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Abstract

Bioactive gibberellins (GAs) affect many biological

processes including germination, stem growth, transi-

tion to flowering, and fruit development. The location,

timing, and level of bioactive GA are finely tuned to

ensure that optimal growth and development occur.

The balance between GA biosynthesis and deactiva-

tion is controlled by external factors such as light and

by internal factors that include auxin. The role of auxin

transport inhibitors (ATIs) and auxins on GA homeo-

stasis in intact light-grown Arabidopsis thaliana (L.)

Heynh. seedlings was investigated. Two ATIs, 1-N-

naphthylthalamic acid (NPA) and 1-naphthoxyacetic

acid (NOA) caused elevated expression of the GA

biosynthetic enzyme AtGA20-oxidase1 (AtGA20ox1) in

shoot but not in root tissues, and only at certain

developmental stages. It was investigated whether

enhanced AtGA20ox1 gene expression was a conse-

quence of altered flow through the GA biosynthetic

pathway, or was due to impaired GA signalling that

can lead to enhanced AtGA20ox1 expression and

accumulation of a DELLA protein, Repressor of ga1-3

(RGA). Both ATIs promoted accumulation of GFP-

fused RGA in shoots and roots, and this increase was

counteracted by the application of GA4. These results

suggest that in ATI-treated seedlings the impediment

to DELLA protein degradation may be a deficiency of

bioactive GA at sites of GA response. It is proposed

that the four different levels of AtGA20ox1 regulation

observed here are imposed in a strict hierarchy:

spatial (organ-, tissue-, cell-specific) > developmental

> metabolic > auxin regulation. Thus results show that,

in intact auxin- and auxin transport inhibitor-treated

light-grown Arabidopsis seedlings, three other levels

of regulation supersede the effects of auxin on

AtGA20ox1.
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Introduction

Hormone homeostasis is critical for normal plant growth
and development. Homeostatic mechanisms involve regu-
lation of hormone biosynthesis, deactivation, and transport.
Bioactive members of the gibberellin (GA) group of phyto-
hormones control many processes throughout the life
cycle of a plant including seed germination, stem elonga-
tion, transition to flowering, and fruit development. The
concentration of bioactive GA4 in Arabidopsis thaliana
(L.) Heynh. is, in large part, regulated by flux through the
GA biosynthetic pathway. The final rate-limiting steps in
GA biosynthesis are catalysed by two small families of 2-
oxoglutarate-dependent dioxygenases, the GA 20-oxidases
(AtGA20ox1–5), and the GA 3-oxidases (AtGA3ox1–4)
(reviewed by Hedden and Phillips, 2000; Olszewski et al.,
2002; Sponsel and Hedden, 2004). Once synthesized the
bioactive GA4 will transduce the signalling pathway and/or
be deactivated by GA 2-oxidases [AtGA2ox1–3 (Thomas
et al., 1999), 4–6 (Hedden and Phillips, 2000), 7–8
(Schomburg et al., 2003)], and other deactivating enzymes
(Zhu et al., 2006; Varbanova et al., 2007). The balance
between GA biosynthesis and deactivation is controlled by
metabolic regulation involving both GA pool size and
signalling, by other intrinsic factors such as other
phytohormones, and by external factors including light
and temperature (Yamaguchi and Kamiya, 2000; Garcia-
Martinez and Gil, 2002).
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Two aspects of metabolic regulation of the GA pathway
are well-documented, namely negative feedback regula-
tion of GA biosynthetic enzymes and positive feed-
forward regulation of GA deactivating enzymes. In
Arabidopsis, bioactive GA down-regulates the transcrip-
tion of genes encoding at least three of its biosynthetic
enzymes, AtGA20ox1, which is the main stem-expressed
GA 20-oxidase, AtGA20ox2 and AtGA3ox1 (Chiang et al.,
1995; Phillips et al., 1995; Xu et al., 1995; Thomas et al.,
1999). By contrast, bioactive GA up-regulates the expres-
sion of AtGA2ox1 and AtGA2ox2 that encode enzymes
catalysing its irreversible deactivation (Thomas et al.,
1999). Negative feedback and positive feed-forward regu-
lation maintains the level of bioactive GA within physio-
logical limits. In situations where the concentration of
bioactive GA is extremely low, such as in the GA-deficient
ga1 mutant or in plants treated with GA biosynthesis
inhibitors, neither negative feedback nor positive feed-
forward regulation is apparent, resulting in elevated tran-
scripts of GA20-oxidases and GA3-oxidases, and reduced
transcript levels of GA2-oxidases (Thomas et al., 1999).
The mechanism whereby biosynthesis and deactivation

of GAs are regulated by bioactive GA is not understood,
but it involves not only the pool size of bioactive GA, but
the amount of GA signalling that occurs. The DELLA
family of putative transcriptional regulators, for example,
GA insensitive (GAI), Repressor of ga1-3 (RGA), and
RGA-like (RGL1-3) in Arabidopsis repress GA signalling
(for reviews see Sun and Gubler, 2004; Fleet and Sun,
2005). Bioactive GA, bound to one of its cognate
receptors, facilitates proteolysis of DELLA proteins and
allows GA-responsive genes to be expressed (reviewed by
Ueguchi-Tanaka et al., 2007). In Arabidopsis, if DELLA
proteolysis is prevented (as in the absence of bioactive
GA, or as a consequence of gain of function mutations
such as gai-1 or rga-D17) expression of AtGA20ox1 (Xu
et al., 1995, 1999) and AtGA3ox1 (Dill et al., 2001; Dill
and Sun, 2001; King et al., 2001) is elevated. Conversely,
DELLA loss of function mutants such as ga1-3/rga-2 and
ga1-3/gai-t6/rga-24 have reduced levels of AtGA3ox1
transcripts (Dill and Sun, 2001; Silverstone et al., 2001).
Taken together these results suggest that DELLA proteins
are positive regulators of GA 20-oxidation and GA 3-
oxidation, and are negative regulators of GA 2-oxidation
(Dill and Sun, 2001; King et al., 2001).
Negative feedback regulation of GA 20- and 3-

