial soil (Cd 18.661.2 mg kg�1 DW, Zn
23746142 mg kg�1 DW, Pb 3636142 mg kg�1 DW, pH ;7.0)
and uncontaminated control soil (commercially obtained). They
were grown for 6 weeks in a greenhouse, 24–27/18–20 �C day/
night, photoperiod 16/8 h day/night, 65–75% humidity. Plant
appearance was assessed and height and number of leaves were
measured each week. Total dry weight of above-ground plant parts,
expressed as a percentage of dry weight of plants grown on control
soil, served as an indicator of plant tolerance to the industrial soil.
This experiment was planned to demonstrate, in addition to
tolerance level, the suitability of transformation with PCS genes for
phytoremediation.

Determination of cadmium accumulation: plants grown in

hydroponic culture

After 2–6 d of 5 or 25 lM CdCl2 treatment roots were washed
briefly in distilled water, then for 15 min in ice-cold 5 mM CaCl2,
then again twice in water. Roots and shoots were dried for 4 d at
60 �C in an oven and their dry matter was determined. Dried plant
material was used for the determination of cadmium concentration
by AAS.

Determination of cadmium accumulation: plants grown on

contaminated soil

At the end of the growth period on contaminated soil (details
described above) upper leaves, lower leaves, and a stem were
collected, dried in 60 �C for 4 d and weighed. Cadmium contents
were determined by AAS.

Determination of cadmium concentration

Dried plant samples were digested in 65% HNO3 and 39% H2O2

(9:1, v:v) in a closed system microwave mineralizer (Milestone
Ethos). Cadmium was measured using a flame atomic absorption
spectrophotometer (TJA Solution Solar M). Certified reference
material (Virginia tobacco leaves CTA-VTL-2) was included in the
analysis.

Non-protein thiol analysis

Several modifications of the method for non-protein thiol (NPT)
analysis by Sneller et al. (2000) were tested. The method described
below resulted from many trials and was used for NPT analysis of
all tobacco samples.

At the end of the cadmium treatment, the fourth leaf (counting
from the top) and roots were harvested for NPT analysis and
processed immediately. NPT were extracted by homogenizing
200–300 mg of fresh material in a mortar, using a pestle and quartz
sand in 1.78 ml of 6.3 mM ice-cold diethylenetriaminepenta-acetic
acid (DTPA), 100 ll of 1 N NaOH, and 100 ll of 6 M NaBH4 (in
0.1 N NaOH). N-acetyl-L-cysteine was added during homogeniza-
tion as an internal standard to a final concentration of 10 lM. The
homogenates were centrifuged for 5 min at 10 000 g. 250 ll of
plant extract were mixed with 10 ll of 20 mM monobromobimane
and 450 ll of 200 mM HEPPS buffer, pH 8.2, containing 6.3 mM
DTPA. Derivatization was carried out for 30 min in a water bath at
45 �C, in the dark. The reaction was stopped by the addition of
300 ll of 1 M methanesulphonic acid. The sample was filtered
through a Costar Spin-X centrifuge tube with a nylon filter
(0.22 lm). The samples were stored in the dark at 4 �C prior to the
HPLC analysis. NPT were separated on a Nova-Pak C18 analytical
column (60 Å, 4 lm, 3.93300 mm, Waters) at 37 �C and were
eluted with a slightly concave gradient of methanol and water, both
with 0.1% (v/v) TFA, using fluorescence detection (Waters 464).
The injection volume was 10 ll and the total analysis time was
70 min. The analytical data were integrated using Waters Millenium
Software. Phytochelatin concentrations were corrected for derivati-
zation efficiency according to Sneller et al. (2000). Calibration was
based on GSH concentrations ranging from 5–20 lM.

Phytochelatin synthase activity assay

Phytochelatin synthase activity was determined in crude extracts
according to a modified protocol by Finkemeier et al. (2003). Plant
tissue (200 mg) was extracted in 2 ml of buffer containing 20 mM
HEPES-NaOH, pH 7.5, 10 mM b-mercaptoethanol, 100 lM
CdSO4, 20% (w/v) glycerol, and 100 mg ml�1 polyvinylpyrrolidone
by homogenization in a mortar, using some quartz sand. Following
centrifugation at 13 000 g for 10 min at 4 �C, the assay contained
400 ll extract and 100 ll reaction buffer (25 mM glutathione,
100 lM CdSO4, 10% (w/v) glycerol, and 250 mM HEPES-NaOH,
pH 8.0) and protease inhibitor mix ‘Complete’ as recommended by
the manufacturer (Sigma). The incubation was carried out at 35 �C
for 90 min and terminated by addition of 125 ll 20% (w/v)
trichloroacetic acid. SH-groups were derivatized using monobromo-
bimane, and HPLC analysis was performed as described above.

