New Determinant for the $Ca_V\beta_2$ Subunit Modulation of the $Ca_V1.2$ Calcium Channel^{*}

Received for publication, March 13, 2008 Published, JBC Papers in Press, April 14, 2008, DOI 10.1074/jbc.M802035200

Qi Zong Lao¹, Evgeny Kobrinsky¹, Jo Beth Harry, Arippa Ravindran, and Nikolai M. Soldatov² From the NIA, National Institutes of Health, Baltimore, Maryland 21224

 $Ca_v\beta$ subunits support voltage gating of $Ca_v1.2$ calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of $Ca_{\nu}\beta$ binds to the α -interaction domain (AID) and the IQ motif of the pore-forming α_{1C} subunit, but these two interactions do not explain why the cardiac $Ca_{v}\beta_{2}$ subunit splice variants differentially modulate inactivation of Ca^{2+} currents (I_{Ca}). Previously we described $\beta_{2\Delta g}$, a functionally active splice variant of human $Ca_v\beta_2$ lacking MAGUK. By deletion analysis of $\beta_{2\Delta g}$, we have now identified a 41-amino acid C-terminal essential determinant (β_2 CED) that stimulates I_{Ca} in the absence of $Ca_{v}\beta$ subunits and conveys a +20-mV shift in the peak of the I_{Ca} -voltage relationship. The β_2 CED is targeted by α_{1C} to the plasma membrane, forms a complex with α_{1C} but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the α_{1C} subunit C terminus as a functionally relevant β_2 CED binding site. The β_2 CED interacts with LA/IQ in a Ca²⁺- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three $Ca_v\beta_2/\alpha_{1C}$ interactions is sufficient to support I_{Ca} . However, β_2 CED does not support Ca²⁺-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca^{2+} -induced inactivation. The β_2 CED is conserved only in $Ca_v\beta_2$ subunits. Thus, β_2CED constitutes a previously unknown integrative part of the multifactorial mechanism of $Ca_v\beta_2$ -subunit differential modulation of the $Ca_v1.2$ calcium channel that in $\beta_{2\Delta g}$ occurs without MAGUK.

Voltage-gated Ca_v1.2 calcium channels couple membrane depolarization to excitation in a wide variety of cells. The voltage gating, or membrane potential-dependent opening and closing of a channel, is associated with conformational changes in the pore-forming (α_1) subunit (1). Ca_v1.2 channels require auxiliary $\alpha_2\delta$ and β (Ca_v β) subunits to integrate the functional channel into the plasma membrane (PM)³ and facilitate voltage

gating of the current (2). How $Ca_{\nu}\beta$ subunits mediate these functions and what are the $Ca_{\nu}\beta$ -specific determinants are important questions to be answered. Members of the $Ca_{\nu}\beta$ family are structurally divergent. Four different $Ca_{\nu}\beta$ subunit genes code for $\beta_1 - \beta_4$ subunit variants, some of which are alternatively spliced. Cytosolic $Ca_{\nu}\beta$ subunits bind to the 18-amino acid α_1 -*i*nteraction *d*omain (AID) of the cytoplasmic linker between internal repeats I and II of the pore-forming α_1 subunit (Fig. 1), stimulate the Ca²⁺ channel current (I_{Ca}), and shift the currentvoltage (I-V) curve to more negative voltages (3, 4). The AID is conserved between the Ca, 1 and Ca, 2 subfamilies of Ca²⁺ channels. It is located in close proximity to the transmembrane segment IS6 that is a part of the pore domain (5) implicated in voltage-dependent inactivation of the channel (6, 7). A common central region of $Ca_{\nu}\beta$ subunits has structural similarity with the membrane-associated guanylate kinase (MAGUK) motif (8). When co-expressed with the α_{1C} subunit, the Ca_v β MAGUK domain increased Ba^{2+} current (I_{Ba}) amplitude and shifted the steady-state activation (9). Confirming tight binding of the central Ca_v β domain to the α_{1C} subunit, diffraction studies revealed structural patterns that were implicated in interaction with the AID (10-12). However, variant-specific regulatory properties of $Ca_{\mu}\beta$ appear to be AID-independent. Although different $Ca_v\beta$ subunits have MAGUK, they modulate Ca²⁺ channels with individual characteristic variations. For example, the primary cardiac β_{2a} subunit did not fully substitute the β_{1a} subunit in skeletal muscle EC coupling although it restored activation of I_{Ca} and gating of Ca²⁺ transients (13). Unlike other $Ca_{\nu}\beta$ subunits, β_{2a} endows the distinct cardiac phenotype by not supporting facilitation of the Ca²⁺ channel current by a depolarizing prepulse (14). This general picture was further detailed by FRET microscopy combined with patch clamp that demonstrated differential voltage-dependent rearrangement of $Ca_v\beta$ subunits *vis à vis* the α_{1C} subunit N terminus (15). Unlike the $Ca_v\beta_{1a}$ subunit, $Ca_v\beta_2$ exhibited no such mobility. These and other findings show that a number of $Ca_{v}\beta$ functions do not rely on AID as a main site of regulation and may involve other determinants (16, 17). Thus, identification of functional motifs that are unique for different $Ca_{\nu}\beta$ subunits may give an important insight into the functional specificity of the Ca_{β}-dependent modulation. One feasible approach is to explore the naturally occurring $Ca_{\nu}\beta$ splice variants (18). In line with this was the discovery of two new functionally active small

^{*} This work was supported, in whole or in part, by the National Institutes of Health NIA Intramural Research Program. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

¹ Both authors contributed equally to this work.