oxidation has been well documented in other Angio-
sperms including Pisum sativum L. (Martin et al., 1996;
Ross et al., 1999), Solanum tuberosum L. (Carrera et al.,
1999), and Oryza sativa L. (Dai et al., 2007). Feed-
forward regulation of GA deactivation has also been
reported in pea (Elliott et al., 2001).
In addition to effects of GA on its own metabolic

pathway by feedback or feed-forward loops, other hor-
mones have documented effects on GA biosynthesis and

deactivation. In Arabidopsis, AtGA20ox1 was shown to be
up-regulated by indole-3-acetic acid (IAA) in microarray
analysis of light-grown seedlings (Goda et al., 2004),
whereas Frigerio et al. (2006), examining transcript levels
of 13 GA oxidases by quantitative RT-PCR, showed that
AtGA20ox1 and AtGA20ox2 transcript levels were in-
creased after 24 h treatment with 1-naphthalene acetic acid
(NAA), along with those of four GA 2-oxidases. In
addition, auxins have been reported to be necessary for
GA signalling in Arabidopsis roots since degradation of
a DELLA protein is delayed in decapitated seedlings or
those in which auxin transport or sensitivity is impaired
(Fu and Harberd, 2003).
Other documented effects of auxins on expression of

genes encoding GA-oxidases in pea (van Huizen et al.,
1995, 1997; Ross, 1998; Ngo et al., 2002; O’Neill and
Ross, 2002; Ozga et al., 2003), Nicotiana tabacum L.
(Wolbang and Ross, 2001), and Hordeum vulgare L.
(Wolbang et al., 2004) suggest that while auxin-regulation
of GA biosynthesis and deactivation is widespread, the
regulatory effects of auxin are often targeted to specific
genes and integrated with other means of metabolic
regulation in ways unique to each species.
It has previously been shown that if auxin distribution is

altered in Arabidopsis seedlings, as in a mutant of the BIG
gene (encoding a calossin-like protein) and in wild-type
seedlings treated with naphthylphthalamic acid (NPA),
there is up-regulation of AtGA20ox1 (Desgagné-Penix
et al., 2005). In this paper, the effects of ATIs and applied
auxins on AtGA20ox1 expression in intact wild-type
Arabidopsis seedlings are examined further to determine
whether altered auxin status regulates AtGA20ox1 expres-
sion by affecting GA biosynthesis and/or signalling. It is
shown that ATIs promote the accumulation of the GFP-
fused DELLA protein, RGA, and that this accumulation
can be counteracted by simultaneous application of GA4.
These observations suggest that ATIs do not impair GA
signalling. The results do suggest that ATIs directly or
indirectly, lead to reduced levels of bioactive GA in
normal sites of GA response. It is concluded, therefore,
that the effects of ATIs on AtGA20ox1 expression are
a consequence of metabolic regulation, and that in
Arabidopsis seedlings metabolic regulation supersedes
auxin regulation. These results also suggest that spatial
(e.g. organ- tissue-, or cell-specific) and developmental
regulation of AtGA20ox1 override both metabolic regula-
tion and auxin-mediated regulation of GA pathways in
intact auxin- and ATI-treated Arabidopsis seedlings.

Materials and methods

Plant materials and growth conditions

Arabidopsis thaliana L. Heynh. Col-0 seeds were sterilized by
incubation in freshly prepared 30% bleach plus 0.01% (v/v) Tween
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20 for 10 min and then washed three times with sterile water. The
surface-sterilized seeds were sown on standard A. thaliana salts
(ATS) growth medium (Lincoln et al., 1990) supplemented with 30
mM sucrose and 0.8% agar and cold-treated for 2 d at 4 �C to
synchronize germination before being placed under continuous
cool-white fluorescent light (60 lmol m�2 s�1) at 25 �C. After 2 d,
germinated seeds were transferred to liquid ATS medium supple-
mented with 30 mM sucrose with or without treatment as indicated
in the figures. Seedlings were treated with 5 lM GA4, 12.5 lM
1-naphthoxyacetic acid (NOA), 0.1 lM indole 3-acetic acid (IAA),
0.1 lM 1-naphthalene acetic acid (NAA), all purchased from
Sigma, 5 lM paclobutrazol (PAC, Allied Signal), 12.5 lM 1-N-
naphthylthalamic acid (NPA, Chem Service), or mock treatment
with ethanol 0.1% (v/v, final concentration) for 8 d, unless oth-
erwise stated. The concentrations of hormones and other growth
regulators were chosen after testing a range of concentrations and
selecting those at which the test compounds gave a pronounced
phenotypic effect after 8 d and no toxicity.

Reporter lines

Arabidopsis Col-0 AtGA20ox1::GUS reporter line (from Dr P
Hedden, Rothamsted Research, UK) was constructed as a trans-
lational fusion comprising the promoter and transcribed region of
AtGA20ox1 in-frame with the GUS reporter gene (Desgagné-Penix
et al., 2005). Arabidopsis Col-0 DR5::GUS reporter line (from Dr T
Guilfoyle, University of Missouri, Columbia) expresses the syn-
thetic auxin response element DR5 fused to GUS (Ulmasov et al.,
1997). Arabidopsis Col-0 pRGA::GFP::RGA reporter line (from Dr
T-p Sun, Duke University) was used to monitor the presence of the
protein repressor of GA signalling, RGA (Silverstone et al., 2001).

Reduced growth

Arabidopsis Col-O seeds were germinated (2 d) on nutrient agar
and transferred to liquid media of different compositions; con-
trol: ATS minerals and 30 mM sucrose (full strength); 25% cont-
rol: quarter-strength ATS minerals and 7.5 mM sucrose; 12.5%
control: eighth-strength ATS minerals and 3.75 mM sucrose, and
only 30 mM sucrose. The seedlings were treated for 8 d with or
without 5 lM paclobutrazol or 12.5 lM NPA. Plants were grown in
continuous light and measured at 10 d.

RNA extraction, cDNA synthesis, semi-quantitative RT-PCR,

and northern blotting

Ten-day-old whole seedlings, shoot or roots, were frozen and
ground using liquid nitrogen. Total RNA was extracted using the
guanidium–phenol–chloroform method (Chomczynski and Sacchi,
1987). Five lg of total RNA were subjected to reverse transcription
with Oligo dT18 using the RETROscript Kit (Ambion) according to
the manufacturer’s instructions. Semi-quantitative RT-PCR was
performed to examine gene expression as described in Desgagné-
Penix et al. (2005). The results are expressed as the ratio of the
AtGA20ox1 transcript level compared to those of 18S rRNA.

