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Abstract

Rice (Oryza sativa) varieties that are arsenate-tolerant

(Bala) and -sensitive (Azucena) were used to conduct

a transcriptome analysis of the response of rice seed-

lings to sodium arsenate (AsV) in hydroponic solution.

RNA extracted from the roots of three replicate experi-

ments of plants grown for 1 week in phosphate-free

nutrient with or without 13.3 mM AsV was used to

challenge the Affymetrix (52K) GeneChip Rice Genome

array. A total of 576 probe sets were significantly up-

regulated at least 2-fold in both varieties, whereas 622

were down-regulated. Ontological classification is pre-

sented. As expected, a large number of transcription

factors, stress proteins, and transporters demonstrated

differential expression. Striking is the lack of response

of classic oxidative stress-responsive genes or phyto-

chelatin synthases/synthatases. However, the large

number of responses from genes involved in glutathi-

one synthesis, metabolism, and transport suggests that

glutathione conjugation and arsenate methylation may

be important biochemical responses to arsenate chal-

lenge. In this report, no attempt is made to dissect

differences in the response of the tolerant and sensitive

variety, but analysis in a companion article will link

gene expression to the known tolerance loci available

in the Bala3Azucena mapping population.

Key words: Arsenate tolerance, candidate genes, glutathione-

S-transferase, microarray, Oryza sativa.

Introduction

In the environment, arsenic (As) is present in both organic
and inorganic forms; the inorganic species arsenate
[As(V)] and arsenite [As(III)] are more abundant in soils

compared with the organic As species monomethylarsonic
acid (MMAA) and dimethylarsinic acid (DMAA)
(Takamatsu et al., 1982), with the concentrations of
As(III) and methylated species rising in anaerobic soils
(Abedin et al., 2002). The mechanism by which plants
take up the inorganic As species differs. As(V) has been
shown to be taken up by the high affinity phosphate
uptake system (Ullrich-Eberius et al., 1989), while As(III)
uptake is thought to be through aquaporins in the roots
(Meharg and Jardine, 2003). Both forms of inorganic
As are toxic to plants. As(III) can react with sulphydryl
groups of enzymes and proteins, which leads to loss of
function and can cause cell death (Requejo and Tena,
2005). As(V) can compete with phosphate, replacing it
in key molecules, including ATP (Scott et al., 1993;
Meharg and Hartley-Whitaker, 2002; Quaghebeur and
Rengel, 2003). Also, when As(V) enters the plant, a pro-
portion of it is reduced to As(III), a process thought to
lead to oxidative stress (Hartley-Whitaker et al., 2001).
Exposure of plants to inorganic As leads to the synthesis
of phytochelatins that complex As(III), these complexes
being transported across the tonoplast by ABC-type
cassette transporters (see, for example, Bleeker et al.,
2006).
Mylona et al. (1998) have shown that maize enzymes

involved in reactive oxygen scavenging [catalase, super-
oxide dismutase, and glutathione-S-transferase (GST)]
have increased activity and increased gene expression
upon As exposure. Requejo and Tena (2005), studying
protein profiles, showed that 10% of the detectable
proteins in maize roots were regulated (either up- or
down-regulated) by As, and seven out of the 11 proteins
whose identity was revealed were involved in cellular
homeostasis for redox perturbation. Despite these studies,
the molecular responses of plants to As have not been
extensively characterized, yet a thorough analysis should
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provide insights into the nature of toxicity and the
mechanisms of tolerance.
In mammals, inorganic As is metabolized to dimethyl

arsenate [DMA(V)] which is then excreted in urine. This
is achieved via repetitive reduction (from the +5 to the +3
valence state) and oxidative-methylation steps known as
the Challenger pathway. Three enzymes are required, an
arsenate reductase that converts As(V) to As(III), a methyl-
transferase that converts As(III) to monomethyl arsenate
MMA(V) and converts monomethyl arsenite [MMA(III)]
to DMA(V), and a monomethyl arsenate reductase which
converts MMA(V) to MMA(III) (Aposhian et al., 2004;
Thomas et al., 2004). While it has long been known that
plants exposed to inorganic As accumulate both inorganic
and organic forms (Meharg and Hartley-Whitaker, 2002),
it has only recently been demonstrated that this is due to
de novo synthesis of methylated species, rather than direct
uptake of soil-microbially produced methylated species
(Raab et al., 2005). The enzymology of methylation
remains elusive in plants. The arsenate reductase from
Holcus lanatus has been identified (the first in plants)
(Bleeker et al., 2006), and more recently two rice genes
(Os03g01770 and Os10g39860) encoding arsenate reduc-
tases have been cloned (Duan et al., 2007). The other
enzymes in the pathway have not been characterized
although it has been shown that plant extracts have the
enzymatic ability to methylate As in vivo to MMA(V) and
DMA(V) (Wu et al., 2002).
In animals, the enzymes of As(III) metabolism have