² To whom correspondence should be addressed: 5600 Nathan Shock Dr., Baltimore, MD 21224. Tel.: 410-558-8343; Fax: 410-558-8318; E-mail: soldatovN@grc.nia.nih.gov.

³ The abbreviations used are: PM, plasma membrane; Ab, antibody; AlD, α_1 -interaction domain; anti-LC, anti-Living Color Ab to EGFP; β_2 CED, C-terminal essential determinant of the Ca_v β_2 subunit; CaM, calmodulin; CDI,

Ca²⁺-dependent inactivation; ECFP, enhanced cyan fluorescent protein; EYFP, enhanced yellow fluorescent protein; IP, immunoprecipitation; MAGUK, membrane-associated guanylate kinase; V_{tr} , holding potential; V_{tr} test potential; SH, Src homology domain; HEK, human embryonic kidney.

AID: 428QQLEEDLKGYLDWITQAE445

LA: 1572IKTEGNLEQANEELRAIIKKIWKRTSMKLLDQV1604

IQ: 1617KFYATFLIQEYFRKF1632

FIGURE 1. Transmembrane topology of the α_{1c} subunit showing AID, LA, and IQ motifs and their amino acid sequences in the human α_{1c} protein (below).

splice variants of the human cardiac β_2 subunit lacking the central domain (19). These β_{2f} and $\beta_{2\Delta g}$ subunits share a 153amino acid distal C-terminal region common to all known "large" $Ca_v\beta_2$ subunits $(\beta_{2a}-\beta_{2e})$ (20) suggesting that this region may have a role of an essential $Ca_{\nu}\beta_{2}$ determinant. Our attention to this region of the β_2 subunit was stimulated by the finding that $\beta_{2\Delta g}$ supports I_{Ca} on co-expression with α_{1C} and $\alpha_2 \delta$ in Ca_v β -free COS1 cells. Because large and small Ca_v β_2 splice variants convey sharply different inactivation kinetics, it seems apparent that, in addition to MAGUK, there is a C-terminal determinant (defined here as β_2 CED) that is common only to $Ca_v\beta_2$ subunits and thus may contribute to the $Ca_v\beta_2$ specific tuning of the channel modulation by large $Ca_{\nu}\beta_{2}$ subunits. In the case of the small $Ca_{\nu}\beta_{2}$ subunits, $\beta_{2}CED$ may play the key regulatory role. This intriguing possibility prompted us to locate β_2 CED and characterize the properties of β_2 CEDmodulated Ca²⁺ channels that rely on β_2 CED-dependent, MAGUK-independent modulation.

EXPERIMENTAL PROCEDURES

Molecular Biology, $\beta_{2\Delta g}$ Deletion Mutants—Cloning of β_{2g} (AY675092), subcloning into the pcDNA3 vector, and the 5'-terminal fusion of ECFP have been described previously (19). To create ECFP-labeled $\beta_{2\Delta g}$ deletion mutants, the general strategy was to generate the deletion mutants by PCR and then replace the $\beta_{2\Delta g}$ open reading frame in 5'-ECFP- $\beta_{2\Delta g}$ -pcDNA3 with a deletion mutant at the 5'-XhoI/ApaI-3' sites. The PCR were performed with $\beta_{2\Delta g}$ as template using the following primer pairs with 5'-XhoI linker (sense) and 3'-ApaI-TGA linker (antisense): 5'-cccgctcgagATGTATCTCTGGAGGAG-GACC-3' (sense) and 5'-gcgggcccTCAGTGGTCATGGGAA-TAATC-3' (antisense) for $\beta_{2\Delta g}(1-82)$; 5'-gcctcgagGTGGAC-CACTATGCCTCAC-3' (sense) and 5'-gggcgggcccTCAGTT-GTGGTCCTGCTCTCGATC-3' (antisense) for $\beta_{2\Delta g}(83-123)$; 5'-cggcggccgccaccATGGAGTGCAACAAGCAGCGCAG-CCGTC-3' (sense) and 5'-gggcgggcccTCATTGGCGGAT-GTAAACATG-3' (antisense) for $\beta_{2\Delta g}$ (124–164). To create

the deletion mutant 5'-ECFP- $\beta_{2\Delta g}(83-164)$ -pcDNA3, 5'-ECFP- $\beta_{2\Delta g}$ -pcDNA3 was cut by XhoI, filled-in to a blunt end, cleaved by PmII, and then the 6.2-kb fragment was selfligated. To generate the unlabeled $\beta_{2\Delta g}(124-165)$, a PCR product was amplified using the NotI linker/Kozak primer (sense) 5'-cggcggccgccaccATGGAGTGCAACAAGCAGCGCAGCC-GTC-3' and the ApaI primer/linker (antisense) 5'-gggcgggccc-TCATTGGCGGATGTAAACATG-3'. The $\beta_{2\Delta g}(124-165)$ PCR product was subcloned into 5'-ECFP- $\beta_{2\Delta g}$ -pcDNA3 or $\beta_{2\Delta g}$ -pcDNA3 plasmid at the NotI/ApaI sites (replacing the $\beta_{2\Delta g}$ cassette). To create the mVenus-labeled deletion mutants, the 5'-BsrGI/ApaI-3' inserts of the ECFP-labeled deletion mutants were subcloned into the mVenus-C1 vector (kindly provided by Dr. S. S. Vogel) cleaved at the same sites.