H2O2 histochemical staining as an indication of

oxidative stress level

Hydrogen peroxide accumulation was visualized with 3,3#-diamino-
benzidine (DAB) according to Thordal-Christensen et al. (1997).
Five-week-old tobacco plants grown in hydroponic culture were
used for the experiment. Briefly, fourth leaves (counting from the
top) excised from cadmium treated plants (2 d at 25 lM CdCl2) or
from untreated plants were placed in Petri dishes containing DAB
solution (1 mg ml�1). Plates were left in a climate chamber at 24 �C
in darkness and DAB staining was assessed visually 8 h later.

Determination of ascorbate and dehydroascorbate content

Ascorbate and dehydroascorbate contents in fourth leaves and roots
of 6-week-old cadmium treated (2 d and 3 d at 25 lM CdCl2) and
untreated plants were determined according to the protocol for
tobacco by Kampfenkel et al. (1994).

AtPCS1 and CePCS overexpression in tobacco 2207



Determination of GSH/GSSG level

GSH and GSSG levels were determined according to the modified
methods of Zhang and Kirkham (1996) and Somparn et al. (2007).
The fourth leaves of 6-week-old tobacco plants were homogenized
in 5 ml of ice-cold 5% meta-phosphoric acid. The homogenate was
centrifuged for 20 min at 10 000 g at 4 �C. The supernatant was
collected and neutralized with 5 M KOH. One ml of the neutralized
supernatant was mixed with 100 ll of water and used for the
enzymatic assay of total glutathione. In addition, another 1 ml of the
neutralized extract was mixed with 100 ll of 33 mM 1-methyl-2-
vinylpyridine (M2VP), a GSH scavenger, incubated for 2 min at
room temperature and used for the assay of GSSG. For the
enzymatic assay of glutathione, 330 ll of 0.3 mM DTNB in 150
mM NaPO4 (pH 7.2) containing 15 mM EDTA and 0.04% BSA
were mixed with 50 ll of the sample and 290 ll of 150 mM NaPO4

(pH 7.2). The reaction was started by adding 330 ll of 150 mM
NaPO4 (pH 7.2) containing 1 mM EDTA, 0.02% BSA, 0.6 mM
NADPH, and glutathione reductase (1.2 U ml�1) and the absor-
bance was recorded at 412 nm for 3 min. Glutathione levels were
determined against a standard curve. GSH content was calculated as
the difference between total glutathione and GSSG.

Statistical analysis

Statistical significance was evaluated at the 0.05 probability levels
using Student’s t test. All experiments were repeated at least three
times.

Results

Selection of transgenic lines overexpressing AtPCS1
and CePCS

After transformation and regeneration, the presence of the
transgene was confirmed by PCR for 14 and 19 lines of
tobacco transformed with AtPCS1 or CePCS construct,
respectively. RT-PCR analysis of PCR-positive plants
confirmed the expression of introduced genes in eight
AtPCS1 and 11 CePCS harbouring lines (data not shown).
The seeds of RT-PCR positive plants were collected and
used for further tests.

All seedlings able to develop on agar-plates containing
Basta and subsequently transferred to the hydroponic
culture, also survived spraying three times with this agent,
which indicated 100% efficiency of the selection. PCR
examination showed that all Basta-resistant plants contained
the transgene (data not shown). Transgenic lines (of both F0

and F1 generations) and the wild type grown under control
conditions did not differ from each other in their de-
velopment, appearance, and reproduction (data not shown).

Overexpression of AtPCS1, but not CePCS results in
increased sensitivity to cadmium

In the first experiment, 3-d exposure to 25 lM CdCl2 in
hydroponic cultures resulted in a substantial difference in
the plant appearance (Fig. 1). In contrast to the green,
healthy-looking leaves of CePCS transformants and wild-
type Xanthi plants (Fig. 1D, F), all tobacco lines
expressing AtPCS1 had leaves with necrotic spots and

wilted areas (Fig. 1E). The difference in the level of
tolerance to cadmium between Xanthi and CePCS did not
become evident until exposure to a higher concentration
of this element, 35 lM Cd2+ (Fig. 1G, I). These results
demonstrated that expression of AtPCS1, but not CePCS,
led to enhanced cadmium sensitivity. It is important to
note that both types of transformants did not show any
phenotypic differences from WT when grown under
control conditions without Cd2+ (Fig. 1A–C). To test
whether the necrotic spots on leaves developing in
AtPCS1-expressing plants were preceded by a loss of
photosynthetic pigments, the concentrations of chloro-
phyll and carotenoids were determined. After 2 d of
exposure to 25 lM CdCl2, however, both AtPCS1 and
CePCS-expressing plants had slightly higher chlorophyll
(Fig. 2A) and carotenoid (Fig. 2B) contents compared
with WT.

When tested for the response to cadmium in industrially
contaminated soil (accompanied by elevated Pb and Zn
levels), AtPCS1 transformants produced a slightly lower
(decreased by ;20%) shoot biomass relative to CePCS
plants and the wild type (data not shown). The slower
growth of AtPCS1-expressing plants might have partially
resulted from their increased sensitivity to cadmium.