GUS reporter lines analysis

Arabidopsis seeds containing AtGA20ox1::GUS and the DR5::GUS
reporter construct were germinated and transferred as above. Ten-
day-old seedlings were harvested. The GUS reporter activity
analysis was conducted in two ways; (i) qualitative histochemical
staining observations and (ii) quantitative fluorimetric measure-
ments. GUS staining was performed as previously described in
Desgagné-Penix et al. (2005). Briefly, qualitative analysis of GUS
reporter activity was conducted by incubating the harvested seed-
lings in buffer containing the GUS substrate X-GLU (5-bromo-4-
chloro3-indolyl-b-D-glucuronic acid) for 24 h (DR5::GUS seed-

lings) or 48 h (AtGA20ox1::GUS seedlings) at 37 �C (Jefferson
et al., 1987). The GUS histochemical staining was visualized under
a light microscope. For quantitative analysis of GUS reporter
activity proteins of transgenic GUS seedlings were extracted, and
quantified by Bradford assay. 32 lg of protein for each sample was
incubated at 37 �C in GUS extraction buffer containing MUG (4-
methylumbelliferone-b-D-glucuronide). Aliquots of 50 ll were
removed at 30 min intervals for 2 h and added to 150 ll stop buffer
(0.2 M sodium carbonate) in a 96-well microplate. The reporter
activity was analysed using the Flx800 microplate fluorescence
reader (Bio-Tek Instruments). Resulting fluorescence was measured
and compared to a standard curve of 4-methylumbelliferone.

Confocal microscopy

Arabidopsis seeds containing the pRGA::GFP::RGA reporter con-
struct were germinated and treated as described above. Five-day-old
seedlings were harvested and the GFP-RGA distribution was
visualized under a confocal microscope (Zeiss LSM 510 meta).
Confocal images of seedlings were obtained with a constant set of
microscopic and image intensity parameters with 340 objective, at
wavelength excitation at 488 nm and reading of the emission
between 505–530 nm.

Quantitative GFP reporter line analysis

Arabidopsis seeds containing pRGA::GFP::RGA were germinated
and transferred as above. Ten-day-old seedlings were harvested,
frozen, and ground using liquid nitrogen. Proteins of transgenic
GFP-RGA seedlings were extracted, and quantified by Bradford
assay. For each sample, 640 lg of protein was analysed. The
reporter fluorescence was analysed using the Fl3800 microplate
fluorescence reader (Bio-Tek Instruments) by excitation at 485 nm
and reading of the emission at 528 nm. Resulting fluorescence
measured was compared to a standard curve of rGFP (Clontech
labs).

Results

The ATIs, NOA and NPA, cause an up-regulation of
AtGA20ox1 expression in Arabidopsis seedlings

Previous work has shown that AtGA20ox1 expression was
up-regulated in wild-type (Col-0) Arabidopsis seedlings
growing on nutrient agar supplemented with the ATI,
NPA, and in the tir3-1 allele of BIG, which has altered
auxin transport (Desgagné-Penix et al., 2005). Subsequent
work has used liquid culture that is a more tractable
system with which to work, allowing additional treatments
during the culture period. Also, in liquid culture, growth
regulators have pronounced phenotypic effects at lower
concentrations than those used by previous workers
(Fu and Harberd, 2003; Frigerio et al., 2006). Changes in
AtGA20ox1 transcript levels in 10-d-old Col-0 seedlings
growing in nutrient solution containing NPA or other
growth regulator treatments were measured. Semi-
quantitative RT-PCR analysis extended our previous
work (Fig. 1A). In 10-d-old light-grown Col-0 seedlings
5 lM GA4 caused a down-regulation, and paclobutrazol
(PAC), an inhibitor of GA biosynthesis, caused up-
regulation of AtGA20ox1 mRNA transcript levels. Treat-
ment with NPA, which affects auxin efflux, and NOA
which affects an influx component of the polar auxin
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transport, caused an increase of the AtGA20ox1 transcripts
to a level comparable to the up-regulation seen by PAC
treatment. Treatment with 0.1 lM IAA or its permeable
analogue 1-NAA enhanced AtGA20ox1 expression, how-
ever, this increase was smaller than the one seen with
the ATIs.

ATIs up-regulate the activity of the reporter construct
AtGA20ox1::GUS

The b-glucoronidase (GUS) reporter gene fused to the
AtGA20ox1 promoter has been used to monitor the
expression of AtGA20ox1 (Hay et al., 2002; Chen et al.,
2004). Quantification of the activity of the AtGA20ox1
promoter GUS gene fusion (Fig. 1B) corroborated our RT-
PCR analysis (Fig. 1A). Gibberellin A4 treatment caused
a significant decrease in AtGA20ox1::GUS reporter activ-
ity, and PAC, NOA, and NPA caused at least a 4-fold up-
regulation of the AtGA20ox1::GUS activity. Treatment
with IAA or NAA slightly increased AtGA20ox1::GUS
activity but, similar to our RT-PCR results, this increase
(1.5–2-fold), although significant, was much lower than
the one mediated by the ATIs. Taken together, these data
further suggest that altered auxin distribution plays a role
in regulating the GA biosynthetic enzyme AtGA20ox1.
The timing of AtGA20ox1 up-regulation in the presence

of PAC, NOA, and NPA was then examined (Fig. 1C).
Seedlings were treated for varying durations from 0.5–8 d
and all seedlings were extracted at 10 d. The increase in
AtGA20ox1::GUS activity with ATI-treatment precedes
that caused by PAC by at least one day. However, the
characteristic phenotypic effects of each treatment are
most apparent after 6–8 d of treatment. The expression of
AtGA20ox1 continued to increase for the duration of the
treatments, but values for 8 d were omitted from the figure
as they were off scale.

