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Abstract

Ethylene production, as well as the expression of
ethylene biosynthetic (Rh-ACS1-4 and Rh-ACO1) and
receptor (Rh-ETR1-5) genes, was determined in five
different floral tissues (sepals, petals, stamens, gynoe-
cia, and receptacles) of cut rose (Rosa hybrida
cv. Samantha upon treatment with ethylene or the
ethylene inhibitor 1-methylcyclopropene (1-MCP).
Ethylene-enhanced ethylene production occurred only
in gynoecia, petals, and receptacles, with gynoecia
showing the greatest enhancement in the early stage
of ethylene treatment. However, 1-MCP did not sup-
press ethylene production in these three tissues. In
sepals, ethylene production was highly decreased by
ethylene treatment, and increased dramatically by 1-
MCP. Ethylene production in stamens remained un-
changed after ethylene or 1-MCP treatment. Induction
of certain ethylene biosynthetic genes by ethylene in
different floral tissues was positively correlated with
the ethylene production, and this induction was also
not suppressed by 1-MCP. The expression of Rh-ACS2
and Rh-ACS3 was quickly induced by ethylene in
gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was
induced by ethylene in any of the five tissues. In
addition, Rh-ACO1 was induced by ethylene in all floral
tissues except sepals. The induced expression of
ethylene receptor genes by ethylene was much faster
in gynoecia than in petals, and the expression of Rh-
ETR3 was strongly suppressed by 1-MCP in all floral
tissues. These results indicate that ethylene biosyn-
thesis in gynoecia is regulated developmentally, rather
than autocatalytically. The response of rose flowers to
ethylene occurs initially in gynoecia, and ethylene may
regulate flower opening mainly through the Rh-ETR3
gene in gynoecia.

Key words: Cut roses, ethylene biosynthesis, ethylene
receptor, floral tissues, flower opening, gene expression,
Rosa hybrida.

Introduction

Ethylene is one of the most important plant hormones, and
plays a central role in various plant developmental
processes, such as seed germination, flower and leaf
senescence and abscission, and fruit ripening (Abeles
et al., 1992). It also acts as an important modulator of
plants responses to biotic and abiotic stimuli, including
pathogen attack, flooding, chilling, and mechanical dam-
age (Johnson and Ecker, 1998; Bleecker and Kende,
2000).

Ethylene biosynthesis in higher plants has been well
defined (Yang and Hoffman, 1984). The first committed
step of ethylene biosynthesis is the conversion of S-
AdoMet to ACC by ACC synthase (ACS). ACC is then
oxidized to ethylene by ACC oxidase (ACO) (Yang and
Hoffman, 1984; Kende, 1993; Wang er al., 2002). ACS
and ACO genes, which belong to multigene families,
have been cloned and characterized from various different
plant species. Ethylene biosynthesis is mainly regulated
through the expression of ACS genes, but in some
cases, the regulation can also be through the expression
of ACO genes (Vriezen et al., 1999; Wagstaff et al., 2005;
Fernandez-Otero et al., 2006). The expression of ACS
genes is regulated by many factors, including hormones,
pollination, senescence, LiCl, and cycloheximide (Kende,
1993; Liang et al., 1996). Recent reports show that
regulation of ACS activity also occurs at the post-
transcriptional level (Wang et al., 2004; Liu and Zhang,
2004).

In Arabidopsis, the ethylene signalling pathway has
been well characterized. Several major components in this
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pathway have been identified. Briefly, ethylene is per-
ceived by a family of receptors that are similar to the
bacterial two-component system. These receptors then
activate CTR1, a Raf-like protein kinase, which acts as
a negative regulator of ethylene responses. CTR1 then
passes the signal to EIN2, an integral membrane protein,
through a series of MAPK cascades, and then to EIN3/
ElLs, transcriptional factors that trigger the expression of
downstream target genes such as ERF[ (reviewed in Chen
et al., 2005).

It has been reported that ethylene receptors are regulated
at both the transcriptional and post-transcriptional levels
while CTR is regulated mainly at the post-transcriptional
level through association or dissociation with ethylene
receptor proteins in the endoplasmic reticulum (Chen
et al., 2002, 2005; Gao et al., 2003). EIN3 is highly
regulated at the post-transcriptional level (Chen et al.,
2005; Yanagisawa et al., 2003). Therefore, ethylene
receptors are considered as a key component in ethylene
signalling at the transcriptional level.

In ornamental plants, previous reports indicate that
ethylene influences flower opening (Reid et al., 1989;
Yamamoto et al., 1994), pollination (O’Neill et al., 1993;
Bui and O’Neill, 1998; Dervinis et al., 2000), petal
senescence (Shibuya et al., 2000; Nukui et al., 2004) and
abscission (Kuroda et al., 2003, 2004). The induction of
petal senescence or abscission by ethylene or pollination
is associated with transcriptional regulation of the ACS
and ACO genes (Bui and O’Neill, 1998; Jones, 2003;
Fernidndez-Otero et al., 2006) and ethylene receptor genes
(Shibuya et al., 2002; Kuroda et al., 2003, 2004). This
induction is also accompanied with an increase of the CTR
genes in some ornamental plant species (Miiller et al.,
2002; Kuroda et al., 2004).