Overexpression of PCS did not lead to higher
cadmium accumulation

The determination of cadmium content in AtPCS1 and
CePCS plants after 6 d of exposure to 25 lM CdCl2 in
liquid medium demonstrated that the overexpression of
both genes in tobacco did not cause dramatic differences
in metal accumulation (Fig. 3A–D). The moderate de-
crease in the cadmium concentration in shoots (by
15–25%) was detected in some AtPCS1 transformed lines
(Fig. 3A). Similar to the hydroponic experiments, no
significant difference between the lines studied was found
in cadmium concentrations in above-ground parts of
plants grown for 6 weeks on cadmium-contaminated
industrial soil (data not shown). Therefore, transformation
with AtPCS1 and CePCS does not seem to improve the
suitability of plants for phytoremediation of cadmium-
contaminated soil. For that purpose, an increase in metal
accumulation by at least 100–200% is required.

Expression analysis and selection of transgenic lines
used for further experiments

Semi-quantitative expression analysis was performed for
selected T1 lines. The results shown in Fig. 4 demonstrate
different levels of PCS expression. In order to correlate
the level of phytochelatin synthase expression with the
detected phenotype, two lines of both AtPCS1 (PaII4,
PaII12) and CePCS (PcII3, PcII4) expressing plants, one
with a high, the other with a low expression level, were
chosen for further analysis.
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Overexpression of AtPCS1 and CePCS resulted in
only a moderate increase of phytochelatin levels

To investigate the effects of PCS overexpression on PC
accumulation, plants were exposed to 5 lM CdCl2 and to
a more toxic concentration (25 lM), and harvested after
2 d and 3 d of exposure. The total PC levels are shown in
Fig. 5, and the concentrations of individual PC species
(PC2, PC3, and PC4) synthesized at 25 lM cadmium are
given in Fig. 6. In general, the contents of phytochelatins
were much higher in leaves than in roots and increased
with Cd concentration and the duration of metal treat-
ments. PCs were not detected in the absence of cadmium
from the growth medium (data not shown).

There was a moderate difference in the total PC
concentration between the WT, AtPCS1 and CePCS trans-
formants. As shown in Fig. 5A and B, after 2 d of 5 lM
CdCl2 exposure, an increase by ;30–40% in PC production
in leaves, and to a lesser extent in roots of both types of
transformants was observed. However, on the third day of
Cd treatment, the PC level in AtPCS1 expressing plants, in
contrast to CePCS transformants, began to decrease both in
roots and leaves (Fig. 5A, B). This tendency was more
pronounced in roots of plants grown at 25 lM cadmium
(Fig. 5C). However, in leaves the level of total PC was
lower in all transgenic lines relative to WT (Fig. 5C, D).

Figure 6 shows levels of the major PC species
synthesized in response to a 3 d exposure to cadmium. In

general, at 5 lM Cd2+ the prevalent PC species in roots was
PC2, and in leaves PC4 (Fig. 6A, B), whereas at 25 lM
Cd2+ it was PC4 both in roots and leaves (Fig. 6C, D).
The difference between both types of transformants and
the WT is in the composition of synthesized PCs. Thus, at
5 lM Cd2+ the concentration of PC3 and PC4 in roots and
leaves of AtPCS1 plants was lower compared to Xanthi,
whereas in CePCS plants the concentration has not
changed or has slightly increased (Fig. 6A, B). A similar
tendency was detected at more toxic 25 lM Cd2+ in roots
(Fig. 6C). In turn, in leaves the concentrations of almost
all forms of PCs were reduced in AtPCS1 transformants
(Fig. 6C), while in CePCS ones the reduction of only PC3
was observed (Fig. 6D).

The analysis of the content of cysteine, the substrate for
GSH used subsequently for PC synthesis, showed that this
amino acid was not the limiting factor for phytochelatin
production. The cysteine level was similar in all plant
lines tested and even slightly higher under cadmium
exposure than in control conditions (data not shown).

Overexpression of AtPCS1 results in dramatic c-
glutamylcysteine accumulation and glutathione
depletion in leaves

Overexpression of PCS did not influence GSH and c-
glutamylcysteine (c-EC) concentrations in plants grown
under control conditions without cadmium. There was no

Fig. 1. Appearance of 6-week-old AtPCS1 (line PaII4; E, H) and CePCS (line PcII4; F, I) transformed, and wild type var. Xanthi (D, G) plants
cultivated for 3 d in hydroponic culture containing 25 lM (D–F) or 35 lM (G–I) CdCl2. Untreated control (–Cd) plants: wild type Xanthi (A); AtPCS
plants (B); CePCS plants (C).
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significant difference in their levels in either leaves or
roots between the wild type and transgenic plants. The
content of GSH was generally higher in leaves (200–320
nmol g�1 FW) compared with roots (140–180 nmol g�1

FW). In turn, in all plant lines studied c-EC level in leaves
was very low, ranging from 5–10 nmol g�1 FW, whereas
in roots it was close to the detection limit, which stays in
accordance with the data reported in the literature (Arisi
et al., 1997; Creissen et al., 1999).