Stunted growth does not induce AtGA20ox1
up-regulation

Paclobutrazol and ATIs affect the growth of Arabidopsis
seedlings (Table 1) although different ATIs produce
different phenotypes, presumably associated with how,
and to what extent, they alter auxin transport. For
example, NPA treatment reduced hypocotyl and primary
root lengths and the number of lateral roots whereas NOA
had no effect on hypocotyl and root elongation but
reduced the number of lateral roots compared to control
seedlings (Table 1). Gibberellins are required for both
hypocotyl (Cowling and Harberd, 1999) and root (Fu and
Harberd, 2003) elongation in light-grown Arabidopsis
seedlings. In hypocotyls GAs are limiting so applied GA4

promoted growth (Table 1), but in roots of wild-type
seedlings GAs are not limiting, so that applied GA4 did
not promote root growth. In combination treatments, GA4

could partially reverse the effects of NPA on hypocotyl
but not on root growth.
Many dwarf mutants show elevated levels of expression

of AtGA20ox1 (Phillips et al., 1995; Xu et al., 1995).
Since the up-regulation of AtGA20ox1 expression by NPA
and NOA is accompanied by reduced hypocotyl and root
growth and/or reduced lateral root number, it was in-
vestigated whether up-regulation of AtGA20ox1 is

Fig. 1. Molecular analysis of the AtGA20ox1 mRNA expression by
RT-PCR analysis (A) and AtGA20ox1::GUS reporter by fluorimetric
GUS assay (B) in response to GA4, PAC, ATIs or auxins treatment.
Two-day-old Arabidopsis seedlings were transferred in liquid nutrient
solution with or without GA4, PAC, ATIs or auxins for 8 d. (C) Time-
course of AtGA20ox1::GUS activity in 10-d-old Arabidopsis seedlings
in response to treatment with PAC, NOA or NPA for 0.5 d (white bars),
1 d (grey bars), 2 d (dark grey bars), 4 d (light grey bars), or 6 d (black
bars). Values shown are means 6SD (n¼3 different experiments)
compared to respective control normalized to 100%. Different letters on
the bars represent means that are statistically different relative to control
using the Student t test where (a) P <0.05 and (b) P <0.01.
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invariably coincident with reduced growth. Ten-day-old
seedlings that had been grown in three nutrient-poor
solutions showed sequentially less hypocotyl and root
elongation during the culture period (Fig. 2A, B). The
activity of AtGA20ox1::GUS was quantified in these
seedlings (Fig. 2C), and was shown to decrease in parallel
with reduced growth. Thus when growth is stunted
because of nutrient deprivation AtGA20ox1 expression
does not increase. Increase in AtGA20ox1::GUS activity
could still be demonstrated in nutrient-deprived seedlings
treated with PAC or NPA suggesting that it is altered GA
or auxin status that determines the expression level of
AtGA20ox1.

Assessing auxin status of treated Arabidopsis
seedlings

The DR5::GUS reporter gene (Ulmasov et al., 1997) has
been widely used as a tool to monitor the distribution of
auxin, as it has been suggested that the resulting GUS
activity correlates with IAA distribution (Sabatini et al.,
1999; Casimiro et al., 2001). Auxin status monitored in
seedling extracts using the DR5::GUS reporter construct
(DR5::GUS activity) increased gradually with increasing
concentration of applied IAA or NAA (see Supplementary
Fig. 1 at JXB online). The DR5::GUS activity was higher
for NAA compared to IAA, most likely due to its
difference in uptake. The lipophilic NAA is a permeable
auxin, and it can enter the cells more easily to trigger

DR5::GUS activity in comparison with IAA (Delbarre
et al., 1996; Marchant et al., 1999). Furthermore, the
increased DR5::GUS activity following treatment with
IAA or NAA is not affected by GA4 treatment (see
Supplementary Fig. 1 at JXB online).
DR5::GUS reporter activity was quantified separately in

shoots and roots of seedlings treated with growth
regulators in an effort to determine auxin distribution.
DR5::GUS reporter activity was unchanged in shoots or
roots with GA4 or PAC, but was increased in shoots
following ATI treatment (Fig. 3). There was also a small
increase in roots of NPA-treated seedlings. Increases in
the DR5::GUS reporter activity were seen in shoots and
roots of IAA-treated seedlings, but these changes were
small in comparison to the GUS activity in roots of NAA-
treated seedlings. On histochemical examination, the
DR5::GUS activity in untreated seedlings, although low,
was clearly seen in the cotyledons and in the emerging
and expanding leaves (Fig. 4A), where IAA is synthesized
(Ljung et al., 2001). NOA treatment led to increased
DR5::GUS activity in the cotyledons and leaves. NPA
treatment also led to enhanced DR5::GUS activity in the
cotyledons and leaves, and in the root tips, which are
swollen. NAA treatment caused a small increase in
DR5::GUS activity in the cotyledons and also a marked
increase in both the primary and lateral roots, which are
abundant in this treatment. IAA treatment caused a small
increase in DR5::GUS activity, but it was not comparable
to NAA treatment especially in the root (data not shown).

Assessing the relationship between DR5::GUS
reporter activity and increased AtGA20ox1 in shoots
and roots of ATI-treated seedlings

To determine the location of the AtGA20ox1 expression in
treated seedlings, the activity was quantified (Fig. 5) and
histochemical analysis was performed (Fig. 4B) of the
reporter AtGA20ox1::GUS construct. In PAC-treated seed-
lings, the increase in AtGA20ox1::GUS activity takes place
predominantly in the shoot (Fig. 5). ATIs and auxin
treatment also increased AtGA20ox1::GUS activity in the
shoot. No difference was noticeable in the roots of the ATI-
or auxin-treated seedlings. The histochemical analysis of
Arabidopsis seedlings containing the AtGA20ox1::GUS
reporter show that the AtGA20ox1 promoter activity is
localized mostly in the leaves of seedlings (Fig. 4B).
Treatment with NOA and NPA resulted in increased
staining in the leaves, whereas increased reporter activity
in leaves of auxin-treated seedlings was less apparent.
When comparing the activity of the two reporter genes,

GUS::DR5 (Fig. 4A) and AtGA20ox1::GUS (Fig 4B), it is
clear that there is enhanced AtGA20ox1::GUS activity in
some of the places where DR5::GUS activity is high. Thus,
in response to ATI treatment, enhanced DR5::GUS
activity in leaves, but not in cotyledons, is associated

Table 1. Measurement of 10-d-old Arabidopsis wild-type seed-
lings treated for 8 d with ATIs or auxins with or without GA4

Values shown are means 6SD (¼5 experiments; a minimum of 10
seedlings/treatment were measured for each experiment). Seeds were
germinated on nutrient agar, and at 2 d were transferred onto fresh
nutrient liquid solution with or without ATIs or auxins. Measurements
were made 8 d later.