5'-ECFP- β_{2d} -pcDNA3 was prepared by ligation of the 5'-PshAI/BsmBI-3' fragment of β_{2b} into the respective sites of plasmid 5'-ECFP- β_{2f} -pcDNA3. The 5'-ECFP- $\beta_{2d\Delta CED}$ deletion construct in pcDNA3 was produced by substitution of 5'-ECFP- β_{2d} -pcDNA3 at the BsmBI-AvrII sites with the respective fragment of $\beta_{2\Delta g}(83-123)$ -pcDNA3. The β_{2b} cDNA was amplified by reverse transcriptase-PCR from human heart mRNA with the sense 5'-ATGCTTGACAGACGCCT-TATAG-3' and antisense 5'-GCTGTTAGTTATACAAGA-CTTC-3' primers as described earlier (19).

FLAG_N- β_{2d} and FLAG_N- $\beta_{2d\Delta CED}$ in pcDNA3 were produced by ligating the 5'-BsrGI (filled in with Klenow)/AvrII-3' fragments of pECFP_N- β_{2d} and pECFP_N- $\beta_{2d\Delta CED}$, respectively, into a FLAG-2AB-pcDNA3 vector (gift of Dr. Kuanghueih Chen) at the EcoRV and AvrII sites. To prepare mVenus_N- β_{2d} and mVenus_N- $\beta_{2d\Delta CED}$ in pcDNA3, the 5'-BsrGI/AvrII (filled in with Klenow)-3' fragments of 5'-ECFP- β_{2d} -pcDNA3 and 5'-ECFP- $\beta_{2d\Delta CED}$ -pcDNA3, respectively, were ligated into the mVenus-C1 vector at the BsrGI and EcoRI (filled in with Klenow) sites.

mVenus_N-I-II_{AID} was constructed by PCR amplification of the 418–455 fragment of the $\alpha_{1C,77}$ I-II linker (nucleotides 1252–1365 of the pHLCC77 (z34815) open reading frame) in pcDNA3 followed by subcloning into the 5'-BspEI/EcoRI-3' sites of the mVenus-C1 vector. The sense and antisense primers used were 5'-catatatccggaCGGGGAGATTTCCAGAAG-3' and 5'-cggcatgaattctaGCCTTCGTCCTCATTC-3', respectively. mVenus_N-I-II_{AIDM} was created in the same way except that $\alpha_{1C,77AIDM}$ was used as the template for PCR. Biotin_N-I-II_{AID} in pcDNA6 was prepared with a Zero Blunt TOPO PCR cloning kit (Invitrogen) and a pcDNATM 6 BioEase Gateway Biotinylation System (Invitrogen) according to the manufacturer's instructions using α_{1C77} -pcDNA3 as template, 5'-caccATGCGGGAGATTTCCAG-3' and 5'-ctaGCCTTCGTC-CTCATTCTC-3' as sense and antisense primers, respectively.

To prepare FLAG_N-LA/IQ (amino acids 1571–1636 of α_{1C77}) in pcDNA3 vector, PCR was performed with α_{1C77} -pcDNA3 as template, 5'-gtattaaagcttAGGATCAAAAC-AGAAGGGAACCTAG-3' and 5'-ctatatgggcccctaCTCTTTG-CGCTTCTTGAACTTCC-3' as sense and antisense primers, respectively; the PCR product was then subcloned into a FLAG-2AB-pcDNA3 vector at the HindIII/ApaI sites. FLAG_N- $\alpha_{1C.77}$ -pcDNA3 was created by replacement of the

5'-NdeI/HindIII-3' fragment of α_{1C77} -pcDNA3 with the respective fragment from FLAG-2AB-pcDNA3.

The AID mutant $\alpha_{\rm 1C,77AIDM}$ (D433A,G436A,Y437A,W440A) was generated by a "two-step" PCR site-directed mutagenesis. PCR fragments were produced Briefly, two with $\alpha_{1C,77}$ -pcDNA3 as template and pairs of outer sense and mutagenesis antisense primers, and mutagenesis sense and outer antisense primers, respectively. The mutagenesis antisense and sense primers contained the desired mutated sequence and had 18 bases complementary to each other. The two fragments were fused together by denaturing, annealing, and Taq polymerase extension, the fused DNA product was then amplified by PCR with the outer primer pair. The outer sense and antisense primers were designed from the vector region 5'-ctatagggagacccaagcttc-3' and $\alpha_{1C,77}$ open reading frame 5'-CACTTCCTTCTGCAGAACCG-3' (1550 \rightarrow 1531), respectively; the mutagenesis antisense and sense primers were 5'-ATCCAGGgcGgCTTTGAGAgCCTCTTCTAGC-TGCTGCTT-3' and 5'-CTCAAAGcCgcCCTGGATgcGA-TCACTCAGGCCGAAGAC-3', respectively. The final PCR product was cleaved with HindIII and ClaI and substituted for the 5'-HindIII/ClaI-3' fragment in $\alpha_{1C,77}$ -pcDNA3 resulting in $\alpha_{1C,77AIDM}$ -pcDNA3. To produce mVenus_N- $\alpha_{1C,77AIDM}$ -pcDNA3, the 5'-NdeI/KpnI-3' fragment of $\alpha_{1C,77AIDM}$ -pcDNA3 was replaced with the 5'-NdeI/KpnI-3' fragment of vector pmVenus-C1, which contains the mVenus cDNA and is in a continuous reading frame with $\alpha_{1C,77AIDM}$ -pcDNA3.