The concentration of c-EC and GSH after 3 d of ex-
posure to 5 lM and 25 lM cadmium is shown in Fig. 7.
No significant difference was detected between the root
GSH levels of two types of transformants and WT at the
less toxic 5 lM cadmium (Fig. 7A); however, at 25 lM
cadmium the level of c-EC in roots of AtPCS1 and
CePCS expressing plants increased markedly (Fig. 7C). In
leaves, the overexpression of AtPCS1, in contrast to
CePCS, resulted in a substantial decrease in glutathione
content and in a dramatic increase in c-EC after 3 d of
exposure to both 5 lM and 25 lM cadmium (Fig. 7B, D).
CePCS-expressing plants, in contrast to AtPCS1 ones,
showed leaf GSH levels similar to WT on both cadmium
treatments (Fig. 7B, D) whereas the c-EC concentration

was increased relative to WT only at 25 lM CdCl2
(Fig. 7D).

Overexpression of AtPCS1 leads to a moderate
decrease in cadmium detoxification capacity

In order to correlate the concentration of cadmium and
NPTs in AtPCS1, CePCS and WT plants after heavy
metal exposure of different duration, the cadmium content
was determined in the fourth leaf and roots of plants also
used for NPT analyses following 3 d of exposure to 5 lM
CdCl2. There were no substantial differences between the
lines (data not shown), thus the observed Cd hypersensi-
tive phenotype of the AtPCS1 plants did not result from
higher Cd accumulation in leaves.

The stoichiometric relationship between the molar
concentrations of sulphhydryl groups in PCs and the Cd
concentration after 3 d at 5 lM CdCl2 is shown in Fig. 8.
The PC-SH:Cd ratio was lower in AtPCS1 plants relative
to CePCS and WT plants only in roots. In contrast, the
PC-SH:Cd ratio in leaves of CePCS transformants was
higher than in AtPCS1 ones and Xanthi. The lower ratio
of PC sulphhydryl groups to cadmium indicated a lower
Cd detoxification capacity of those plants and may be
partially responsible for their reported hypersensitive
phenotype. CePCS overexpressing plants seem to have an
increased cadmium detoxification capacity compared with
the AtPCS1 transformants and WT.

PCS activity is considerably higher in AtPCS1-
expressing plants compared with WT and CePCS
plants

To verify if the observed changes in thiol composition due
to AtPCS1 and CePCS overexpression resulted from the
difference in phytochelatin synthase activity, a PCS assay
was performed using leaf protein extracts. It demonstrated
that PCS activity in AtPCS1 plants from both studied lines
was dramatically higher than in WT, whereas CePCS1
expression resulted in a much smaller, although signifi-
cant, increase in PCS activity (Fig. 9).

Overexpression of AtPCS1 leads to increased
oxidative stress in the presence of cadmium

It is known that GSH plays a major role in the control of
the cell redox state. Therefore, it was assumed that the Cd-
hypersensitivity of AtPCS1 plants reported in this paper,
manifested by necrosis on leaves, may result from the
decrease in GSH levels (found in AtPCS1 plants; Fig. 7B,
D), which probably contributes to the generation of
oxidative stress. To investigate the level of oxidative
stress in leaves in the presence of cadmium, hydrogen
peroxide formed in leaf tissues was visualized using
histochemical staining with DAB. After 2 d of 25 lM
CdCl2 exposure, the staining intensity was higher in
leaves of AtPCS1 transformants than in those of CePCS

Fig. 2. Total chlorophyll (A) and carotenoid (B) content in the fourth
leaf of 6-week-old tobacco plants after 2 d of 25 lM CdCl2 treatment
shown as a percentage of untreated (control) plants of the same line.
Values correspond to means 6SD (n¼4); those significantly different
from wild type var. Xanthi are indicated with the arrow (P <0.05).
Concentration of chlorophyll (lg g–1 FW) in untreated (control) plants:
Xanthi (6096147); PaII4 (572657); PaII12 (586677); PcII3
(590661); PcII4 (791677). Concentration of carotenoids (lg g–1 FW)
in untreated (control) plants: Xanthi (94623); PaII4 (8969); PaII12
(80610); PcII3 (8866); PcII4 (113611).
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or WT plants (Fig. 10). Thus, the oxidative stress
generated in the presence of cadmium was higher in Cd-
hypersensitive AtPCS1 plants.

In the presence of cadmium, AtPCS1 overexpression
affects GSH/GSSG level and ascorbate contents

It is well known that the ascorbate–glutathione cycle is
crucial for the removal of H2O2 from the cell metabolism
(Noctor and Foyer, 1998; Kanwischer et al., 2005;
Semane et al., 2007), therefore both components of the
cellular antioxidative system were examined in control
(–Cd) plants and after exposure to 25 lM CdCl2.