Control +5 lM GA4

Control
Hypocotyl length (mm) 2.560.6 3.960.5
Root length (mm) 34.365.3 31.762.9
Lateral roots (no.) 10.563.4 4.861.8

12.5 lM NOA
Hypocotyl length (mm) 2.860.2 4.360.2
Root length (mm) 37.161.5 31.964.4
Lateral roots (no.) 4.262.3 3.661.2

12.5 lM NPA
Hypocotyl length (mm) 1.260.4 2.160.3
Root length (mm) 10.761.2 8.362.7
Lateral roots (no.) 0.260.2 1.060.3

0.1 lM IAA
Hypocotyl length (mm) 2.460.8 3.560.2
Root length (mm) 22.266.9 13.063.9
Lateral roots (no.) 9.760.9 5.061.4

0.1 lM NAA
Hypocotyl length (mm) 1.860.3 2.660.8
Root length (mm) 16.962.2 21.561.4
Lateral roots (no.) 16.462.5 7.860.3

Gibberellin and auxin interaction in Arabidopsis seedlings 2061



with increased AtGA20ox1::GUS activity. The high
DR5::GUS activity in roots of NAA-treated seedlings is
not correlated with enhanced AtGA20ox1::GUS activity.

Furthermore, it is also evident that elevated AtGA20ox1::
GUS activity can occur independently of DR5::GUS
activity. This is particularly evident in PAC-treated seed-
lings (Figs 3, 5).

The AtGA20ox1 up-regulation caused by ATIs is not
due to impaired GA signalling

The relationship between AtGA20ox1 expression and auxin
status (as determined by DR5::GUS activity) is not simple.
Treatment of seedlings with IAA and NAA does not lead
to the very high levels of AtGA20ox1 expression observed
in certain organs and tissues of NOA- and NPA-treated
seedlings (Figs 5, 4B). This may be because the internal
concentration of auxin in auxin-treated shoots does not
reach the level of endogenous IAA that appears to
accumulate in shoots after ATI treatment (Figs 3, 4A).
Alternatively, NOA and NPA may be affecting AtGA20ox1
expression in more than one way.
Both GA-deficient and GA-insensitive mutants have

elevated levels of AtGA20ox1 (Phillips et al., 1995; Xu
et al., 1995, 1999). Bioactive GA activates its signalling
pathway by removing specific GA signalling repressor
proteins; for example RGA, GAI, and RGA-like, by

Fig. 2. Measurements of hypocotyl (A) and root (B) lengths of 10-d-old Arabidopsis seedlings grown on serial dilutions of nutrient as specified in the
Materials and methods section. (C) Fluorimetric GUS assay of GA20ox1::GUS activity of 10-d-old Arabidopsis seedlings in reduced growth conditions
and treated for 8 d with 0.1% ethanol (black bars), 5 lM PAC (grey bars) or 12.5 lM NPA (white bars). Values shown are means 6SD (n¼3). Letters
on the graph represent means that are statistically different relative to control using the Student t test where (a) P <0.05 and (b) P <0.01.

Fig. 3. Fluorimetric GUS assay of DR5::GUS reporter construct of 10-
d-old shoots (black bars) and roots (white bars) of Arabidopsis
seedlings following 8 d treatment with GA4, PAC, ATIs or auxins to
whole seedlings. Values shown are means 6SD (n¼3 different experi-
ments) compared to their respective control (shoot or root) normalized
to 100%. Different letters on the bars represent means that are
statistically different relative to control using the Student t test where
(a) P <0.05 and (b) P <0.01.
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facilitating their ubiquitin-mediated proteolysis (Dill et al.,
2001; Fu et al., 2002; Gubler et al., 2002; Fleet and Sun,
2005; Ueguchi-Tanaka et al., 2007). Moreover, Fu and
Harberd (2003), working with decapitated Arabidopsis
seedlings or those with altered auxin distribution or
response, reported that auxin derived from the shoot
facilitates GA-induced proteolysis of RGA in roots. It
was therefore determined if the observed effects of ATIs
on AtGA20ox1 expression are a consequence of an effect
of ATIs on GA signalling by monitoring the presence of
RGA. RGA was visualized in the Arabidopsis transgenic
line pRGA::GFP::RGA expressing the fusion protein
GFP-RGA. In particular, it was necessary to determine
RGA levels in those parts of the Arabidopsis seedlings in
which DR5::GUS and AtGA20ox1::GUS activities are
altered by growth regulators.
Three-day-old seedlings were transferred to liquid

nutrient media containing PAC, NOA, or NPA for 48 h.
In the case of the combination treatment, GA4 was

added to the liquid nutrient media for the final 4 h.
Confocal microscopic examination of component parts of
5-d-old seedlings showed that ATI-treatment increased
(or stabilized) the RGA repressor in nuclei of cells in
shoot tips, hypocotyls, and root tips in a similar manner
to PAC treatment (Fig. 6A). Fluorimetric quantification
of GFP-RGA (Fig. 6B) supported the confocal micros-
copy data, and confirmed that the effects of PAC, ATIs
and auxins on the amount of GFP-RGA are reversed by
GA4. Taken together, these results suggest that while
PAC, ATIs, and auxins all lead to elevated or stabilized
GFP-RGA, in none of the cases is this due to an
irreversible impairment of GA signalling. Interestingly,
the increased amount of GFP-RGA in PAC- or ATI-
treated seedlings was not reversed or affected by
concomitant application of 0.1 lM IAA or NAA (data
not shown).
Since the effects of ATIs and exogenous auxins on

growth are in some cases mediated by ethylene (Yu and
Yang, 1979; Yoshii and Imaseki, 1981; Botella et al.,
1992) the effects have been compared of ATIs on
AtGA20ox1 expression in the presence or absence of
aminoethoxyvinyl glycine (AVG) (10 lM) or sodium
oxamate (50 lM), both of which are inhibitors of ethylene
biosynthesis or silver nitrate (0.1 lM), an inhibitor of
ethylene perception/response. The increased AtGA20ox1::
GUS activity by ATIs was observed with or without AVG,
sodium oxamate, or AgNO3, indicating that it is indepen-
dent of ethylene (data not shown).