Regarding the effects of ethylene on ethylene pro-
duction and the expression of ethylene biosynthetic and
receptor genes, several reports demonstrate that ethylene
influences ethylene biosynthesis in gynoecia firstly, and
then promotes petal senescence or abscission in carnation
(ten Have and Woltering, 1997; Jones and Woodson,
1999; Shibuya et al., 2000) and orchid (O’Neill et al.,
1993; Bui and O’Neill, 1998). It has been reported that
ethylene does not affect the expression of ethylene
receptor genes in gynoecia of carnation (Shibuya et al.,
2002), geranium (Dervinis et al., 2000), and Delphinium
(Tanase and Ichimura, 2006), although it does induce the
flower senescence process. Therefore, more work is needed
to understand the response of different floral tissues to
ethylene in terms of ethylene biosynthesis and signalling in
relation to ethylene-enhanced flower opening.

Flower opening in roses is sensitive to ethylene,
although the degree of this sensitivity varies in different
cultivars (Reid er al., 1989; Yamamoto et al., 1994,
Miiller et al., 2001; Cai et al., 2002; Ma et al., 2005; Tan
et al., 2006). In miniature potted roses, this difference

could be due to the different expression levels of receptor
genes rather than ethylene biosynthetic genes (Miiller
et al., 2000a, b). Our previous work indicates that, in cut
rose cv. Samantha, flower opening is regulated by
ethylene, mainly through expression of two ethylene
receptor and two CTR genes in petals but not through
ethylene biosynthetic genes (Ma et al., 2006).

In the present work, to gain a better understanding of
the ethylene response in various floral tissues and the roles
of different floral tissues in ethylene-enhanced flower
opening, ethylene production and the expression of five
ethylene biosynthetic genes and five receptor genes in five
different floral tissues of cut rose cv. Samantha upon
ethylene or 1-MCP treatment were investigated. The
results indicated that gynoecia may act as a key sensor to
ethylene in ethylene-enhanced flower opening in roses.

Materials and methods

Plant materials

Cut roses (Rosa hybrida cv. Samantha) were harvested at stage 2
(completely-opened bud) from a local commercial greenhouse
(Beijing, China). The flowers were immediately put in tap water
after harvest and then transported to the laboratory within 1 h. After
being cut to 25 cm under water, the flowers were placed in
deionized water (DW) for further processing.

Treatment of flowers with ethylene and 1-MCP

Based on our previous work (Ma et al., 2006), 10 ppm ethylene and
2 ppm 1-MCP were used for the respective treatments. The flowers
were sealed in a 64 1 chamber with ethylene, 1-MCP, or regular air
as the control, at 25 °C for 24 h. One mol 1-' NaOH was put into
the chamber to prevent the accumulation of CO,. After treatments,
the flowers were placed in a vase with DW under the following
controlled conditions: 23-25 °C room temperature, 30—40% relative
humidity (RH), and a 12/12 h light/dark photoperiod with an
illumination of ~40 pmol m2s !

Measurements of ethylene production

The whole flower was separated into five distinct parts: sepals,
petals, stamens, gynoecia, and a receptacle. To measure the ethylene
production, petals of each individual flower were collected and
placed in a 200 ml airtight container; the other four tissues were
placed separately in a 25 ml container. Our results indicated that
sepals, petals, stamens, and receptacles did not produce wound
ethylene in the first 1.5 h of incubation and gynoecia did not
produce wound ethylene in the first 50 min (data not shown). Thus,
to avoid the contamination of wound-induced ethylene, the contain-
ers were capped and incubated at 25 °C for 1 h for sepals, petals,
stamens, and receptacles, and 40 min for gynoecia. Then 2 ml
sample of head space gas was withdrawn using a gas-tight
hypodermic syringe, and injected into a gas chromatograph (GC
17A, Shimadzu, Kyoto, Japan) for ethylene concentration measure-
ment. The gas chromatograph was equipped with a flame ionization
detector and an activated alumina column. Ten flowers were used
for independent measurements and the average values are presented.

RNA extraction in floral tissues

Total RNA from sepals, petals, and receptacles was extracted using
the hot borate method as described in Wan and Wilkins (1994) and
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total RNA from stamens and gynoecia was extracted using the hot
phenol method. The extraction buffers in both methods were
preheated to 86 °C in a water bath before use. Briefly, for the hot
borate method, the extraction buffer contained 200 mM sodium
tetraborate decahydrate, 30 mM EGTA, 1% deoxycholic acid
sodium salt, 10 mM DTT, 2% PVP 40, 1% NP-40, and the RNA
was precipitated by 2 M LiCl; for the hot phenol method, the
extraction buffer contained 0.1 M TRIS (pH 9.0), 0.1 M LiCl, 1%
SDS, 10 mM EDTA, and the RNA was extracted by phenol/
chloroform (1:1 v/v) for three times and then precipitated by 2 M
LiCl overnight. The precipitate was rewashed twice using 2 M LiCl,
and then dissolved in 1 M TRIS (pH 7.5). Finally the RNA was
precipitated with ethanol at —80 °C for 2 h.