77 Δ LK-pcDNA3 coding for $\alpha_{1C,77\Delta$ LK was prepared by a similar mutagenesis strategy using pHLCC77 plasmid (21) as a template. The mutagenesis primers were 5'-CAGGGCCTTG-TGGGCAAGCCC-3' (sense) and 5'-gcccacaaggccctgCAGG-GCCGTCCTGACCAGGGC-3' (antisense); the outer primers were 5'-CTGTGATGCATGGAATACATTTGACGCCTTG-ATTG-3' (sense) and 5'-ctagaactagtggatcctctaGAGTC-GACCTGCAG-3' (antisense). The final PCR product was cleaved with NsiI and XbaI, and then incorporated at the 5'-NsiI and 3'-XbaI sites into pHLCC77. Subsequently, the 5'-PpuMI/XbaI-3' fragment of the resulting plasmid was ligated at the respective sites in α_{1C77} -pcDNA3. For $\alpha_{1C,77AIDM/\Delta LK}$ -pcDNA3, the 5'-PpuMI/XbaI-3' fragment of $\alpha_{1C,77\Delta LK}$ -pCDNA3 was subcloned into $\alpha_{1C,77AIDM}$ -pcDNA3. All cDNA constructs were verified by nucleotide sequencing.

Immunoprecipitation Analysis—Human embryonic kidney (HEK) 293 cells were used for the IP analysis because of high expression efficiency. To exclude endogenous Ca_v1.2 subunits from the analysis, we expressed only tagged subunits and used antibodies against the tags. For IP-Western blot analysis, \approx 80% confluent early passage HEK293 cells in 100-mm culture dishes were transfected with selected plasmids (for details, see figure legends) using Effectene (Qiagen) according to the manufacturer's instructions. 72 h after transfection, cells were harvested and washed 3 times with phosphate-buffered saline. To improve the yield and stability of co-IP, cells were subjected to a standard cross-linking reaction (22, 23) by incubation with the cell-permeant thiol-cleavable reagent dithiobis(succinimidyl propionate) (1 mM) (Pierce) at room temperature for 30 min. Cross-linking was stopped by incubation of cells with 20

FIGURE 2. **Characterization of expression of Ca²⁺ channels in COS1 cells.** *A*, endogenous α_{1C} subunits are not detectable in COS1 cells by Western blotting. *Lane 1*, non-transfected COS1 cells. *Lane 2*, COS1 cells expressing the recombinant $\alpha_{1C,77}/\alpha_2\delta/\beta_{2d}$ channel. Immunoblot analysis was carried out with antibody against α_{1C} (Chemicon). The position of the α_{1C} subunit is marked on the *left side*; molecular mass (in kDa) is shown on the *right side*. *B*, representative trace of I_{Ca} generated in response to $V_t = +30$ -mV applied from $V_h = -90$ mV to COS1 cells transfected by EYFP_N- $\alpha_{1C,77}$ and $\alpha_2\delta$ subunits in the absence of Ca_v β subunits. No current was observed between 0 and +50 mV. *C*, superimposed traces of the maximal I_{Ca} through the EYFP_N- $\alpha_{1C,77}/\alpha_2\delta$ channel with β_2 CED (*trace 1*) or ECFP_N- β_2 CED (*trace 2*) recorded at $V_t = +40$ mV and normalized to the same amplitude. The α_{1C} , $\alpha_2\delta$, and β_2 CED subunits were co-expressed in a 1:1:1 molar ratio. No significant difference in the kinetics of the currents was observed.

mM Tris-HCl (pH 7.5) for 15 min. Cells were lysed with a Cel-Lytic M lysis reagent (450 μ l/plate, Sigma) containing a protease inhibitor mixture (Sigma, 1/100 dilution) supplemented with 1 mM phenylmethylsulfonyl fluoride. To ensure direct interaction, the microsomal fraction was used for co-IP experiments involving α_{1C} . The 80-µl aliquots of total lysates were kept to verify the expression of each protein (see "input" on immunoblots). Co-IP was performed with the selected antibodies according to the manufacturer's instructions. Briefly, co-IP with anti-FLAG antibody (Ab) was performed with 40 µl/reaction of a monoclonal EZ ViewTM ANTI-FLAG[®] M2 affinity gel (Sigma) at 4 °C overnight, and the immunoprecipitates were eluted by incubation with 10 μ g of 3× FLAG peptide (Sigma) in 100 µl of TBS solution (pH 7.4) at 4 °C for 1 h. The co-IP with anti-LC Ab was performed with 5 μ l of a Living Colors Full-Length A.V. polyclonal Ab (Clontech) using Protein A-agarose (Sigma) as carrier (overnight at 4 °C), and the immunoprecipitates were eluted by boiling for 5 min at 95 °C. Dithiobis(succinimidyl propionate) was cleaved by incubation of the co-immunoprecipitate and input samples with 5% β -mercaptoethanol at 100 °C for 5 min or with 50 mM dithiothreitol at 37 °C for 30 min (only for α_{1C}) before SDS-PAGE. SDS-PAGE and immunoblotting with the indicated antibodies were performed according to standard protocols. The following primary antibodies were used: anti-FLAG M2 monoclonal Ab (2 μ g/ml, Sigma) for the FLAG-tagged proteins, Living Colors Full-Length A.V. monoclonal Ab (0.5 μ g/ml, Clontech) for the fluorescent tagged proteins, and streptavidin-horseradish peroxi-

$Ca_{v}\beta_{2}$ Subunit C-terminal Determinant

dase (1/1000 dilution, Invitrogen) for the biotin-tagged proteins. Nitrocellulose membrane (Invitrogen) was used for immunoblot analysis of α_{1C} co-IP experiments and polyvinylidene difluoride membrane (Invitrogen) was used for all other studies.