The up-regulation of AtGA20ox1 expression caused
by ATIs or auxins can be reversed by bioactive GA

Additional experiments examined whether the AtGA20ox1
expression observed in NOA- and NPA-treated seedlings
could be counteracted by simultaneous application of
bioactive GA4 using the AtGA20ox1::GUS reporter line.
DR5::GUS reporter construct activity was also monitored
(Fig. 7). Neither GA4 or PAC, alone or in combination

Fig. 4. Light microscopy pictures of histochemical staining of the (A) DR5::GUS or (B) AtGA20ox1::GUS activity in 10-d-old Arabidopsis
seedlings following treatment with ATIs or auxin.

Fig. 5. Fluorimetric GUS assay of AtGA20ox1::GUS reporter construct
following treatment with GA4, PAC, ATIs or auxins in shoots (black
bars) and root (white bars) of 10-d-old Arabidopsis seedlings as
described in Fig. 3. Values shown are means 6SD (n¼3 different
experiments) compared to their respective control (shoot or root)
normalized to 100%. Different letters on the bars represent means that
are statistically different relative to control using the Student t test
where (a) P <0.05 and (b) P <0.01.
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with the ATIs or auxins, affected the levels of DR5::GUS
activity (Fig. 7A) suggesting that GA4 does not affect
auxin status within these seedlings.
The increased AtGA20ox1::GUS activity in ATI- and

auxin-treated seedlings was not apparent when GA4 was
co-applied with any of these growth regulators (Fig. 7B).
Thus AtGA20ox1::GUS activity decreased in response to
GA4 in ATI- and auxin-treated seedlings even though the

auxin status remained unchanged (Fig. 7A). The effects of
ATIs and PAC on AtGA20ox1::GUS activity were not
additive.

Discussion

Gibberellin 20-oxidation is a rate-limiting step in GA
biosynthesis in Arabidopsis and enhanced growth is seen

Fig. 6. (A) Confocal microscopy images of GFP-RGA reporter accumulation in response to treatment with or without PAC or ATIs in 5-d-old
pRGA::GFP::RGA Arabidopsis seedlings. Three-day-old Arabidopsis seedlings were treated for 48 h with or without PAC or ATIs. GFP-RGA
fluorescence was monitored in shoot tips, hypocotyls, primary roots, and primary root tips. For combination treatment, GA4 was applied 4 h prior to
acquiring the images. (B) Fluorimetric GFP assay of GFP-RGA reporter accumulation in 10-d-old pRGA::GFP::RGA Arabidopsis seedlings in
response to 8 d treatment with PAC, ATIs or auxins alone (black bars) or with GA4 (white bars). Values shown are means 6SD (n¼3 different
experiments) compared to control normalized to 100%. Letters on the bars represent means that are statistically different relative to control using the
Student t test where (a) P <0.01.
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in transgenic plants over-expressing AtGA20ox1 because

of elevated levels of bioactive GA (Coles et al., 1998;
Huang et al., 1998). However, increased AtGA20-oxidase
mRNAs is not always associated with enhanced growth.

A deficit of bioactive GA or perturbation of GA signalling

leads to enhanced AtGA20ox1 expression because of

metabolic regulation (Xu et al., 1995, 1999). In contrast

to up-regulation caused by reduced GA response, positive

GA responses down-regulate AtGA20ox mRNAs in GA-

treated seedlings (Phillips et al., 1995; Xu et al., 1995).
This negative feedback regulation of AtGA20ox1 requires

active GA signalling, and RGA and other DELLA

proteins that repress GA signalling must be removed by

GA-induced proteolysis (Dill et al., 2001; Silverstone

et al., 2001; Fu et al., 2002; Itoh et al., 2002; Sasaki

et al., 2003) (Fig. 8).
In addition to metabolic regulation, intrinsic factors,

such as other hormones, can affect the expression of genes
encoding GA 20-oxidases. For example, 4 Cl-IAA,
a native auxin in pea fruits promotes GA 20-oxidation in
deseeded pea pericarp (van Huizen et al., 1995, 1997).
Furthermore, Wolbang and Ross (2001) showed that

decapitation of tobacco plants reduces the level of GA20

in the internodes below that point, an effect that is
counteracted by the application of IAA. These studies
differ from the present investigation, where the source(s)
of native auxin was/were not surgically removed.
In the present work, gene expression analysis and

transgenic reporter activity showed that in Arabidopsis
seedlings two different ATIs, NOA and NPA, and two
different auxins, IAA and NAA, enhance the expression
of the AtGA20ox1 in the shoot of 10-d-old seedlings (Fig.
1). The changes in AtGA20ox1 expression mediated by
either auxin were less than the up-regulation mediated by
the ATIs (Fig. 1). However, it is possible that ATIs may
be leading to localized accumulation of auxin concen-
trations in planta which are not attained by IAA or NAA
treatment in our conditions.

Fig. 7. Fluorimetric GUS assay of DR5::GUS (A) and AtGA20ox1::
GUS (B) reporter activity in response to various treatments with ATIs
or auxins alone (black bars) or in combination with GA4 (grey bars) or
PAC (white bars) in 10-d-old Arabidopsis seedlings. Values shown are
means 6SD (n ¼ at least 3 different experiments) compared to the
0.1% ethanol control normalized to 100%. Different letters on the bars
represent means that are statistically different relative to control using
the Student t test where (a) P <0.05 and (b) P <0.01.