RT-PCR analysis

One microgram of total RNA was used for synthesizing cDNA
using Powerscript reverse transcriptase (Clontech, CA, USA)
according to the manufacturer’s protocol. The primers used in the
RT-PCR analysis are listed in Table 1. PCR reactions were carried
out for 5 min at 94 °C, followed by 33 cycles of 30 s at 94 °C, 30 s
at 57 °C, 45 s at 72 °C for Rh-ACS1-4, 25 cycles for Rh-ACO1 and
Ubiquitin, and 27 cycles for Rh-ETRI-5, and then followed by
a supplemental incubation for 5 min at 72 °C. The PCR products
were separated on 1.2% agarose gels and visualized by ethidium
bromide staining. Absolute values for transcript abundance from
RT-PCR were quantified using the AlphaEaseFC™ 2200 software
(Alpha Innotech, USA, Version 3.2.1).

Results

Ethylene production of different floral tissues treated
by ethylene and 1-MCP

Our previous work indicated that ethylene treatment
caused flowers of cut rose cv. Samantha to open faster
and to show anthers much earlier, as well as significantly
shortening the partially open period. By contrast 1-MCP
significantly prolonged the partially open period and
inhibited full opening of flowers by impeding the
unfurling of petals in the middle and inner layers (Ma
et al., 2006).

To understand better the temporal and spatial ethylene-
induced ethylene production in different floral tissues, the
morphological changes of flowers treated by ethylene and
1-MCP, respectively, were first observed. As shown in
Fig. 1, ethylene treatment significantly promoted flower

opening while 1-MCP significantly impeded flower
opening. FEthylene production in five different floral
tissues, sepals, petals, stamens, gynoecia, and receptacles,
during and after ethylene and 1-MCP treatments, was then
determined. During the process of ethylene treatment,
gynoecia showed the most significant enhancement in
ethylene production (P <0.05) at the first sampling time
point of 6 h, by almost doubling that of the control, and
the production reached its peak at 18 h (Fig. 2). Ethylene
production in petals was obviously enhanced after 12 h
treatment of ethylene, and continued increasing at the later
stages. In receptacles, ethylene production showed a sub-
stantial increase after 18 h treatment of ethylene, peaked
at 24 h, and was then maintained at a constant level. No
obvious change in ethylene production was detected in
stamens after ethylene treatment. It is worth noting that 1-
MCP treatment did not suppress ethylene production in all
the five tissues. Interestingly, it was found that ethylene
production in sepals was dramatically decreased by
ethylene treatment and was highly elevated by 1-MCP
treatment.

The above results show that gynoecia have the highest
sensitivity to ethylene in the very early stage of ethylene
induction.

Expression of ethylene biosynthetic genes in different
floral tissues treated with ethylene and 1-MCP

The expression of the five ethylene biosynthetic genes,
including Rh-ACS1—4 and Rh-ACOI, was then determined
in the five different floral tissues treated with ethylene or
1-MCP. In gynoecia, the expression of Rh-ACS2 and Rh-
ACS3 was enhanced substantially at 6 h of ethylene
treatment (7.3 times and 1.7 times of that in the control,
respectively), maintained high levels during the treatment,
and then decreased dramatically after the treatment. How-
ever, their expression was not inhibited by 1-MCP. Rh-ACS1
and Rh-ACS4 showed a constitutive expression pattern. The
expression of Rh-ACOI was induced at 12 h by ethylene
treatment, and was also not inhibited by 1-MCP (Fig. 3).
For petals, an obvious increase of the Rh-ACS3
expression was observed starting from 12 h of ethylene
treatment, and the expression was slightly inhibited by 1-

Table 1. Primer sequences of Rh-ACS1-4, Rh-ACO1, and Rh-ETR1-5 used in this study