recently been characterized. The methyltransferase has
been cloned from a few species (Aposhian and Aposhian,
2006). It is classified as S-adenosine-L-methionine:As(III)
methyltransferase, and can add a methyl group to As(III)
to produce MMA(V) and to MMA(III) to make DMA(V).
It has also been shown to have the ability to catalyse both
intermediate reduction steps using thioredoxin or gluta-
redoxin as the reductant (Li et al., 2005). The gene is part
of the glutathione transferase superfamily. Another gene
in the pathway has been characterized in animals, de-
scribed as monomethyl arsenate reductase (Aposhian
et al., 2004), and it has been proposed that this enzyme
can reduce all +5 valence state arsenicals [(As(V),
MMA(V), and DMA(V)] to the +3 valence state [As(III),
MMA(III), and DMA(III)]. In other words, it is also an
arsenate reductase. This enzyme has an absolute require-
ment for reduced glutathione and it has been identified as
an Omega class GST (Aposhian et al., 2004). This class
of GST evolved in animals after their split with plants and
do not, therefore, exist in plants, although plants do have
two plant-specific classes of GST (the Phi and Tau classes
with 16 and 40 genes each in rice), the functions of which
are not known (Soranzo et al., 2004).
Recently, an alternative pathway for As metabolism has

been suggested, with the +5 valence state as the end-
product of the methylation reaction and involving

conjugation of glutathione (Hayakawa et al., 2005). This
suggests that the Challenger pathway might not be the
only route for As methylation.
In this study, the alterations in gene expression of two

varieties of rice when exposed to 13.3 lM sodium arsenate
for 1 week were examined. The analysis focuses on genes
that are commonly differentially regulated in both varieties.
A large number of genes involved in glutathione synthesis,
metabolism, and transport, and genes potentially involved
in arsenate methylation suggests that glutathione conjuga-
tion and the Challenger-like pathway of arsenate methyla-
tion may be important biochemical responses to arsenate
challenge.

Materials and methods

Hydroponic growth of rice plants

The two rice varieties Azucena (japonica) and Bala (indica) were
germinated for 3 d at 37 �C and then floated on alkathene beads
within 100 ml beakers filled with either phosphate-free nutrient
solution containing 0.1 mM Mg2+ and SO4

2–, 0.2 mM Ca2+ and K+,
and 0.6 mM NO3

– (control), or the same nutrient solution supple-
mented with di-sodium hydrogen arsenate (treatment) at a concen-
tration of 13.3 lM. The seedlings were grown in controlled
conditions at 25 �C with 12 h day length (300 lmol m�2 s�1

PAR). After 1 week, the maximum length of the main root of plants
was measured. The tolerance index was calculated as the percentage
of root length in arsenate compared with control.
An experiment examining the root growth of Azucena and Bala

when grown in arsenate was conducted using a similar methodology
to that described above with the following amendments: half-
strength Yoshida nutrient growth solution without phosphorus was
used instead (Yoshida et al., 1976), and root lengths were measured
on days 0, 2, 3, 5, and 7.

Microarray gene expression

For microarray analysis, the total root systems were harvested from
control plants and plants treated with 13.3 lM sodium arsenate;
growth conditions were as described above. A total of 100 mg of root
material, pooled from four separate plants, was harvested for RNA
extraction using the TRIzol method (Invitrogen) followed by further
purification and DNase treatment using the RNeasy clean up system
(Qiagen). RNA was processed for use with the Affymetrix GeneChip
Rice Genome array according to the manufacturer’s protocol. Briefly,
5 lg of total RNA was used in the one-cycle cDNA synthesis
reaction. After the generation of double-stranded cDNA, an in vitro
transcription reaction was performed to generate biotinylated cRNA.
cRNA quality was assessed for fragment length using a bioanalyzer
(Agilent 2100). Hybridization, washing, staining, and scanning
procedures of the Affymetrix Test 3 arrays and Affymetrix
GeneChip Rice Genome arrays were carried out by the Microarray
Core Facility of the Institute of Medical Sciences, University of
Aberdeen, UK, as described in the Affymetrix technical manual.
Three independent replicated experiments were carried out for all
four conditions (Azucena with/without sodium arsenate and Bala
with/without sodium arsenate). Microarray data sets were deposited
in the GEO public database, series accession number GSE4471.