Electrophysiology—The Effectene kit (Qiagen) was used for transfection of COS1 cells as described previously (15) under conditions optimized for a total amount of 0.2 μ g of DNA per 35-mm Petri dish. Constructs were expressed in a 1:1 molar ratio. COS1 cells were grown on poly-D-lysine-coated coverslips (MatTek) in Dulbecco's modified Eagle's medium supplemented with 10% fetal calf serum. Whole-cell patch clamp recordings were performed as described (24) at 20-22 °C using the Axopatch 200B amplifier (Axon Instruments) 48-72 h after transfection. The extracellular bath solution contained (in mM): 100 NaCl, 20 BaCl, or CaCl₂, 1 MgCl₂, 10 glucose, 10 HEPES, adjusted to pH 7.4 with NaOH. Borosilicate glass pipettes (Kimax-51, Kimble Products) were fire-polished and showed a typical resistance of 3-6 megohms when filled with pipette solution containing (in mM): 110 CsCl, 5 MgATP, 10 1,2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid, 20 tetraethylammonium, 0.2 cAMP, and 20 HEPES, adjusted to pH 7.4 with CsOH (15). Voltage protocols were generated and data were digitized, recorded, and analyzed using pClamp 8.1 software (Axon Instruments). Test pulses were applied at 15-s intervals from the holding potential $V_h = -90$ mV. Currents were filtered at 1 kHz, sampled at 2.5-5 kHz, and corrected for leakage using an on-line P/4 subtraction protocol. At the end of experiments, channels were routinely tested for sensitivity of I_{Ca} to the inhibition by the dihydropyridine blocker PN200-110 (see examples). I-V curves were obtained by step depo-

larization to test potentials in the range of -60 to +90 mV (with 10-mV increments) applied from V_h . Steady-state inactivation curves were measured with conditioning pulses (1 s) applied

from $V_h = -90$ mV up to -60 to +40 mV with 10-mV increments followed by a 100-ms test pulse. Peak current amplitudes were normalized to the maximal value. Averaged *I-V* curves

were fit with the equation: $I = G_{\text{max}} (V - E_{\text{rev}})/(1 + exp[(V - V_{0.5,\text{act}})/k_{\text{I-V}}])$, where G_{max} is maximum conductance, E_{rev} is reversal potential, $V_{0.5,\text{act}}$ the voltage at 50% of the current (*I*) activation, and $k_{\text{I-V}}$ the slope factor. Steady-state inactivation curves were fitted by a Boltzmann function: $I = a + b \cdot (1 + exp[(V - V_{0.5,\text{in}})/k_i])$, where *V* is the conditioning pulse voltage; $V_{0.5,\text{in}}$ is the voltage at half-maximum of inactivation, k_i is a slope factor, *a* and *b* are fractions of noninactivating and inactivating components of the current, respectively. To estimate the time constant τ of inactivation, currents were fitted with the Chebyshev method according to the standard exponential function,

$$I(t) = \sum_{i=1}^{n} I_i e^{-t/\tau_i} + I_0$$
 (Eq. 1)

where I_i is the amplitude of the inactivating component of the current, τ is the time constant of inactivation, and I_0 is the non-inactivating component of the current. Statistical values are given as mean \pm S.E. Error bars in the figures are S.E., *n*, number of tested cells. Differences were considered significant if Student's *t* test showed p < 0.05.

Imaging—Cell images were recorded with a 14-bit Hamamatsu digital camera C9100-12 mounted on the Nikon epifluorescent microscope TE200 (60×1.2 N.A. objective) equipped with multiple filter sets (Chroma Technology, Rock-ingham, VT). Excitation light was delivered by a 175-watt Xenon lamp. Images were obtained and analyzed using C-Imaging software program (Compix, Sewickley, PA).

RESULTS

Selection of Appropriate Expression System-Electrophysiological studies of Ca²⁺ channels are traditionally based on the use of HEK293 cells. However, several independent careful evaluations have shown that these cells contain endogenous Ca^{2+} channel subunits and exhibit I_{Ca} at a level of 1–3 pA/pF (25, 26). Thus, HEK293 cells can be used safely for the functional analysis of recombinant Ca²⁺ channels only when the amplitude of the current is large enough to ignore the contribution of the endogenous channels. To avoid this problem, in this study we used COS1 cells because they lack endogenous Ca_v1.2 subunits (27): (a) Western blot analysis with anti- α_{1C} Ab revealed no detectable endogenous α_{1C} in non-transfected COS1 cells (Fig. 2*A*, *lane 1*), and (*b*) no Ca²⁺ channel activity was observed in COS1 cells expressing recombinant α_{1C} and $\alpha_2 \delta$ subunits (Fig. 2B) in contrast to cells that were co-transfected with β_{2d} , $\beta_{2\Delta g}$, or β_2 CED (see below). This experiment unambiguously shows that Ca, 1.2 calcium channels are silent

in the absence of Ca, β and that activity of the Ca²⁺ channel demonstrated in HEK293 cells in the absence of exogenous $Ca_{\nu}\beta$ subunits may be due to endogenous channels. The absence of the functional $Ca_{\nu\beta}$ subunits in COS1 cells that follows from the data in Fig. 2B was further confirmed by co-IP analysis with recombinant FLAG_N- $\alpha_{1C}/\alpha_{2}\delta$ that revealed a lack of detectable endogenous monkey β_1 , β_2 , β_3 , and β_4 subunits in COS1 cells (28). Kinetics parameters and voltage dependence of activation and inactivation of $I_{\rm Ca}$ and $I_{\rm Ba}$ through the $\alpha_{\rm 1C,77}/$ $\alpha_2 \delta / \beta_{1a}$ channel measured in COS1 cells were consistent with data obtained in other expression systems (15). An important advantage of COS1 cells is their relatively slow division rate that allows for better control over efficiency of expression and assembly of the Ca_v1.2 channel subunits of different size. However, HEK293 cells were more appropriate for co-IP-Western blot analysis of the recombinant tagged channel proteins in our study because they provide higher efficiency of expression, whereas endogenous subunits were undetectable with streptavidin and Abs to FLAG and Venus (ECFP) tags by Western blot analysis and fluorescence microscopy.