The results of glutathione quantification are shown in
Fig. 11. The increased sensitivity to cadmium of AtPCS1
expressing tobacco was accompanied not only by higher
H2O2 level (Fig. 10) and reduced concentration of

glutathione (Fig. 7) but also by a change in the GSH
redox status. A decreased relative content of reduced GSH
in leaves of AtPCS1 plants relative to Xanthi and CePCS
ones (Fig. 11B) confirms an elevated level of oxidative
stress generated by cadmium in these plants (as detected
by DAB staining; Fig. 10). Total GSH concentration
and the reduced GSH relative content were not statisti-
cally different between lines not exposed to cadmium
(Fig. 11A, C).

As demonstrated in Fig. 11A and B, no difference was
found in total root and leaf ascorbate concentration, nor in
the relative content of its reduced form (AsA) (Fig. 12C,
D) between both types of transformants and WT plants
when grown under control conditions (without cadmium).
However, 2 d and 3 d treatment with 25 lM CdCl2
resulted in a significant increase in root ascorbate pool of
WT and CePCS1 transformants, whereas in AtPCS1 its
concentration remained unchanged and similar to that of
untreated plants (Fig. 12A). On the other hand, AtPCS1
expressing plants showed a significant increase in leaf
total ascorbate level after a 2 d cadmium treatment,
whereas in CePCS1 and WT leaf AsA content did not
change relative to plants grown on medium without the
metal (Fig. 12B). An increased pool of ascorbate in leaves
of AtPCS1 transformants could be related to higher levels
of oxidative stress. Interestingly, cadmium treatment did

Fig. 4. The expression level of AtPCS1 (A) and CePCS (B) in
independent plant lines tested by RT-PCR. Lower lines show the RT-
PCR product for actin used as a control for equal amounts of RNA used
in each reaction.

Fig. 3. Cadmium accumulation in the shoot and the root of 6-week-old tobacco plants transformed with AtPCS1 (A, B) and CePCS (C, D) and wild
type (var. Xanthi) cultivated for 6 d in hydroponic culture containing 25 lM CdCl2. Error bars represent SD at P <0.05) (n¼3).
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Fig. 5. Total PC levels in roots (A, C) and leaves (B, D) of 6-week-old tobacco plants (wild type var. Xanthi, AtPCS1-expressing lines, PaII4,
PaII12; CePCS-expressing lines, PcII3, PcII4) after 2 d or 3 d of 5 lM (A, B) or 25 lM (C, D) CdCl2 exposure. PCs were not detected in plants
grown on medium without cadmium. Values correspond to means 6SD (n¼5); those significantly higher from wild type var. Xanthi are indicated
with the arrow, significantly lower are marked with the asterisk (P <0.05).

Fig. 6. Concentration of major PC species in roots (A, C) and leaves (B, D) of 6-week-old tobacco plants (wild type var. Xanthi; AtPCS1-expressing
lines, PaII4 and PaII12; CePCS-expressing lines, PcII3 and PcII4) after 3 d of 5 lM (A, B) and 25 lM (C, D) CdCl2 treatment. Values correspond to
means 6SD (n¼5); those significantly higher from wild type var. Xanthi are indicated with the arrow, significantly lower are marked with the
asterisk (P <0.05).
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not affect the relative content of the reduced ascorbate
form in roots and leaves of all tested plant lines (Fig. 12C,
D) which indicates that the cellular system maintaining
the balance between the reduced and oxidized form of this
compound has not been affected.

Discussion

Phytochelatins play a major role in constitutive cadmium
(Clemens et al., 1999) and arsenate (Bleeker et al., 2006)
tolerance. Following the isolation of the first genes
encoding phytochelatin synthase from different organisms
by three independent groups (Clemens et al., 1999, 2001;
Ha et al., 1999; Vatamaniuk et al., 1999, 2001), many
researchers tried to overexpress PCS to enhance plant
heavy metal tolerance and accumulation. The results on
overexpression of different PCS genes in various plant
species published in the last few years have, however,
been contradictory thus far, with plant responses reported
to range from increased cadmium tolerance and accumu-
lation (Lee et al., 2003a; Gisbert et al., 2003; Martinez
et al., 2006; Pomponi et al., 2006), through increased
cadmium tolerance accompanied by its decreased

accumulation (Gasic and Korban, 2007), to cadmium hy-
persensitivity without increased accumulation (Lee et al.,
2003a, b; Li et al., 2004).