Gene Forward primer Reverse primer

Rh-ACS1 5'-GCGTTACAGAGGTCCTACAAG-3’ 5'"-ACAAACCCGGAACCAGCCTGG-3’
Rh-ACS2 5'-CCTGCCAGAGTTCAGAAATGCTGC-3’ 5'-GCAATGCTGATGAACCTTGGCTGAG-3’
Rh-ACS3 5'-GCCTTGGCTTTCCTCCCTTC-3’ 5'-ACCCAACTCGTCGTACGGAT-3’
Rh-ACS4 5'-GCTAATATGTCCGAGGATACTCTGG-3’ 5'-CGAGTGCACTTTTCTACGTACATTTG-3’
Rh-ACO1 5'-CTCAGAAATCAAAGATTTGGACTGGG-3’ 5"-CGACATTCTGTTTCCATCAGGTTGC-3’
Rh-ETRI 5'"-TGTGCCATTTAGCCTTCCTGTA-3’ 5'-CCTGATCTGCAACAACATCAAC-3’
Rh-ETR2 5'-CGCTATGCTTTGATGGTGTT-3’ 5'-GCAGCCTACTCAGAAGGTTTT-3’
Rh-ETR3 5'-GCTCATCACTCTCATTCCTTTGC-3’ 5"-GCATTGGCATCCGTATTGCAGC-3’
Rh-ETR4 5'-ACACCCTAACCCAGGTATCGTCG-3’ 5"-ATGGATTGCCATCTCAGCTTCTC-3’
Rh-ETRS5 5'-ATGGCTACTGCCAAGGTTTTCA-3’ 5'-CAGGAATGTGTTTTCCAGCAAT-3’
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Fig. 1. Effects of ethylene and 1-MCP on flower opening of cut roses
cv. Samantha. Flowers at stage 2 were treated with 10 ppm ethylene or
2 ppm 1-MCP for 24 h and then vased in deionized water (DW) for
another 5 d with DW refreshed everyday. Treat: duration of ethylene or
1-MCP treatment; Vase: vase period.

Vase (h)

MCP treatment. The expression of Rh-ACSI and Rh-ACS?2
stayed at a low level, and was not affected by ethylene or
I-MCP treatment. On the contrary, Rh-ACS4 was
expressed constitutively at a high level. The expression of
Rh-ACOI was substantially increased by ethylene treat-
ment and decreased after the treatment, and 1-MCP had
very little effect on its expression (Fig. 3).

In receptacles and stamens, the expression of the five
genes was not affected by ethylene or 1-MCP treatment,
except that the expression of Rh-ACS2 in receptacles was
enhanced slightly by ethylene at 18 h. In sepals, however,
the expression of Rh-ACSI, Rh-ACS2, and Rh-ACO1 was
greatly inhibited by ethylene treatment, and was dramati-
cally enhanced around 18 h by 1-MCP treatment (Fig. 3).

The above results indicate that induction of the
expression of certain Rh-ACS genes in floral tissues is
consistent with the induction of ethylene production (Figs
2, 3), and gynoecia, which showed the quickest response
to ethylene treatment, do not exhibit positive feedback in
ethylene biosynthesis. Ethylene-induced RA-ACS gene
expression showed tissue-specificity; Rh-ACS2 is mainly
induced in gynoecia and receptacles, and RA-ACS3 is
induced mainly in petals, while Rh-ACS! and Rh-ACS4
are not induced by ethylene in all the tissues tested.

Expression of ethylene receptor genes in different
floral tissues treated by ethylene and 1-MCP

The expression of the five ethylene receptor genes was
also determined in the five floral tissues treated with
ethylene or 1-MCP.

In gynoecia, the expression of Rh-ETRI and Rh-ETR3
increased 2.4 and 4.7 times, respectively, at 6 h of ethy-
lene treatment. The induction of Rh-ETR3 expression was
substantially suppressed by 1-MCP treatment, while that
of Rh-ETRI was not reduced by 1-MCP treatment (Fig.
4).

In petals, Rh-ETR3 expression increased significantly at
12 h of ethylene treatment, and peaked at 24 h. The
expression was almost completely inhibited by 1-MCP
treatment. Among the other four receptor genes, only Rh-
ETRI expression showed a slight induction by ethylene
treatment (Fig. 4).

In receptacles, Rh-ETR3 expression was enhanced by
ethylene at 18 h, and the expression was inhibited by 1-
MCP during and after the treatments. In sepals and
stamens, however, any effects of ethylene on the expres-
sion of the five ETR genes were not observed (Fig. 4).

The above results indicate that induction of RA-ETR
gene expression by ethylene initially occurred in gynoe-
cia, and then in petals and receptacles. Among the five
Rh-ETR genes, the induction of Rh-ETR3 expression was
the most obvious, and exhibited a positive feedback
response.

Discussion

Flower opening is a natural and programmed plant process
for propagating their offspring. During this process, petals
unfold for flower pollination, and then drop afterwards. It
has been documented that for ethylene-sensitive plants,
ethylene is involved in flower opening and senescence
(Woltering and van Doorn, 1988; van Doorn, 2002).