Analysis of array data

Expression analysis was initially carried out using the Microarray
analysis software 5.0 (MAS5.0) from the Affymetrix Gene Chip
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Operating software (GCOS, version 1.3). Further analysis was
performed using the Bioconductor package (Gentleman et al., 2004)
in R (Ihaka and Gentleman, 1996). The data were normalized using
the modified robust multiarray average (RMA) (Irizarry et al., 2003)
method GCRMA (Wu et al., 2004) which takes into account the
GC content when performing RMA normalization. Differential gene
expression was measured using the LIMMA linear model (Smyth,
2004) and a Benjamini and Hochberg (1995) correction of the
P-value. Probe sets were only counted as differentially expressed if
they met the following criteria: (i) there was a statistically
significant differential expression (adjusted P-value <0.05); and (ii)
the fold change in gene expression was >2.

Assignment of probe sets to genes

Probe sets were assigned to annotated genes using the web-based
search tool on the National Science Foundation Rice Oligonucleo-
tide Array Project website (www.ricearray.org). Annotation is based
on the TIGR Pseudomolecule release 5 of 2007 (www.tigr.org).

Assignment of genes to biological processes

For the genes that were differentially regulated, the gene ontology
classification provided in TIGR Pseudomolecule release 5 (GOSlim)
was used to assign genes to a hierarchical biological process using
the Web Gene Ontology Annotation Plotting tool (WEGO, http://
wego.genomics.org.cn) (Ye et al., 2006). GOSlim information was
available for 62% of the up-regulated genes and 68% of the down-
regulated genes.

RT-PCR confirmation of Affymetrix array data

PCR primers were designed to amplify a number of genes to
confirm the Affymetrix data. Primers were designed using Primer3,
and purchased from Invitrogen. RNA was isolated as described
above and reverse transcribed into cDNA from 2 lg of total RNA
using the SuperScript� Double-Stranded cDNA Synthesis Kit
(Invitrogen). PCR was performed using 1 ll of cDNA reaction in

25 ll containing 16 mM (NH4)2SO4, 67 mM TRIS-HCl (pH 8.8),
0.01% Tween-20, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.2 lM of each
primer, and 0.5 U of BioTaq polymerase (Bioline). Reactions were
formed using the following cycle conditions, an initial 94 �C for
2 min, then 35 cycles of 94 �C for 30 s, 55 �C for 30 s, and 72 �C
for 30 s, followed by a final 5 min extension at 72 �C.

Quantitative PCR

Rice plants were grown as above except for the addition of 13.3 lM
sodium arsenate either 168, 48, 24, 12, 5, 2, 1, 0.5, or 0 h before the
roots were harvested.
RNA was isolated as described above and primers were designed

for two genes, GSTU5 and GSTU19. The 18S gene was also
amplified to normalize the RNA loading. cDNA was synthesized
from 1 lg of total RNA using the ImProm-II cDNA synthesis kit
(Promega) with random primers. Control reactions were performed
without the reverse transcriptase enzyme to verify that no DNA
contamination was present in the RNA samples. PCR amplification
was performed in a 25 ll volume containing 1 ll of cDNA (for 18S
reactions, cDNA was diluted 100-fold), 12.5 ll of 23 DyNAmo
SYBR green (Finnzyme), and 0.25 lM of each primer. Analysis
was performed in an Opticon2 (MJ research) with cycle conditions
of an initial denaturing at 95 �C for 15 min, followed by 35 cycles
(30 for 18S) of 95 �C for 15 s, 55 �C for 15 s, and 72 �C for 30 s.

Results

Effect of 13.3 lM sodium arsenate on root length

As(V) (13.3 lM) causes a dramatic decrease in root
growth over a period of 7 d in both varieties (Fig. 1A).
The root length measurements for the three replicate array
experiments are presented in Fig. 1B. In the time-course
experiments it is observed that root growth of arsenate-
treated plants is linear (Fig. 2).

Fig. 1. (A) Azucena control conditions (top left), Azucena grown in 13.3 lM sodium arsenate (top right), Bala control conditions (bottom left), and
Bala grown in 13.3 lM sodium arsenate (bottom right) for 1 week showing marked inhibition of root growth. (B) Length of the roots for the three
replicates used in the gene expression experiment. Bar ¼ SE.
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Genome-wide gene expression