To date only papers describing overexpression of
AtPCS1 (in A. thaliana, N. tabacum, and B. juncea),
TaPCS1 (in N. glauca and cad1-3 Arabidopsis mutant),
and SpPCS1 (in N. tabacum) are available, and each
focused on one donor PCS gene and one target species.
Cd-hypersensitivity was reported so far only as a result of
AtPCS1 overexpression (Lee et al., 2003a,b; Li et al., 2004)
but not in all the target species (Pomponi et al., 2006;
Gasic and Korban, 2007) or lines tested (Lee et al.,
2003a, b). A plausible explanation for the observed
disparities in response to cadmium has not yet been
found. It has been suggested that different PCS expression
levels and genetic differences between target plant species
(in particular with regard to the regulation of the
glutathione synthetic pathway or the downstream process-
ing of PC–Cd complexes) may contribute to the diverse
phenotypes of PCS transformants. In this study, the
experimental system was simplified by introducing two
different phytochelatin synthase genes AtPCS1 and
CePCS into one model organism—tobacco. This approach
allowed the interspecific variability to be eliminated and

Fig. 7. c-Glutamylcysteine and glutathione levels in roots and leaves of 6-week-old tobacco plants (wild type var. Xanthi; AtPCS1-expressing lines,
PaII4 and PaII12; CePCS-expressing lines, PcII3 and PcII4) after 3 d of 5 lM (A, B) or 25 lM CdCl2 (C, D) cadmium treatment. Values correspond
to means 6SD (n¼5); those significantly higher from wild type var. Xanthi are indicated with the arrow, significantly lower are marked with the
asterisk (P <0.05).
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to focus only on the possible functional differences
between PCS enzymes as a reason for the distinct
phenotypes observed.

This work demonstrated that the effects of overexpres-
sion of AtPCS1 and CePCS in the same species were
different. Overexpression of AtPCS1 led to increased
cadmium sensitivity (Fig. 1), similar to the majority of
literature reports (Lee et al., 2003a, b; Li et al., 2004). On
the other hand, tobacco plants transformed with CePCS
were more tolerant to cadmium relative to WT (which
became evident only after the exposure to 35 lM Cd2+).
In addition, both types of transformants did not show
substantially increased cadmium accumulation (Fig. 3),
which is consistent with a number of papers describing
AtPCS1 overexpression (Lee et al., 2003a, b; Li et al.,
2004; Gasic and Korban, 2007).

This study showed that increased sensitivity to Cd of
AtPCS1-expressing tobacco plants (relative to WT) was
accompanied by dramatic c-EC accumulation and gluta-
thione depletion (Fig. 7B, D). Similar results, though not
as pronounced, were reported by Li et al. (2004) for

AtPCS1-overexpressing, Cd-hypersensitive A. thaliana
plants. On the other hand, CePCS-overexpressing plants
had GSH levels similar to WT, but increased c-EC
concentrations (Fig. 7D). The transformants differed also
with respect to PC accumulation. There was only
a moderate and temporary increase in their level due to
AtPCS1 expression after only 2 d of exposure to low
5 lM cadmium followed by a decrease later on, whereas
in CePCS plants the PC level was generally higher (Fig.
5A–C). As demonstrated by other researchers, overexpres-
sion of PCS in tobacco did not result in an increase of PC
levels, unless GSH was added to the medium (Pomponi
et al., 2006) or additional genes from the GSH bio-
synthetic pathways were introduced (Wawrzyński et al.,
2006). The moderate increase in phytochelatin levels in
AtPCS1 transformants reported in this study suggested
that Cd-hypersensitivity of AtPCS1-overexpressing plants
did not result from the accumulation of phytochelatins at
the supra-optimal levels as initially proposed by Lee et al.
(2003b). However, in the recent communication of Kim
and Lee (2007) it was shown that Cd-hypersensitivity of
A. thaliana overexpressing AtPCS1 did not result from the
accumulation of NPT at supra-optimal levels. Instead, an
unknown disruption in cellular metal homeostasis under
Cd-stress due to the properties of the enzyme itself (e.g.
binding metal ions by the enzyme) was proposed as the
mechanism for the observed increase in Cd sensitivity of
transgenic plants.

In this study, PCS genes of different origin were
introduced into the same species, and therefore the
difference in Cd-sensitivity and NPT concentrations in
the lines studied might result from PCS protein specificity.
Indeed, it was found that AtPCS1-expressing plants had
;5-fold higher PCS enzymatic activity than CePCS-
transformed and WT plants (Fig. 9). Knowing this, it is
tempting to hypothesize that a higher rate of PCS activity

Fig. 8. Stoichometry of SH of PCs to cadmium (nmol SH/nmol Cd) in
roots (A), and leaves (B) of 6-week-old tobacco plants (wild type var.
Xanthi; AtPCS1-expressing lines, PaII4, PaII12; CePCS-expressing
lines, PcII3, PcII4) after 3 d at 5 lM CdCl2 Values correspond to
means 6SD (n¼5); those significantly higher from wild type var.
Xanthi are indicated with the arrow, significantly lower are marked with
the asterisk (P <0.05).