Localization of β_2 CED by Deletion Analysis of the $\beta_{2\Delta\sigma}$ *Subunit*—To locate β_2 CED, we constructed the following $\beta_{2\Delta g}$ fragments: 1-82, 83-164, 83-123, and 124-164 (Fig. 3, A-E, *panels a*). To ease IP and detection, $\beta_{2\Delta g}$ fragments were tagged at the N termini with the monomeric mVenus protein (29) or ECFP. As with other Ca_v β subunits (e.g. β_{1a} , β_{2a} (15), β_{2f} or $\beta_{2\Delta g}$ (19)), fusion of ECFP and mVenus to the N termini of the $\beta_{2\Delta g}$ fragments did not markedly change electrophysiological properties of the expressed channels (e.g. $\beta_{2d}(124-164)$ in Fig. 2C). The ECFP_N-labeled $\beta_{2\Delta g}$ fragments were co-expressed with the $\alpha_{1C,77}$ and $\alpha_2 \delta$ subunits in COS1 cells. The relative tendency of the ECFP_N- $\beta_{2\Delta g}$ deletion mutants to accumulate in PM can be seen in close juxtaposition from distribution of ECFP fluorescence in the expressing cells (Fig. 3, A–E, panels b and c). Ability of the $\beta_{2\Delta g}$ deletion mutants to support I_{Ca} was assayed by patch clamp (Fig. 3, *A*–*E*, *panels d*). Binding to α_{1C} was assayed by co-IP of the mVenus_N-labeled $\beta_{2\Delta g}$ fragments with FLAG_N- $\alpha_{1C,77}/\alpha_2\delta$ (Fig. 3F).

Confirming previous observations (19), when co-expressed with $\alpha_{1C,77}$ and $\alpha_2\delta$ subunits, $\beta_{2\Delta g}$ was appreciably accumulated in PM (Fig. 3*A*, *panels b* and *c*), stimulated inward I_{Ca} with an average maximal amplitude of 80 ± 15 pA (n = 45; Fig. 3*A*, *panel d*), and co-immunoprecipitated with α_{1C} subunit (Fig. 3*F*, *lane 1*). Sequential deletion of the $\beta_{2\Delta g}$ subunit (Fig. 3, *B–E*) revealed that calcium channel activity is associated with the distal quarter of the $\beta_{2\Delta g}$ sequence. Only the $\beta_{2\Delta g}$ fragments containing the distal C-terminal regions 83–164 (Fig. 3*C*) and 124–164 (Fig. 3*E*) induced the current when co-expressed with

FIGURE 3. Localization of β_2 CED by deletion analysis of $\beta_{2\Delta g}$. *A*, $\beta_{2\Delta g}$. *B*, $\beta_{2\Delta g}$ (1-82). *C*, $\beta_{2\Delta g}$ (83–164). *D*, $\beta_{2\Delta g}$ (83–123). *E*, $\beta_{2\Delta g}$ (124–164). Shown on the panels are: *a*, scheme of the generated fragments (amino acid numbers are indicated in *A*); *black box*, β_2 CED. *b*, whole cell fluorescent images of COS1 cells expressing $\alpha_{1C,77}$ and $\alpha_2\delta$ with the ECFP_N- $\beta_{2\Delta g}$ fragments (*scale bars*, 8 μ m). In the experiment shown on *E*, *panel b'*, β_2 CED was expressed alone. *c*, intensity profiles of ECFP fluorescence along the scan lines presented on *panels b* and showing PM targeting of the $\beta_{2\Delta g}$ fragments. The fluorescence profile on *panel c'* (*E*) corresponds to *panel b'* (*E*) illustrating lack of membrane targeting by β_2 CED in the absence of α_{1C} and $\alpha_2\delta$. *d*, traces of the maximal I_{Ca} evoked by a stepwise depolarization from $V_h = -90$ mV to $V_t = +50$ ($\beta_{2\Delta g}$) or +40 mV (all other constructs). *F*, Western blot analysis of co-IP of FLAG_N- $\alpha_{1C,77}$ with mVenus_N-labeled $\beta_{2\Delta g}$ (*lane 1*) and its mVenus_N-labeled deletion mutants $\beta_{2\Delta g}$ (1-82) (*lane 2*), $\beta_{2\Delta g}$ (83–164) (*lane 3*), $\beta_{2\Delta g}$ (83–123) (*lane 4*), and $\beta_{2\Delta g}$ (124–164) (*lane 5*). mVenus (*lane ct*) is the control to confirm the absence of nonspecific binding between the tags. *IP* and immunoblotting (*IB*) were performed with the indicated antibodies as described under "Experimental Procedures." The *Input* panel is the pre-IP immunoblot showing expression of each tagged protein. *Arrows (left panel*) mark the location of an mVenus-tagged fragment in each lane. Molecular mass standards (in kDa) are indicated on the *right*.