Fig. 8. Overview of AtGA20ox1 regulation in Arabidopsis seedlings.
Organ-, tissue-, and cell-specific regulation supersedes developmental
regulation of AtGA20ox, which encodes a multifunctional dioxygenase
catalysing a rate-limiting step in the synthesis of bioactive GA4. GA4

can be deactivated by AtGA2ox or can bind to its receptor GID1a, b, c
(low affinity) which triggers a conformational change to allow binding
of DELLA proteins (RGA, GAI, RGLs). DELLA degradation via
SCFSLY1/GAR2, through the 26S proteosome, allows GA signalling and
response, including metabolic regulation to down-regulate AtGA20ox
expression. Lastly, auxin regulates GA pathways by affecting DELLA
stability in roots and promoting GA 20-oxidation in shoots. Numbers in
parentheses indicate the following references: (1) Phillips et al., 1995;
(2) Xu et al., 1995; (3) Thomas et al., 1999; (4) Desgagné-Penix et al.,
2005; (5) Griffiths et al., 2006; (6) Nakajima et al., 2006; (7) Willige
et al., 2007; (8) Iuchi et al., 2007; (9) Fu and Harberd, 2003; (10)
Frigerio et al., 2006; (11) Pufky et al., 2003; (12) Goda et al., 2004;
(13) Rieu et al., 2008.
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All parts of 10-d-old seedlings can synthesis IAA,
although young leaves (<0.5 mm in length) have the
highest capacity (Ljung et al., 2001). The first developing
leaves are the source of IAA for the emergence of lateral
roots (Bhalerao et al., 2002) so the decreased number of
lateral roots in ATI-treated seedlings (Table 1) is
consistent with impaired shoot-to-root auxin transport.
NOA and NPA affect auxin transport in different ways;
NOA acts at the AUX1 influx carrier proteins (Parry
et al., 2001; Ottenschlager et al., 2003; Yang et al., 2006)
whereas NPA is known to block auxin transport by
affecting efflux (Katekar and Geissler, 1980). Treatment
with both led to intense DR5::GUS reporter activity in
emerging and expanding leaves (Figs 3, 4A). The
appearance of these seedlings (Table 1; Fig. 3) suggests
that ATIs may be causing supra-optimal auxin accumula-
tion in shoots. Strong reporter activity was also observed
in the root caps of ATI-treated seedlings (Fig. 4A),
consistent with the observation that, even though ATIs
may be trapping auxin in the emerging and expanding
leaves, root tips are additional sites of auxin synthesis
(Ljung et al., 2005). NAA and IAA also led to enhanced
DR5::GUS activity relative to untreated seedlings (Fig. 3),
suggesting that both ATI and auxin-treatments lead to
auxin concentrations in planta that exceed those seen in
untreated wild-type plants.
In emerging and expanding leaves, increased

AtGA20ox1 expression following treatment with ATIs
correlates with high DR5::GUS activity, whereas in
cotyledons increased DR5::GUS activity was not accom-
panied by AtGA20ox1 expression. In addition, elevated
auxin response in NAA-treated roots (as shown by
DR5::GUS activity and a multitude of lateral roots) was
not accompanied by elevated AtGA20ox1 expression.
Conversely, elevated AtGA20ox1 expression in shoots of
PAC-treated seedlings was not accompanied by high
DR5::GUS activity.
One explanation for our results is that several levels of

regulation of AtGA20ox1, imposed in a strict hierarchical
order, can be observed in intact wild-type Arabidopsis
seedlings (Fig. 8). The first type of regulation would be
organ-, tissue-, or cell-specific regulation. For example, in
the present work, AtGA20ox1 expression is low in roots of
10-d-old Arabidopsis seedlings, in contrast to that in
cotyledons and leaves (Fig. 4B). [With regard to the low
level of expression of AtGA20ox1 in 10-d-old roots, our
results are different from those of Rieu et al. (2008) who
observed similar GA20ox1 transcripts levels in roots and
shoots of 7-d-old seedlings.] The second would be
developmental regulation. For example, AtGA20ox1 is
strongly expressed in cotyledons of up to approximately
8 d (data not shown), but not in cotyledons of 10-d-old
seedlings (Fig. 4B). Previous work has shown that several
genes encoding GA metabolic enzymes are developmentally
regulated (for example, Phillips et al., 1995; Silverstone

et al., 1997; Mitchum et al., 2006). Indeed Rieu et al.
(2008) have recently published developmental expression
profiles for the five AtGA20ox genes throughout the
Arabidopsis life cycle. The third level of regulation would
be metabolic regulation, whereby the endogenous level of
bioactive GA regulates the expression of its biosynthetic
genes. For example, in 6-d-old seedlings PAC treatment
up-regulates AtGA20ox1 in the cotyledons and leaves,
whereas in 10-d-old seedlings, up-regulation in the
cotyledons was not observed, suggesting that the de-
velopmental regulation overrides metabolic regulation.
The fourth level of regulation of AtGA20ox1 expression
is auxin-mediated. In emerging and expanding leaves,
AtGA20ox1 expression occurred where DR5::GUS activ-
ity was high after treatment with ATIs. However, this up-
regulation of AtGA20ox1 expression does not occur when
ATIs and bioactive GA are applied concurrently (Fig. 7B),
indicating that metabolic regulation overrides auxin
regulation. The absence of AtGA20ox1 expression in roots
of NAA-treated seedlings, despite high DR5-GUS activ-
ity, can also be explained by the lower overall level of
expression in roots (organ-specific regulation) overriding
the other types of regulation.
As mentioned earlier, the expression of AtGA20ox1 is

up-regulated by altered flux through the GA biosynthetic
pathway or due to a block in the GA signalling pathway.
The question arises through which of these means are the
ATIs exerting their effect on AtGA20ox1 expression. The
current model for GA signalling proposes that DELLA
proteins such as RGA must be degraded in order for the
GA response to be transduced (Fleet and Sun, 2005; and
see Fig. 8). The binding of bioactive GA to its protein
receptor is necessary for the proteolytic degradation of
DELLA proteins (Griffiths et al., 2006; Nakajima et al.,
2006; Iuchi et al., 2007; Willige et al., 2007). Treatment
of Arabidopsis seedlings with PAC and ATIs leads to the
stabilization of RGA in shoot tips, young leaves, and
primary root tips (Fig. 6A). In the case of ATI-treated
seedlings, these are the locations of high DR5::GUS
staining, indicating they are sites of auxin response (Fig.
4A). This stabilization of RGA by ATIs is therefore
unexpected if auxin facilitates RGA degradation as
reported by Fu and Harberd (2003). While their work
specifies shoot-derived auxin facilitates RGA degradation
in root tips, we have no evidence of auxin promoting
RGA degradation in tissues in which they appear to co-
occur.
Results reported here suggest that high AtGA20ox1