Fig. 9. Activity of phytochelatin synthase in extracts from tobacco
plants (wild type var. Xanthi; AtPCS1-expressing lines, PaII4 and
PaII12; CePCS-expressing lines, PcII3 and PcII4). Values correspond to
means 6SD (n¼3); those significantly higher from wild type var.
Xanthi are indicated with the arrow (P <0.05).
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in AtPCS1-expressing plants and a concomitantly higher
rate of PC formation would result in faster depletion of
GSH in those plants and a concomitant increase of c-
glutamylcysteine synthetase activity due to alleviation of
the feedback inhibition of this enzyme by GSH. The high

level of newly-synthesized c-EC may not have been used
for the glutathione and subsequent PC synthesis because,
in the presence of Cd ions, the activity of glutathione
synthetase, the second enzyme in the PC synthesis
pathway, seems to be limiting (Rauser et al., 1991). As

Fig. 10. Hydrogen peroxide accumulation in leaves of 5-week-old hydroponically grown tobacco plants wild type var. Xanthi and transformed with
AtPCS1 (lines PaII4 and PaII12) and CePCS (lines PcII3 and PcII4). Fourth leaves (counting from the top) excised from 5-week old plants after 2 d
of 25 lM CdCl2 exposure (+Cd) or growth in the absence of cadmium (–Cd) were placed in Petri dishes containing DAB solution (1 mg ml�1).
Plates were left in a climate chamber at 24 �C in darkness and DAB staining was assessed visually 8 h later.

Fig. 11. Total GSH concentration (A, B) and relative content of its reduced form (C, D) in leaves of 6-week-old tobacco plants: wild type var. Xanthi
and transformed with AtPCS1 (lines PaII4 and PaII12) and CePCS (lines PcII3 and PcII4). Plants were grown under control conditions without
cadmium (A, C) or exposed for 3 d to 25 lM CdCl2 (B, D). The redox status of glutathione is indicated by the ratio of (total glutathione–23GSSG)
to total glutathione. Values correspond to means 6SD (n¼4); those significantly lower from wild type var. Xanthi are indicated with the asterisk
(P <0.05).
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well as changes in cellular thiol concentrations, disturban-
ces in the downstream processing of PC–Cd complexes
due to PCS overexpression might appear. If the formation
rate of PC–Cd complexes in AtPCS1 expressing plants,
initially higher than in CePCS ones and WT plants, would
exceed the rate of their ATP-dependent transport into the
vacuole, PC–Cd would accumulate in the cytosol of those
plants and probably be degraded (most likely to c-EC, but
at present the products of PC degradation are unknown).
In addition, it cannot be excluded that the enzyme itself
may take part in PC cleavage under certain conditions. It
has been reported recently that AtPCS1 can catalyse the
cleavage of GSH-bimane conjugates to c-EC-bimane,
particularly under cadmium exposure (Grzam et al., 2006;
Blum et al., 2007). Moreover, as shown by Tsuji et al.
(2005), this enzyme may cleave not only GSH but also
PCs to supply the c-EC unit for elongation of the PC
chain. As a result of possible degradation, one can assume
that both glutathione and PC concentrations would be
decreased and the c-glutamylcysteine level elevated. The
decrease in PC levels in roots and leaves of AtPCS1
plants relative to WT after longer treatments with lower
Cd concentration (5 lM), or in roots after higher 25 lM,
could be taken to suggest degradation of PCs depending
on the intracellular conditions. As a result, despite the
higher PCS activity, the total PC level might not

significantly increase in the AtPCS1 transformants. It
seems possible that due to PC–Cd degradation in the
cytosol, the amount of free Cd ions could be elevated,
leading to more pronounced toxic effects, and in particular
that Cd-detoxification capacity decreased, as reflected by
the PC-SH:Cd ratio, (Fig. 8).

However, elevated c-glutamylcysteine formation in the
PCS activity assay, that could indicate a peptidase activity
of PCS, was not observed. It seems possible that either
peptidase or PC formation activity of the enzyme might be
regulated in intact cells by factors not present in the
extract. This could be dependent, for example, on
the efficiency of the transport of PC–Cd complexes into
the vacuole. Presently however, it can be only speculated
about the disturbances in the PC pathway and on the
regulation of PC transport and the products of their
degradation. The vacuolar transporters of PC–Cd, proba-
bly members of MRP family (Rea, 1999), still remain
unknown. Interestingly, the decrease in cadmium toler-
ance was not observed when AtPCS1 was targeted to A.
thaliana chloroplasts (Picault et al., 2006), which is
consistent with the above hypothesis about the role of
vacuolar transport in the generation of the Cd hypersensi-
tivity phenomenon due to AtPCS1 overexpression.