In natural senescence of carnation, the onset of ethylene
production was in the order of ovary, styles, and petals,
and the order was consistent with the expression level of
ACS and ACO genes in the corresponding tissues. When
flowers were treated with ethylene, both ethylene pro-
duction and biosynthetic genes were induced faster in the
ovary than in petals (ten Have and Woltering, 1997).
Pollination-induced ACS gene expression in styles was
severely inhibited by norbornadiene (NBD), an ethylene
action inhibitor (Jones and Woodson, 1999). Shibuya
et al. (2000) found that, when gynoecia were removed,
flower vase life was prolonged substantially and ethylene
production and the expression of ethylene biosynthetic
genes were completely inhibited. Ethylene production in
gynoecia-removed flowers was induced by exogenous
ethylene, but not by ACC, ABA or IAA (Shibuya et al.,
2000). The application of ABA or IAA accelerated flower
senescence and the induction of ethylene production in
gynoecia in a long-lasting carnation cultivar, whose
ethylene production in petals and gynoecia was below the
limit of detection during natural senescence (Nukui et al.,
2004).
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Fig. 2. Ethylene production in five floral tissues of cut rose. The flowers were treated with 10 ppm ethylene (solid squares) and 2 ppm 1-MCP (solid
triangles), respectively, and in air as the control (open squares) for 24 h from BT (before the treatments) to 24 h of the treatments (also shown as 0 d,
immediately after the treatments, in the x-axes) (grey parts), then put into deionized water in a vase for another 5 d (white parts). The * and # symbols
above each data point indicated significant difference (Student’s ¢ test, P <0.05) of ethylene production upon ethylene and 1-MCP treatment,
respectively. Treat: duration of ethylene or 1-MCP treatment; Vase: vase period. Each bar represents the standard error, n=10.

In orchid flowers, after pollination, ethylene production
increased first in gynoecia, and then in petals. The
expression of one ACS gene (named AS) also increased
initially in gynoecia, while its expression was undetect-
able in petals. The expression of AS in gynoecia could be
completely blocked by NBD (O’Neill et al., 1993).

It is well known that both carnation and orchid exhibit
the typical ethylene autocatalytic feedback of ethylene
biosynthesis in petals. The observation of carnation and
orchid above lead to the conclusion that induction of ACS
gene expression occurred in gynoecia first, and then in
petals, and the induction in gynoecia is also regulated in
a positive feedback manner.

In roses, it has been proved that ethylene is involved in
regulating flower opening (Reid et al., 1989). During the
senescence process of miniature potted roses, the expres-

sion of the ACS gene increased in a short-lasting cultivar,
but remained at a constant and low level in a long-lasting
one, while the expression of the ACO gene increased in
the final stage of flower development in both cultivars
(Miiller et al., 2000a).

Our previous work showed that ethylene treatment
induced Rh-ACS3 expression in rose petals (Ma et al.,
2005), while 1-MCP did not suppress ethylene production
or Rh-ACS3 expression in petals but impeded full flower
opening effectively (Ma et al., 2006). Therefore, there
should be no positive feedback in ethylene-induced
ethylene biosynthesis in rose petals. In the present work,
to investigate how ethylene affects the expression of
ethylene biosynthetic genes in five different floral tissues,
ethylene production and expression of ethylene biosyn-
thetic genes were determined in these tissues upon
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Fig. 3. Expression of Rh-ACSI—4 and Rh-ACOI genes in various tissues of cut rose flowers determined by RT-PCR. Flowers were treated with
10 ppm ethylene and 2 ppm 1-MCP respectively, and in air as the control, for 24 h. 0-24 (h), treatment time of ethylene or 1-MCP; 1-5 (d), vase

time. Ubiquitin gene was used as an internal control.

ethylene or 1-MCP treatment. It was found that ethylene
enhanced both ethylene production and the expression of
Rh-ACS2 or Rh-ACS3 in gynoecia, petals, and receptacles,
with gynoecia showing the earliest ethylene enhancement.
However, 1-MCP did not suppress ethylene production
and the expression of the ethylene biosynthetic genes in
these three tissues (see Figs 2, 3). In stamens, no obvious
changes were found in ethylene biosynthesis by either
ethylene or 1-MCP treatment. The present results, together
with our previous observations, suggest that gynoecia are
the most sensitive tissue to ethylene treatment, and none

of the five floral tissues exhibits positive feedback
regulation of ethylene biosynthesis.

Our previous work showed that, in petals, there were
different induction features in three ACS genes of roses,
and Rh-ACS2 was induced by senescence (Ma et al.,
2005). In the present work, tissue-specificity of different
ACS genes was also observed (Fig. 3) and Rh-ACS2 was
quickly induced by ethylene in gynoecia. Similar observa-
tions were reported in carnation, where CARASI (also
named as DC-ACS2) showed a quicker and stronger
response to ethylene treatment in gynoecia than in petals
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Fig. 4. Expression of Rh-ETRI-5 in various tissues of cut rose flowers determined by RT-PCR. Flowers were treated with 10 ppm ethylene and 2
ppm 1-MCP respectively, and in air as control, for 24 h. 0-24 (h), treatment time of ethylene or 1-MCP; 1-5 (d), vase time. Ubiquitin gene was used

as an internal control.

(ten Have and Woltering, 1997). These observations
suggest that Rh-ACS2, a senescence-associated gene in
rose petals, may play an important role in the induction of
ethylene biosynthesis in gynoecia, and therefore may be
involved in promoting the flower opening process.