Initial analysis of the microarray data indicated that an
average of 43.9% of the probe sets were called present
using the MAS5.0 software, indicating that 44% of genes
were expressed in young hydroponically grown roots. A
large number of probe sets (2304) were differentially
expressed between Azucena and Bala in the control
conditions. This suggests either a large degree of
differential gene expression between these two rice
varieties or differences in hybridization due to sequence
polymorphisms in mRNA transcripts. A total of 1604
probe sets were significantly up-regulated >2-fold in
Azucena in the presence of 13.3 lM sodium arsenate,
whereas 1828 probe sets were down-regulated. In Bala,
909 probe sets were up-regulated and 935 probe sets were
down-regulated. A full list of probe sets significantly
differentially regulated can be found in Supplementary
Tables S1–S4 at JXB online.
A proportion of the probe sets either up- or down-

regulated were common in both Azucena and Bala
(Fig. 3). A total of 576 probe sets were significantly up-
regulated >2-fold in both Azucena and Bala, and 622 sets
were significantly down-regulated at least 2-fold in both
Azucena and Bala.
There were three probe sets which were significantly

regulated in both varieties, but in opposing directions. The
probe set Os.9396.1.S1_at (Os03g48810, permease 1
gene) is up-regulated in Bala whereas in Azucena it is
down-regulated in response to As(V). The probe sets
Os.16305.1.S1_at (Os01g03330, Bowman–Birk-type bran
trypsin inhibitor precursor) and Os.19472.1.S1_at
(Os04g10160 cytochrome P450 CYP99A1) are down-
regulated in Bala whereas they are up-regulated in the
Azucena response to As(V).
Confirmation of the array data was carried out using

primers designed for probe sets that were expressed in at
least one of the conditions and absent in other conditions.

A fourth replicate of the arsenate test was performed and
cDNA synthesized from the harvested RNA was used as
templates for confirmatory PCR. For all nine probe sets
tested in this way, the amplification in the PCRs exactly
matched the present/absent score from the array data
(Supplementary Fig. S1 at JXB online).

Gene annotation

An analysis of those genes that respond to As(V) in both
varieties is conducted below. Some genes have more than
one probe set and, therefore, the number of responsive
probe sets is greater than the number of responsive genes.
Taking this into account, the number of genes signifi-
cantly up-regulated >2-fold was 460, while 523 genes
were down-regulated. The annotation of the rice genome
does not give a putative function to all pseudomolecules
so a large number of genes are still annotated as either
‘expressed’ or ‘hypothetical’. The ‘expressed’ genes
accounted for 92 of the genes down-regulated and 80 of
those up-regulated, while genes annotated as ‘hypotheti-
cal’ accounted for 18 down-regulated and eight up-
regulated. A number of the probe sets on the genome
array do not match or have a low match to the TIGR
Pseudomolecule release 5; 59 of the up-regulated and 40
down-regulated probe sets fell into this category.
A summary of the biological processes (as assigned

by WEGO) in which the numbers of genes in a category
that are significantly different between up- and down-
regulation is given in Table 1. This reveals that As(V)-
responsive genes that are involved in heat and toxin
responses, the metabolism of toxins, sulphur, amines, and
organic acids, cellular and macromolecule catabolism, and
nitrogen biosynthesis are predominantly up-regulated. In
contrast, the As(V)-responsive genes that are involved in
transport, regulation of metabolism and cell size, metabo-
lism of phosphorus, phenylpropanoids, and aromatic

Fig. 2. Root lengths of plants grown in 13.3 lM sodium arsenate.
Maximum root length was measured on days 2, 3, 5, and 7. Bar ¼ SE.

Fig. 3. Venn diagram of the number of probe sets up- and down-
regulated in response to arsenate in Azucena and Bala. The number of
probe sets which were up-regulated (bold) and the number of probe sets
which were down-regulated (italic) with an adjusted P-value of <0.05
and a >2-fold change in gene expression.

2270 Norton et al.



compounds, cellular morphogenesis, cell growth, and
responses to auxin are predominantly down-regulated.
In order to provide a better insight into the nature of the

genes that respond to As(V), the following section
describes a number of notable differentially regulated
genes. The largest category of responsive genes was
transcription factors (25 up-regulated and 64 down-
regulated) followed by protein kinases (seven up-regulated
and 23 down-regulated), but with the present state of gene
annotation for rice it is not yet straightforward to draw
useful conclusions about these genes. A total of eight
genes annotated as UDP-glucuronosyl and UDP-glucosyl
transferase were up-regulated, and three were down-
regulated. Gene ontology classification indicates that this
class of gene is involved in xenobotic metabolism and
response to toxins.