expression in ATI- and auxin-treated seedlings is not due
to auxin increasing flux through the GA biosynthetic
pathway (in which case AtGA20ox1 expression would be
high and RGA degraded). After ATI treatment, the high
AtGA20ox1 expression and RGA persistence suggests that
either there is a deficit of bioactive GA, or GA signalling
is impaired. Concomitant treatment of ATIs and GA, or
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auxin and GA, led to RGA disappearance (Fig. 6A, B).
Moreover, applied GA4 can, in part, overcome the effects
of NPA on hypocotyl growth (Table 1). Thus the GA
signal transduction pathway seems not to be impaired by
ATIs, instead metabolic regulation appears to be the
reason for RGA stabilization.
Frigerio et al. (2006) demonstrated that 50 lM NAA

caused a spike in AtGA20ox1 expression 30 min after
application, suggesting a direct regulation of AtGA20ox1
by auxin. On the other hand, a longer term effect of
applied auxin on AtGA20ox1 expression, leading to
metabolic regulation of GA biosynthesis and/or deactiva-
tion genes, could ultimately cause a reduction in the level
of endogenous bioactive GA. This, in turn, would result in
the accumulation of RGA and up-regulation of
AtGA20ox1. While Frigerio et al. (2006) showed that, in
24 h treatments, auxin up-regulated AtGA20ox1 even in
Arabidopsis mutants lacking RGA and GAI, these
observations do not preclude the involvement of meta-
bolic regulation in the longer term treatments described in
this paper. While it is already known that enhanced
AtGA3ox1 expression occurs with ATI (I Desgagné-Penix
and VM Sponsel, unpublished results) and auxin treat-
ment (Frigerio et al., 2006), further work will examine
GA 2-oxidation in the experimental system described
here. Using a concentration of NAA that is clearly supra-
optimal (a 500-fold excess of NAA over that used in the
current work), Frigerio et al. (2006) demonstrated that
several members of the AtGA2ox family were up-
regulated. Whether the much lower auxin concentrations
used in the present work also enhance GA deactivation by
2-oxidation or other means (Zhu et al., 2006; Varbanova
et al., 2007), contributing to a decrease in bioactive GA
levels, will be examined. As noted earlier, it is also
possible that the ATI treatments used in the present work
led to the accumulation of supra-optimal IAA levels in
treated shoots, so that the effects of both applied ATIs and
auxins on 2-oxidation must be compared. It is also
proposed to quantify endogenous GAs in ATI- treated
and control seedlings by GC-MS to understand more fully
the possible site(s) within the biosynthetic pathway where
ATIs may be exerting an effect.
As key repressive factors of the GA signal transduction

pathway, RGA and other DELLA proteins have been
identified as probable sites of cross-talk between GAs and
several other hormones (Achard et al., 2003; Vriezen
et al., 2004). In some respects, the results reported can be
discussed in the context of those for the interaction of
ethylene and GAs in apical hooks of etiolated Arabidopsis
seedlings (Achard et al., 2003; Vriezen et al., 2004).
Analysis of ACC-treated etiolated Arabidopsis seedlings
showed an increase in ent-copalyl diphosphate synthase
(CPS; GA1) expression and accumulation of RGA (similar
to our increased AtGA20ox1 and RGA accumulation
induced by auxin or ATIs). They concluded that the

effects of ethylene (Vriezen et al., 2004) [and auxin
(Achard et al., 2003)] on apical hook structure are
mediated via an effect on stabilizing RGA. However, it is
possible that these effects are also mediated in part by
lowering endogenous bioactive GA levels. Although an
examination of GASA1::GUS activity suggested that the
GA response was not reduced, a direct examination of
GA levels would allow this question to be addressed
definitively.
In conclusion, our results showed that perturbing auxin

status in intact Arabidopsis seedlings leads to an up-
regulation of the biosynthetic enzyme AtGA20ox1 mRNA
levels and AtGA20ox1::GUS activity, accompanied by an
increase or stabilization of RGA. It is proposed that
these observations are consistent with the homeostatic
regulation of GA levels. Moreover, developmental regula-
tion, and organ-, tissue-, and cell-specific regulation
override both auxin- and metabolic regulation, ensuring
the appropriate temporal and spatial expression of
AtGA20ox1. Since all our experiments were conducted in
continuous white light, it is not possible at the present time
to place light regulation within this hierarchy although,
clearly, AtGA20ox1 is regulated by light of varying
wavelengths (Achard et al., 2007; Zhao et al., 2007).
Just how these layers of regulation are imposed has yet

to be defined. Chang and Sun (2002), after comprehensive
promoter deletion analysis, were able to define positive
and negative regulatory sequences for the expression of
CPS, which catalyses the first committed step in GA
biosynthesis. In addition, they defined a sequence neces-
sary for the expression of CPS in developing seeds. To
our knowledge, such a comprehensive analysis of the
AtGA20ox1 promoter, or intragenic regulatory sequences,
has yet to be conducted. Some auxin-regulated genes in
Arabidopsis, though not AtGA20ox1, possess either an
auxin response element TGTCTC or two copies of TGTC
within 50 nucleotides of each other (Nemhauser et al.,
2004). Thus the sequence element necessary and sufficient
for auxin regulation of AtGA20ox1 has yet to be
discovered. Similarly, although feedback regulation of
AtGA3ox1, which catalyse the final metabolic step in the
production of bioactive GA4 in Arabidopsis, appears to be
mediated by an AT-hook DNA-binding protein, AGF1, no
AT-hook binding sequence is observed in the AtGA20ox1
promoter region (Matsushita et al., 2007). Thus a consider-
able amount of further work is necessary to determine the
nature of different cis-acting elements for AtGA20ox1, and
how they are organized to allow multiple levels of
regulation.

Supplementary data

Supplementary data are available at JXB online. Figure S1
shows DR5::GUS reporter activity in response to in-
creasing concentration of IAA or NAA alone or in
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combination of 5 lM GA4 in 10-d-old Arabidopsis
seedlings.
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