Miiller et al., (2000a, b) compared the expression of
ethylene receptors in petals of two cultivars of miniature
potted roses during flower development. The expression
of RhETRI was higher in a short-lasting cultivar than in
a long-lasting one, and RhETR3 expression was increased
in senescing flowers of the short-lasting cultivar, while it
remained at a low level in the long-lasting one. RAETR2

was expressed at a constitutive level throughout flower
development. Ethylene induced the expression of all the
three receptors. In chrysanthemum, the expression of
DG-ERS! in petals was higher in the ethylene-sensitive
cultivar than in the ethylene-insensitive cultivar during
senescence or after ethylene treatment (Narumi ef al.,
2005). These observations suggest that the variation in
flower longevity or ethylene sensitivity can be attributed
to the differential expression of ethylene receptor genes in
petals.

Several reports described the expression of ethylene
receptor genes in different floral tissues. During flower
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senescence in carnation, DC-ETRI and DC-ERSI were
expressed constitutively or at undetectable levels in all
tissues; and the expression of DC-ERS2 was not affected
by ethylene treatment, although after ethylene treatment,
its expression increased slightly in ovaries, decreased in
petals, and remained unchanged in styles (Shibuya et al.,
2002). In geranium, self-pollination and ethylene treat-
ment induced petal abscission, while they did not affect
the expression of PAETRI and PhETR2 in pistils and
receptacles (Dervinis et al., 2000). In Delphinium, the
expression of receptor genes was not affected by
ethylene in gynoecia or receptacles, although they were
induced developmentally in abscised florets and sepals
(Kuroda et al., 2003, 2004; Tanase and Ichimura, 2006).
These results indicate that the influence of ethylene on
flower senescence in these plants may not proceed
through regulation of ethylene receptor gene expression
in gynoecia.

Previous work indicates that, in rose petals, ethylene
regulates flower opening mainly through the expression of
two ethylene receptor genes (Rh-ETRI and Rh-ETR3) and
two CTR (Rh-CTRI and Rh-CTR2) genes (Ma et al.,
2006). In the current work, it was found that, among the
five floral tissues studied, ethylene-induced expression of
Rh-ETR genes occurred first in gynoecia, and only the
expression of the Rh-ETR3 gene was regulated in
a positive feedback manner by ethylene and 1-MCP (Fig.
4). These results suggest that transcriptional regulation of
the Rh-ETR3 gene in gynoecia may play an important role
in ethylene-enhanced flower opening. These results differ
from the findings in carnation, geranium, and Delphinium
mentioned above. Further investigation is required to
understand the difference.

In the present work, it was found that, in rose sepals,
ethylene production was significantly inhibited by ethy-
lene treatment, while promoted greatly by 1-MCP (Fig. 2).
The inhibition and promotion of ethylene production by
ethylene and 1-MCP, respectively, were consistent with
changes in ethylene biosynthetic gene expression levels
(Fig. 3). The phenomenon of ethylene auto-inhibition was
also found in tobacco leaf discs (Philosoph-Hadas et al.,
1985), carnation leaves (Henskens et al., 1994), and
Pelargonium cuttings (mainly comprised of leaves and
stems) (Mutui et al., 2007). In addition, it has been
reported that in the calyx of detached young persimmon
fruit, 1-MCP promoted ethylene production, and the
promotion was consistent with that of DK-ACS2 expres-
sion (Nakano er al., 2003). All of the tissues mentioned
above, in which ethylene production was inhibited by
ethylene and promoted by 1-MCP, belong to vegetative
tissues, indicating that a common regulatory mechanism
of ethylene production could be shared by these different
vegetative tissues.

Ganelevin and Zieslin (2002) found that removing
sepals from rose flowers at the early opening stage

produced flowers with a ‘star-shape’, and this phenome-
non was similar to that of ethylene-treated flowers (Reid
et al., 1989). These findings suggest that sepals may play
a role in ethylene-enhanced flower opening through
influencing flower sensitivity to ethylene.

Acknowledgements

The authors would like to thank Dr Zhangjun Fei (Boyce
Thompson Institute for Plant Reserch, Cornell University, USA)
for critical review of this manuscript and Mr John Ramsey and Mr
Ryan McQuinn for proofreading. This work was supported by the
National Nature Science Foundation of China (No. 30471220 and
No. 30671480) and the National High Technology Research and
Development Program (‘863 Program) of China (No.
2006AA100109).

References

Abeles FB, Morgan PW, Saltveit Jr ME. 1992. Ethylene in plant
biology, 2nd edn. New York: Aademic Press.

Bleecker AB, Kende H. 2000. Ethylene: a gaseous signal molecule
in plants. Annual Review of Cell and Developmental Biology 16,
1-18.

Bui AQ, O’Neill SD. 1998. Three 1-aminocyclopropane-1-carboxy-
late synthase genes regulated by primary and secondary
pollination signals in orchid flowers. Plant Physiology 116,
419-428.