Transporter genes

The phosphate:H+ symporter gene OsPT2 (03g05640)
was down-regulated. This gene was previously found to
be highly expressed under phosphate starvation but ex-
pression decreased with elevated phosphate (Paszkowski
et al., 2002; Güimil et al., 2005). In the present study,
13.3 lM arsenate dramatically reduced the expression of
OsPT2 transcripts in rice compared with control plants,
which were probably phosphate starved given that phos-
phate was omitted from the nutrient solution. A gene anno-
tated as an inorganic phosphate transporter (Os10g30770)
was also down-regulated. Five sulphate transporters were
up-regulated (Os03g09940, Os03g09970, Os09g06499,
Os08g31410, and Os09g06510). Transporters of chloride
(Os02g35190 and Os08g20570), ammonium (Os01g61550),
and nitrate (Os02g38230) were down-regulated. Also down-
regulated were genes involved in sugar (Os02g36414 and
Os04g37990), amino acid (Os04g39489), peptide

(Os01g04950), and oligopeptide (Os02g46850 and
Os08g38400) transport.
A total of seven multidrug and toxic compound

extrusion (MATE) transporters were up-regulated
(Os03g37490, Os05g48040, Os08g37430, Os08g37432,
Os10g20450, Os10g20470, and Os12g03260) and two
down-regulated (Os04g48290 and Os09g29284). MATE
transporters cover a diverse range of functions including
the transport of lipophilic cations and related compounds;
they have also been linked with growth and development
(Debeaujon et al., 2001). While MATE transporters do not
transport glutathione-conjugated molecules, a number of
proteins that do also responded to As(V). A single gene
with an annotated putative function of a glutathione
conjugate transporter (Os04g13210) was up-regulated.
A gene annotated as a multidrug resistance-associated
protein MRP2 (Os01g07870) was also up-regulated. MRPs
are a subclass of ATP-binding cassette (ABC) transporters,
which are involved in the transport of glutathione-
conjugated compounds into the vacuole of plants for
subsequent detoxification (Rea et al., 1998; Theodoulou,
2000). Another three genes with the predicted putative
function of an ABC transporter family protein (Os04g49890,
Os04g52900, and Os11g05700) were up-regulated. Phylo-
genetic analysis of these ABC transporter gene sequences
revealed that they are also MRP transporters.
A number of metal transporters responded to As(V). Two

genes annotated as Nramp1, which are broad range mem-
brane-bound metal transporters (Bereczky et al., 2003),
were differentially regulated; Os07g15460 was >50-fold
up-regulated whereas Os07g15370 was down-regulated. In
addition, two potassium (Os01g45990 and Os07g47350),
one zinc (Os01g74110), and a ZIP zinc/iron transporter
(Os05g10940) were down-regulated.
Two aquaporin genes were down-regulated

(Os05g14240 and Os12g10280); neither exactly matches
any of the previously described aquaporins (Sakurai et al.,
2005). Phylogenetic analysis of the protein sequence
revealed that Os05g14240 is a member of the tonoplast
intrinsic protein subclass and Os12g10280 is a member of
the Nod26-like intrinsic protein subclass of aquaporins.
One final class of transporters that was up-regulated by
As(V) were five major facilitator superfamily proteins
(Os01g16260, Os03g58080, Os11g04020, Os11g05390,
and Os12g03899).

Stress proteins

A number of genes involved in molecular chaperoning
responded to As(V). This included 13 up-regulated heat
shock proteins (Os01g04360, Os01g04370, Os01g04380,
Os02g32590, Os02g54140, Os03g14180, Os03g16020,
Os03g16030, Os03g60620, Os04g01740, Os06g11610,
Os09g31486, and Os11g13980) and two down-regulated
proteins (Os07g33350 and Os10g30180). A related

Table 1. Biological process categorization (from GOSlim data,
using WEGO), showing only categories with a significant
difference between up- and down-regulated genes

Up-regulated Down-regulated Biological process

27 48 Transport
16 55 Regulation of cellular metabolism
4 17 Phenylpropanoid metabolism
8 20 Aromatic compound metabolism
5 22 Phosphorus metabolism

10 1 Sulphur metabolism
15 6 Amine metabolism
15 1 Toxin metabolism
23 12 Organic acid metabolism
34 10 Cellular catabolism
14 5 Macromolecule catabolism
14 2 Nitrogen compound biosynthesis
2 14 Cellular morphogenesis
1 12 Regulation of cell size
1 10 Unidimensional cell growth
3 11 Response to auxin stimulus

22 6 Response to heat
20 2 Response to toxin
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class of proteins are the chaperones, of which five were
up-regulated (Os03g04970, Os03g31300, Os05g46290,
Os09g11250, and Os10g32550). Three other genes in the
same class were up-regulated, a late embryogenesis
abundant protein (Os05g46480) and two dehydrin genes
(Os11g26750 and Os11g26790).