Cadmium induces oxidative stress, although it is not
a Fenton reaction type metal (Jonak et al., 2004; Semane

Fig. 12. Total ascorbate concentration (A, B) and relative content of its reduced form AsA (C, D) in roots (A, C) and leaves (B, D) of 6-week-old
tobacco plants: wild type var. Xanthi and transformed with AtPCS1 (lines PaII4 and PaII12) and CePCS (lines PcII3 and PcII4). Plants were grown
under control conditions (–Cd) or exposed for 2 d and 3 d to 25 lM CdCl2. Values correspond to means 6SD (n¼4). Significant differences between
control (not exposed to cadmium) and Cd-treated plants of the same line are indicated with the arrow (P < 0.05).
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et al., 2007). Glutathione plays a major role in the control
of the cell redox state (Noctor et al., 1998) and the
inability to maintain sufficient GSH levels under cadmium
exposure may lead to ROS production. Enhanced concen-
tration of c-EC, as shown by Creissen et al. (1999) might
be an additional factor in oxidative stress generation. Thus
Cd-hypersensitivity of AtPCS1-expressing tobacco could
result, among others, from higher oxidative stress due to
leaf GSH depletion together with c-EC accumulation (Fig.
7D). As expected, H2O2 production in the presence of the
metal was higher in leaves of AtPCS1 transformants
relative to CePCS and WT (Fig. 10). In parallel, the
decrease in GSH level (Fig. 7), a lower relative content of
reduced GSH (Fig. 11) and an increase in leaf ascorbate
level (Fig. 12B) were detected. The importance of AsA
accumulation could probably be explained by its in-
volvement in non-enzymatic antioxidative activity in
AtPCS1 plants with a higher level of H2O2 (Fig. 10)
(Noctor and Foyer, 1998; Noctor, 2006; Semane et al.,
2007). It is known, that the total ascorbate pool is not
stable and changes, among others, depending on the
developmental stage as well as in response to the level of
oxidative stress (Noctor, 2006). As shown by Franceschi
and Tarlyn (2002), AsA is synthesized in photosynthetic
organs and subsequently transported to non-photosyn-
thetic tissues like roots, although the mechanism of the
regulation of the transport has not been elucidated yet.
Therefore, it cannot be excluded that its regulation is part
of a plant’s antioxidative defence system. An observed
contrasting pattern of AsA accumulation in leaves and
roots of AtPCS1 plants, compared to CePCS and Xanthi
ones, could be the manifestation of the compensation
mechanism under the diversified level of oxidative stress
in tested plant lines. A similar mechanism was previously
demonstrated by Kanwischer et al. (2005) for GSH-
deficient cad2 mutants. Furthermore, the maintenance of
the AsA relative content in all studied plants exposed to
cadmium at the level of control plants grown without the
metal in the medium (Fig. 12C, D), indicates that the
efficiency of the AsA/DHA antioxidative system has not
been affected in cadmium-treated plants. To summarize,
cadmium hypersensitivity of AtPCS1 plants relative to
CePCS ones could be linked to the generation of a higher
level of oxidative stress. However, to elucidate the
underlying mechanism it will be necessary to examine in
detail the ascorbate–glutathione antioxidative network.
Moreover, to supplement the short-term experiments,
long-term ones will need to be conducted for further
understanding of these processes. Recently, it has been
clearly demonstrated, that acclimation to cadmium stress
is also crucial for good performance in contaminated
environments of hyperaccumulators like T. caerulescens
(Küpper et al., 2007).

The monitoring of cysteine, the substrate for GSH
biosynthesis, revealed that its concentration was similar in

all plant lines tested and not decreased by cadmium
treatments (data not shown). This result is in accordance
with the literature suggesting that the level of cysteine is
not a major factor deciding about the rate of glutathione
biosynthesis under cadmium exposure (Noctor et al.,
1998). According to Noctor et al. (1998), the other
substrates from the GSH/PC biosynthesis pathway, gluta-
mic acid and glycine, are not rate-limiting; therefore, their
level was not checked in this study.

Lee et al. (2003a) characterizing the effects of AtPCS1
overexpression in A. thaliana reported that the decrease of
Cd-tolerance was only noticed in lines with the highest
AtPCS1 expression level. In the present study, two lines
of AtPCS1 and CePCS transformants chosen for detailed
investigation (PaII4, PaII12, and PcII3; PcII4, respec-
tively) differed in the expression level (Fig. 4). However,
no correlation was detected between the expression level
(mRNA) and the monitored phenotype.

In conclusion, by expressing AtPCS1 and CePCS in the
same species (thus eliminating the interspecific differ-
ences), the first evidence has been obtained that the
diverse effects of overexpression may result from the
functional differences between the enzymes from diverse
organisms. The interrelationship between the PCS enzy-
matic activity/the rate of PCs biosynthesis, and their
transport to vacuole/degradation, is probably different in
AtPCS1 and CePCS plants and possibly one of the factors
contributing to the observed distinct sensitivity to cad-
mium. The disturbances of thiol homeostasis, due to
increased PCS activity over a certain threshold, and
probably the lack of the synchronization between PC–Cd
formation and their transport to the vacuole, may increase
the oxidative stress level and decrease the cadmium
detoxification capacity (as in the case of AtPCS1-express-
ing plants) leading to Cd-hypersensitivity. This study
demonstrates how much the overexpression of a single
gene can interfere in related metabolic processes occurring
in the cell, leading to results that are opposite from
those expected. Thus not all PCS genes would be suitable
for the transformation of all plant species for the
phytoremediation purposes.
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