$Ca_{v}\beta_{2}$ Subunit C-terminal Determinant

$\beta_2 CED$	ECNKQRSRHKSKDRYC-EKDGEVISKKRNEAGEWNRDVYIRQ	41
β _{1b2}	ELTDNRNRGRNKARYCAEGGGPVLGRNKNELEGWGRGVYIR-	596
β _{1b1}	SKHIIIE <mark>R</mark> SNTRSSLA-EVQS <mark>E</mark> IERIFELARTLQLVALDADT	325
β ₃	SGLPSANGHDPQDRLLA-QDSEHNHSDR-NWQRNRPWPK	481
β4	RLI <mark>K</mark> SRGKSQ <mark>SK</mark> HLNV-QLVAADKLAQCPPEMFDVILDENQL	384

FIGURE 4. Homology alignment of β_2 CED with human Ca_v β subunits. Conserved residues are shown in *black boxes*. Blast analysis revealed that β_2 CED is 100% conserved in the C termini of all known human Ca_v β_2 subunits (not shown), whereas only β_{1b2} (M92303) shows 43% of homology with β_2 CED. No substantial homology was seen with β_{1b1} (M92302), β_3 (X76555), β_4 (U95020), β_{1a} (not shown), or other human proteins as revealed by a general blast analysis. Thus, β_2 CED is unique for Ca_v β_2 subunits.

 $\alpha_{1C,77}/\alpha_2\delta$ (panels d) and directly interacted with α_{1C} , as evident from the marked accumulation in PM (panels b and c) and Western blot analysis of co-IP with microsomal α_{1C} (Fig. 3*F*, lanes 3 and 5). Taken together, results of this analysis show that the C-terminal sequence of 41 amino acids of the Ca_v β_2 subunit (β_2 CED) represents a previously unknown determinant that may have a role in calcium channel modulation. Amino acid alignment revealed (Fig. 4) that β_2 CED is conserved in Ca_v β_2 and shares only a subtle homology with the other Ca_v β subunits.

Electrophysiological Properties of the β_2 CED-supported *Channel*—In COS1 cells expressing EYFP_N- $\alpha_{1C,77}$ and $\alpha_2\delta$ subunits, the average maximal amplitude of $I_{\rm Ca}$ decreased from 647 ± 34 pA (n = 48) with β_{2d} to 120 ± 25 pA (n = 48) with β_2 CED. Fig. 5A shows a family of representative traces of I_{Ca} evoked by a stepwise depolarization in the range of -20 to +60mV applied from $V_h = -90$ mV. The currents were almost completely inhibited by the specific L-type calcium channel blocker (+)PN200-110 (Fig. 5B, traces a). An interesting feature of these currents is the presence of a large slow component of inactivation that is unusual for the Ca²⁺-conducting Ca_v1.2 channels. Analysis of the steady-state inactivation curve (Fig. 5*C*) showed that at the end of a 1-s conditioning pulse 14.5 \pm 1.7% (n = 12) of the peak I_{Ca} remained non-inactivated. Analysis of \sim 50 expressing cells revealed that $I_{\rm Ca}$ evoked by V_t between -20 and 0 mV are better fitted with two exponentials and showed a prominent fast component of inactivation (see Table 1). The latter property can be better appreciated from the exemplar I_{Ca} traces (recorded at -20 and -10 mV) in Fig. 5B that have larger amplitude than the representative currents in Fig. 5A. However, at $V_t \ge 10$ mV, the decay of I_{Ca} was better fitted by a single exponential. The large sustained current $(I_0,$ Table 1) is characteristic for all shown voltages and may be indicative of the inhibited slow inactivation (6, 24).

Co-plotting of *I*-*V* and τ -*V* curves (Fig. 5*D*) showed that when β_{2d} in the channel (Table 1) was replaced with β_2 CED, inactivation of I_{Ca} became slower on stronger depolarization and did not depend on the size of the current. The corresponding lack of U-shaped τ -*V* dependence is evidence that β_2 CED does not support CDI (30). To further characterize modulation of inactivation of the Ca_v1.2 channel by β_2 CED, we tested the effect of replacement of Ca²⁺ for Ba²⁺ in the bath medium on kinetics of the current decay. When Ba²⁺ is the charge carrier, Ca_v1.2 channels inactivate by a voltagedependent mechanism (2). The *I*-*V* relationship for I_{Ba} ($V_{0.5,act} = 41.3 \pm 4.3$, n = 31, Fig. 5*E*) was shifted to more positive potentials as compared with I_{Ca} ($V_{0.5,act} = 19.8 \pm$

FIGURE 5. Electrophysiological properties of the β_2 CED-modulated calcium channel. *A*, representative traces of I_{Ca} evoked by the indicated test pulses applied for 600 ms from $V_h = -90$ mV. β_2 CED was co-expressed in COS1 cells with EYFP_N- $\alpha_{1C,77}$ and $\alpha_2\delta$ subunits. *B*, exemplar recordings of I_{Ca} before and after (*traces a*) application of 4 μ M (+)PN200–110. Values of V_t are shown on the *left*. *C*, steady-state inactivation curves for I_{Ca} (*n* = 12) and I_{Ba} (*n* = 24). *D*, the normalized *I*-V curve (*filled circles*) and voltage dependence of τ_t (open circles) for I_{Ca} . See text for $V_{0.5,act}$ statistics (*n* = 48). *E*, the normalized *I*-V relationship for I_{Ba} (*n* = 31). *F*, dependence of r_{50} on test pulse voltage for I_{Ca} filled circles, *n* = 48) and I_{Ba} (open circles, *n* = 31). Factor *f* is the difference between the r_{50} values of I_{Ca} and I_{Ba} at the maximum of *I*-V curves (+40 mV). Smooth lines in *C*-*E* represent fits of the average data (see "Experimental Procedures").