Oxidative stress

Members of two large gene families that are implicated in
oxidative stress responded to As(V). A total of 12
peroxidases were down-regulated and one up-regulated,
while cytochrome P450-type genes were also differentially
expressed (eight up-regulated and 12 down-regulated). Two
genes annotated as chloroplastic quinone-oxidoreductase
(Os04g30420 and Os09g32570) were also up-regulated.
This enzyme protects cells against free radicals and toxic
oxygen metabolites generated by the one-electron reduc-
tions of cytochrome P450s and other enzymes, as well as
exogenous free radicals and other electrophiles (Winner
et al., 1997).

Glutathione S-transferases

A total of 15 GST genes (Os01g49710, Os01g49720,
Os01g72150, Os01g72160, Os06g12290, Os09g20220,
Os10g34020, Os10g38140, Os10g38340, Os10g38360,
Os10g38470, Os10g38489, Os10g38590, Os10g38610,
and Os10g38740) were up-regulated. Twelve of these genes
belong to the 40-member Tau class GSTs described by
Soranzo et al. (2004). While the other three have not been
categorized into a GST subclass by Soranzo et al. (2004),
phylogenetic analysis confirmed they cluster with the Tau
class of GSTs. Two up-regulated genes are annotated as
IN2-1 proteins (Os03g17470 and Os03g17480). This
category of gene has been described as a Lambda class
GST by Dixon et al. (2002). One GST (Os01g27390) was
down-regulated, and this was a Phi class GST.
Two of the Tau class GSTs (Os09g20220 and

Os10g38340) displayed a >30-fold increase in expression
from the array data and these were further studied using
real-time PCR (Fig. 4). Both genes were significantly
up-regulated within 0.5 h, and their expression peaked at
5 h, with an increase of >250-fold for Os09g20220 and
>600-fold for Os10g38340 compared with controls. For
both genes the expression dropped between 2 d and 7 d,
but was still substantially elevated over controls.

Cell growth

A number of genes involved in cell growth and the cell
cycle were down-regulated; these included two expansin
genes (Os01g14660 and Os04g46650), two tubulin genes
(Os03g45920 and Os03g56810), an actin gene
(Os01g64630), and two microtubule genes (Os03g13460
and Os09g27700).

Methyltransferases

A gene annotated as a methyltransferase (Os02g51030)
was up-regulated. This gene contains a UbiE/Coq5 family
protein motif, and it has been reported that genes from
bacteria and archaea with this motif are involved in As
detoxification (Qin et al., 2006). A second class of
methyltransferase was up-regulated (Os03g12110 and
Os10g28630), both of which are annotated as homocys-
teine S-methyltransferase, which catalyses the formation
of S-adenosyl-L-homocysteine and L-methionine from
S-adenosyl-L-methionine and L-homocysteine. This en-
zyme is involved in S-methylmethionine synthesis
(Ranocha et al., 2000), and this pathway has been
proposed for sustaining a pool of soluble methionine
(Mudd and Datko, 1990).

Discussion

As previously reported, 13.3 lM As(V) caused a decrease
in root growth over a 7 d period in both the varieties
tested in this study (Dasgupta et al., 2004). These
two rice varieties have previously been shown to differ
in their tolerance to As(V) (Dasgupta et al., 2004),
and a companion paper (Norton et al., 2008) focuses on

Fig. 4. Gene expression of GSTU5 (A) and GSTU19 (B) in response to
13.3 lM sodium arsenate over time as detected by quantitative real-
time PCR (relative to actin expression). Bar ¼ SE.
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a three-gene model for tolerance and potential candidate
genes within the tolerance loci.
The effect of As(V) at the concentration used had

a constant effect on root growth (Fig. 2). The observation
that root growth is constantly affected rather than an initial
inhibition of root growth justifies the testing of plants
exposed for 7 d rather than a shorter period of time. It is
also more relevant to consider long-term exposure if the
ultimate aim is to reveal mechanisms of adaptation
because natural exposure to arsenic will always be
prolonged.
The presented analysis of global gene expression focuses

on the gene expression responses that are common in both
rice varieties. To obtain the most meaningful comparison
between tolerant and sensitive varieties, an additional
treatment would be required in Azucena such that its root
growth was inhibited by a similar amount to the inhibition
observed in Bala grown in 13.3 lM arsenate. This is
because the large number of genes that are uniquely
responsive in one variety compared with the other may be
due to differences in the level of intercellular exposure if
transport of arsenicals is different between varieties, or
differences in modified arsenicals if the two varieties have
different biochemistry. An additional drawback of compar-
ison is that there are such major differences in expression
between varieties in control treatment (Fig. 2), which
emphasizes the large degree of genetic diversity between
them.
A total of 1198 probe sets responded significantly to