Cai L, Zhang XH, Shen HX, Gao JP. 2002. Effects of ethylene
and its inhibitor on flower opening and senescence of cut roses.
Acta Horticultura Sinica 29, 467-472[in Chinese with English
abstract].

Chen YF, Etheridge N, Schaller GE. 2005. Ethylene signal
transduction. Annals of Botany 95, 901-915.

Chen YF, Randlett MD, Findell JL, Schaller GE. 2002.
Localization of the ethylene receptor ETR1 to endoplasmic
reticulum of Arabidopsis. Journal of Biological Chemistry 2717,
19861-19866.

Dervinis C, Clark DG, Barrett JE, Nell TA. 2000. Effect of
pollination and exogenous ethylene on accumulation of ETRI
homologue transcripts during flower petal abscission in geranium
(Pelargoniumxhortorum L.H. Bailey). Plant Molecular Biology
42, 847-856.

Fernandez-Otero C, Matilla AJ, Rasori A, Ramina A,
Bonghi C. 2006. Regulation of ethylene biosynthesis in re-
productive organs of damson plum (Prunus domestica L. subsp.
Syriaca). Plant Science 171, 74-83.

Ganelevin R, Zieslin N. 2002. Contribution of sepals and
gibberellin treatments to growth and development of rose (Rosa
hybrida) flowers. Plant Growth Regulation 37, 255-261.

Gao 7Y, Chen YF, Randlett MD, Zhao XC, Findell JL,
Kieber JJ, Schaller ES. 2003. Localization of the raf-like kinase
CTR1 to the endoplasmic reticulum of Arabidopsis through
participation in ethylene receptor signaling complexes. Journal of
Biological Chemistry 278, 34725-34732.

Henskens JAM, Rouwendal GJA, Ten-Have A, Woltering EJ.
1994. Molecular cloning of two different ACC synthase PCR
fragments in carnation flowers and organ specific expression of
the corresponding genes. Plant Molecular Biology 26, 453-458.

Johnson P, Ecker JR. 1998. The ethylene gas signaling pathway in
plants: a molecular perspective. Annual Review of Genetics 32,
227-254.



Ethylene biosynthetic and receptor gene expression in floral tissues of roses 2169

Jones ML. 2003. Ethylene biosynthetic genes are differentially
regulated by ethylene and ACC in carnation styles. Plant Growth
Regulation 40, 129-138.

Jones ML, Woodson WR. 1999. Differential expression of three
members of the 1-aminocyclopropanel-1-carboxylate synthase
gene family in carnation. Plant Physiology 119, 755-764.

Kende H. 1993. Ethylene biosynthesis. Annual Review of Plant
Physiology and Plant Molecular Biology 44, 283-307.

Kuroda S, Hakata M, Hirose Y, Shiraishi M, Abe S. 2003.
Ethylene production and enhanced transcription of an ethylene
receptor gene, ERSI, in Delphinium during abscission of florets.
Plant Physiology and Biochemistry 41, 812-820.

Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S. 2004. Co-
expression of an ethylene receptor gene, ERS/, and ethylene
signaling regulator gene, CTRI, in Delphinium during abscission
of florets. Plant Physiology and Biochemistry 42, 745-751.

Liang X, Shen NF, Theologis A. 1996. Li* -regulated 1-amino-
cyclopropane-1-carboxylate synthase gene expression in Arabi-
dopsis thaliana. The Plant Journal 10, 1027-1036.

Liu YD, Zhang SQ. 2004. Phosphorylation of ACS by MPK®6,
a stress-responsive mitogen-activated protein kinase, induces
ethylene biosynthesis in Arabidopsis. The Plant Cell 16, 3386—
3399.

Ma N, Cai L, Lu W], Tan H, Gao JP. 2005. Exogenous ethylene
influences flower opening of cut rose (Rosa hybrida) by
regulating the genes encoding ethylene biosynthesis enzymes.
Science in China, Series C 48, 434-444.

Ma N, Tan H, Liu XH, Xue JQ, Li YH, Gao JP. 2006.
Transcriptional regulation of ethylene receptor and CTR genes
involved in ethylene-induced flower opening in cut rose (Rosa
hybrida) cv. Samantha. Journal of Experimental Botany 57,
2763-2773.

Miiller R, Lind-iversen S, Stummann BM, Serek M. 2000a.
Expression of genes for ethylene biosynthetic enzymes and an
ethylene receptor in senescing flowers of miniature potted roses.
Journal of Horticultural Science and Biotechnology 75, 12—18.

Miiller R, Owen CA, Xu ZT, Welander M, Stummann BM.
2002. Characterization of two CTR-like protein kinases in Rosa
hybrida and their expression during flower senescence and
in response to ethylene. Journal of Experimental Botany 53,
1223-1225.

Miiller R, Stummann BM, Serek M. 2000b. Characterization of
an ethylene receptor family with differential expression in rose
(Rosa hybrida L.) flowers. Plant Cell Reports 19, 1232—-1239.