As(V) treatment across both varieties, which represents
2.09% of probe sets present on the array (not including
control probe sets). This number is not surprising, given
that Requejo and Tena (2005) observed that 10% of
proteins in maize exposed to As(V) at 300 lM for 24 h
showed changed intensities. Despite the much lower
concentration used here, the exposure time was much
longer, and it has been demonstrated that longer exposure
times (up to several days) generally increase the number
of gene responses (Gadjev et al., 2006).
It has previously been demonstrated that As(V) presents

the plant with an oxidative stress that results in responses
of catalases, superoxide dismutase, and GSTs (Mylona
et al., 1998). While a small number of genes involved in
oxidative stress responses were among the list of up- and
down-regulated genes here, the genes classically used to
link stress to reactive oxygen species such as catalases,
superoxide dismutase, glutathione reductases, or ascorbate
peroxidase did not respond. The only agreement with
Mylona et al. (1998) were the GSTs, where some of the
Tau class GSTs showed remarkable changes in expres-
sion. Gadjev et al. (2006) revealed that four GSTs
commonly respond to different oxidative stresses, and the
present phylogenetic analysis indicates that these are all
Tau class GSTs, which might indicate evidence of an
oxidative component to As(V) phytotoxicity as shown by

Hartley-Whitaker et al. (2001). However, it is worth
noting that in animals the enzyme involved in the
reduction steps of the Challenger pathway that methylates
As(III) to organic MMA and DMA is a GST, but of the
animal-specific Omega class (Tanaka-Kagawa et al.,
2003; Schmuck et al., 2005; Zakharyan et al., 2005).
Two other up-regulated GSTs identified here are of the
Lambda class GSTs, which have a similar active site motif
to Omega class GSTs (Board et al., 2000; Dixon et al.,
2002).
The Challenger pathway that requires reduction of

mono-methylated As(V) using Omega GSTs also requires
a methyltransferase (Aposhian et al., 2004; Thomas et al.,
2004). It may be significant, therefore, that the As(V)-
responsive methyltransferase (Os02g51030) has the UbiE/
Coq5 motif that is homologous with As methyltrans-
ferases from prokaryotes (Qin et al., 2006), and has some
motif homology with the animal S-adenosylmethionine:ar-
senic(III) methyltransferase (Lin et al., 2002). The
Challenger pathway has not been demonstrated in plants,
but it has been shown that extracts from Agrostis
capillaris produce DMA and MMA when treated with
As(V) (Wu et al., 2002).
Another known direct mechanism by which GSTs

combat xenobiotic stresses is the conjugation of glutathi-
one, and it has been suggested (Liu et al., 2001) that
arsenical–glutathione conjugates are produced by GSTs in
rat liver epithelial cells. Liu et al. (2001) also suggest that
acquired tolerance in rat epithelial cells to As(III) is
afforded by induction of a GST, MRPs, and a multidrug
resistance gene, with the latter two types of gene being
considered to function as transporters of glutathione
conjugates. It is noteworthy, therefore, that in the present
array results, a total of four MRPs and one glutathione
conjugate transporter were up-regulated.
If GSTs have a role in As detoxification, they can be

expected to utilize reduced glutathione that is biosynthe-
sized by two sequential ATP-dependent reactions. There
is evidence from the gene list presented in Supplementary
Tables S1–S4 at JXB online that enzymes involved in
glutathione synthesis are differentially regulated. The first
step is the synthesis of c-glutamylcysteine from glutamate
and cysteine by the enzyme c-glutamylcysteine synthetase
which is also known as glutamate–cysteine ligase. The
second step is the addition of glycine to the C-terminal
end by the enzyme glutathione synthase (Noctor et al.,
1998). A probe set (Os.12568.2.S1_at) that was signifi-
cantly up-regulated has homology to two glutamate–
cysteine ligases (Os05g03820 and Os07g27790), and the
former of these two genes has a unique probe set that is
up-regulated. No genes annotated as glutathione synthase
passed the criteria for reporting used here because there
was insufficient match between probe sets and the
matching pseudomolecule. However, of the three genes in
the TIGR Pseudomolecule release 5 which are annotated
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as gluthathione synthetases, the array data suggest that
two are differentially regulated. For Os12g16200 (for
which only seven of the 11 Affymetrix probes matched
the predicted pseudomolecule, which is why this gene is
not included in the results reported), the probe set
(Os.7101.1.S1_at) was 25-fold down-regulated, but for
Os12g34380 (for which only five of the 11 Affymetrix
probes matched the predicted pseudomolecule), the probe
set (Os.12023.1.S1_at) was 3-fold up-regulated. The
Os12g16200 gene is a chloroplastic isozyme, while
Os12g34380 is probably cytosolic, suggesting a shift in
the site of glutathione synthesis in response to As(V). This
would be interesting to investigate further.
Evidence that glutathione synthesis is indeed increased

under As(V) exposure is provided by the up-regulation of
a number of genes involved in sulphate transport (as
reported in the Results), a gene annotated as a bifunctional
3#-phosphoadenosine 5#-phosphosulphate synthetase 2
(Os04g02050) (that is involved in sulphur assimilation),
and a gene annotated as a cysteine synthase
(Os04g08350). In other stresses, such observations have
been linked to an increased demand for glutathione
(Gratao et al., 2005).
Another class of responsive genes that is involved in

glutathione biochemistry is the glutaredoxins. Two gluta-
redoxin genes (Os01g13950 and Os02g40500) were up-
regulated in As(V). These small proteins are in the same
superfamily as GSTs, glutathione peroxidases, and thio-
redoxins (Lemaire and Miginiac-Maslow, 2004). They
are involved in redox homeostasis via gluthathione
(Holmgren, 1989; Porras et al., 2002).
Glutathione is a precursor in phytochelatin synthesis

(Cobbett, 2000; Inouhe, 2005) and these compounds are
implicated in responses to several metals and metalloids
including As (Raab et al., 2005). No phytochelatin
synthases or synthetase (of which there are five in rice,
three of which are expressed and the other two marginally
expressed in all four conditions) were up-regulated. This
suggests that at this level of As(V) exposure phytochelatin
synthases and synthetases are constitutively expressed and
are not involved in adaptive tolerance. This is in
agreement with a number of previous studies which show
that exposure to heavy metals does not alter expression of
phytochelatin synthases (Ha et al., 1999; Ouziad et al.,
2005) and overexpression of an Arabidopsis phytochelatin
synthase led to hypersensitivity to both cadmium and zinc
(Lee et al., 2003). Contradicting these observations,
however, a number of studies have shown that these
genes are induced by heavy metals (He et al., 2005;
Zhang et al., 2005; Li et al., 2006). Also, phytochelatins
have been shown to be involved in genetic differences in
arsenate tolerance in H. lanatus (Bleeker et al., 2006).
Two arsenate reductase genes have recently been

identified in rice (OsArs1, Os10g39860; and OsArs2,
Os03g01770) (Duan et al., 2007). Neither of the probe

sets for these genes is differentially regulated by As(V) in
this study.

Conclusions

One week of arsenate treatment caused altered gene
expression in a large number of genes, but not classic
oxidative stress, phytochelatin synthases/synthetases, or
arsenate reductase genes that might have been expected.
However, the large number of responses from genes
involved in glutathione synthesis, metabolism, and trans-
port as well as genes potentially involved in arsenate
methylation suggests that glutathione conjugation and the
Challenger-like pathway of arsenate methylation may be
important biochemical responses to arsenate challenge.
The results of this transcriptomic study are employed in
a companion paper (Norton et al., 2008) aiming to
identify candidate genes for three epistatic loci that have
been shown to determine the difference in arsenate
tolerance observed between the two rice varieties used
here.

Supplementary data

Supplementary data (Fig. S1 and Tables S1–S4) can be
found at JXB online.

Fig. S1. RT-PCR confirmation of array results for actin
and eight genes chosen to represent contrasting patterns of
differential expression from the array data.

Table S1. List of probe sets significantly up-regulated
2-fold in Azucena in response to 13.3 lM sodium
arsenate.

Table S2. List of probe sets significantly down-
regulated 2-fold in Azucena in response to 13.3 lM
sodium arsenate.

Table S3. List of probe sets significantly up-regulated
2-fold in Bala in response to 13.3 lM sodium arsenate.

Table S4. List of probe sets significantly down-
regulated 2-fold in Bala in response to 13.3 lM sodium
arsenate.
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Koornneef M. 2001. The transparent testa12 gene of Arabidop-
sis encodes a multidrug secondary transporter-like protein re-
quired for flavonoid sequestration in vacuoles of the seed coat
endothelium. The Plant Cell 13, 853–871.

Dixon DP, Davis BG, Edwards R. 2002. Functional divergence in
the glutathione transferase superfamily in plants: identification of
two classes with putative functions in redox homeostasis in
Arabidopsis thaliana. Journal of Biological Chemistry 277,
30859–30869.

Duan G, Zhou Y, Tong Y, Mukhopadhyay R, Rosen BP, Zhu Y.
2007. A CDC25 homologue from rice functions as an arsenate
reductase. New Phytologist 174, 311–321.

Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN,
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