Miiller R, Stummann BM, Sisler EC, Serek M. 2001. Cultivar
differences in regulation of ethylene production in miniature rose
flowers (Rosa hybrida L.). Gartenbauw 1, 34-38.

Mutui TM, Mibus H, Serek M. 2007. Influence of thidiazuron,
ethylene, abscisic acid and dark storage on the expression levels
of ethylene receptors (ETR) and ACC synthase (ACS) genes in
Pelargonium. Plant Growth Regulation 53, 87-96.

Nakano R, Ogura E, Kubo Y, Inaba A. 2003. Ethylene
biosynthesis in detached young persimmon fruit is initiated in
calyx and modulated by water loss from the fruit. Plant
Physiology 131, 276-286.

Narumi T, Kanno Y, Suzuki M, Kishimoto S, Ohmiya A,
Satoh S. 2005. Cloning of a cDNA encoding an ethylene receptor
(DG-ERS1) from chrysanthemum and comparison of its mRNA
level in ethylene-sensitive and -insensitive cultivars. Postharvest
Biology and Technology 36, 21-30.

Nukui H, Kudo S, Yamashita A, Satoh S. 2004. Repressed
ethylene production in the gynoecium of long-lasting flowers of

the carnation ‘White Candle’: role of the gynoecium in carnation
flower senescence. Journal of Experimental Botany 55, 641-650.

O’Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH. 1993.
Interorgan regulation of ethylene biosynthetic genes by pollina-
tion. The Plant Cell 5, 419-432.

Philosoph-Hadas S, Meir S, Aharoni N. 1985. Autoinhibition of
ethylene production in tobacco leaf-discs: enhancement of 1-
aminocyclopropane-1-carboxylic acid conjugation. Physiologia
Plantarum 63, 431-437.

Reid MS, Evans RY, Dodge LL, Mor Y. 1989. Ethylene and
silver thiosulphate influence opening of cut rose flowers. Journal
of the American Society of Horticulture Science 114, 436-440.

Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T,
Satoh S. 2002. Comparison of mRNA levels of three ethylene
receptors in senescing flowers of carnation (Dianthus caryophyl-
lus L.). Journal of Experimental Botany 53, 399-406.

Shibuya K, Yoshioka T, Hashiba T, Satoh S. 2000. Role of the
gynoecium in natural senescence of carnation (Dianthus caryophyl-
lus L.) flowers. Journal of Experimental Botany 51, 2067-2073.

Tan H, Liu XH, Ma N, Xue JQ, Lu W], Bai JH, Gao JP. 2006.
Ethylene-influenced flower opening and expression of genes
encoding ETRs, CTRs, and EIN3s in two cut rose cultivars.
Postharvest Biology and Technology 40, 97-105.

Tanase K, Ichimura K. 2006. Expression of ethylene receptors DI-
ERSI-3 and DI-ERS2, and ethylene response during flower
senescence in Delphinium. Journal of Plant Physiology 163,
1159-1166.

ten Have A, Woltering EJ. 1997. Ethylene biosynthetic genes are
differentially expressed during carnation (Dianthus caryophyllus
L.) flower senescence. Plant Molecular Biology 34, 89-97.

van Doorn WG. 2002. Effect of ethylene on flower abscission:
a survey. Annals of Botany 89, 689-693.

Vriezen WH, Hulzink R, Mariani C, Voesenek LACJ. 1999. 1-
Aminocyclopropane-1-carboxylate oxidase activity limits ethyl-
ene biosynthesis in Rumex palustris during submergence. Plant
Physiology 121, 189-195.

Wagstaff C, Chanasut U, Harren FJM, Laarhoven L-J,
Thomas B, Rogers HJ, Stead AD. 2005. Ethylene and flower
longevity in Alstroemeria: relationship between tepal senescence,
abscission, and ethylene biosynthesis. Journal of Experimental
Botany 56, 1007-1016.

Wan CY, Wilkins TA. 1994. A modified hot borate method
significantly enhances the yield of high quality RNA from cotton
(Gossypium hisrstum L.). Analytical Biochemistry 223, 7-12.

Wang D, Fan J, Ranu RS. 2004. Cloning and expression of 1-
aminocyclopropane-1-carboxylate synthase c¢DNA from rosa
(Rosaxhybrida). Plant Cell Reports 22, 422-429.

Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and
signaling networks. The Plant Cell 14, S131-S151.

Woltering EJ, van Doorn WG. 1988. Role of ethylene in
senescence of petals: morphological and taxonomical relation-
ships. Journal of Experimental Botany 39, 1605-1616.

Yamamoto K, Komatsu Y, Yokoo Y, Furukawa T. 1994.
Delaying flower opening of cut roses by cis-propenylphosphonic
acid. Journal of the Japan Society of Horticulture Science 63,
159-166.

Yanagisawa S, Yoo SD, Sheen J. 2003. Differential regulation of
EIN3 stability by glucose and ethylene signaling in plants. Nature
425, 521-525.

Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its
regulation in higher plants. Annual Review of Plant Physiology
35, 155-189.