1.8, n = 48, Fig. 5*D*). A ~10-mV positive shift of the steadystate inactivation curve was also observed on replacement of Ca²⁺ ($V_{0.5,in} = 13.9 \pm 1.1$) for Ba²⁺ ($V_{0.5,in} = 24.2 \pm 3.3$) in the bath medium (Fig. 5*C*), whereas the voltage dependence of availability of the β_2 CED-modulated channel was increased to 50.6 \pm 2.9% (n = 24) with Ba²⁺ as the charge carrier. These data suggest that the inactivating fraction of channels is reduced in Ba²⁺ because of increased voltage dependence of availability of the β_2 CED channel.

TABLE 1	
Comparison of kinetics parameters of inactivation of I_{Ca} through the Ca, 1.2 channel modulated by β_{2d} and β_{2} C	ED

		•			•			• -		
V	$\beta_{\rm 2d} (n=48)$				β_2 CED ($n = 48$)					
V	I ₀	I_{f}	$ au_{f}$	$I_s^{\ a}$	$ au_s$	I_0	I_f	$ au_{f}$	$I_s^{\ b}$	$ au_s$
mV			ms		ms			ms		ms
-20						0.50 ± 0.03	0.32 ± 0.02	15 ± 5	0.27 ± 0.03	118 ± 30
-10	0.49 ± 0.13	0.52 ± 0.10	284 ± 10^{c}			0.47 ± 0.03	0.39 ± 0.03	13 ± 3	0.25 ± 0.04	142 ± 39
0	0.59 ± 0.04	0.42 ± 0.04	132 ± 20^{c}			0.57 ± 0.03	0.35 ± 0.04	40 ± 6	0.05 ± 0.02	180 ± 26
10	0.46 ± 0.03	0.43 ± 0.02	86 ± 13	0.10 ± 0.02	310 ± 75	0.47 ± 0.03	0.49 ± 0.04	122 ± 12		
20	0.34 ± 0.03	0.47 ± 0.02	59 ± 6^{c}	0.19 ± 0.02	388 ± 63	0.43 ± 0.02	0.57 ± 0.03	148 ± 14		
30	0.33 ± 0.02	0.55 ± 0.02	96 ± 6^{c}	0.12 ± 0.02	485 ± 62	0.36 ± 0.01	0.64 ± 0.03	189 ± 12		
40	0.31 ± 0.02	0.67 ± 0.02	119 ± 7^{c}			0.37 ± 0.01	0.63 ± 0.03	223 ± 12		
50	0.31 ± 0.02	0.69 ± 0.02	172 ± 16^{c}			0.37 ± 0.02	0.63 ± 0.03	260 ± 15		
60	0.35 ± 0.02	0.64 ± 0.02	217 ± 33			0.35 ± 0.03	0.65 ± 0.03	255 ± 19		
70	0.43 ± 0.03	0.55 ± 0.03	238 ± 21			0.59 ± 0.05	0.41 ± 0.05	267 ± 20		

^{*a*} The slow component of the β_{2d} -modulated channel was identified only in I_{Ca} of high amplitude around the peak current.

^b Relative size of the slow component of I_{Ca} through the β_2 CED-modulated channel decreased with an increase of V_t from -20 to 0 mV.

 $^{c} p < 0.01$ compared to τ_{f} for β_{2} CED (unpaired *t* test).

FIGURE 6. Comparison of inactivation of the β_2 CED- and β_{2d} -modulated calcium channels with Ca²⁺ and Ba²⁺ as the charge carrier. *A* and *B*, comparison of I_{Ca} and I_{Ba} recorded from COS1 cells expressing $\alpha_{1C,77}/\alpha_2\delta$ and β_{2d} (*A*) or β_2 CED (*B*). Current traces were normalized to the maximum amplitude of the respective I_{Ca} . One can see that I_{Ca} inactivated much faster than I_{Ba} in the case of β_{2d} , but not β_2 CED, thus confirming that β_2 CED does not support CDI. *C* and *D*, comparison of I_{Ba} (*C*) and I_{Ca} (*D*) through the $\alpha_{1C,77}/\alpha_2\delta$ channels modulated by β_2 CED or β_{2d} . The traces were normalized to the maximum amplitude of I_{Ca} through the $\alpha_{1C,77}/\alpha_2\delta/\beta_2$ CED (*C*) and $\alpha_{1C,77}/\alpha_2\delta/\beta_2$ CED (*D*) channels. Unlike CDI, voltage-dependent inactivation of the channel supported by β_2 CED was not markedly changed. Currents were recorded at $V_t = +20$, +30, and +40 mV applied from $V_h = -90$ mV.

Having revealed these unusual inactivation properties of the β_2 CED channel, we tested for CDI by calculating the *f* factor (31), which is the difference between the r_{50} values, or fractions of I_{Ca} and I_{Ba} remaining at the end of a 50-ms depolarization. The 50-ms window was selected to accurately account for the relatively fast decay of I_{Ca} in the range of -20 to +10 mV (Fig. 5A). Confirming the result of the τ -V analysis (Fig. 5D), no U-shaped dependence of r_{50} on V_t was observed for I_{Ca} , whereas those for I_{Ba} was almost flat (Fig. 5F). A sharp difference between r_{50} values for I_{Ba} and I_{Ca} at lower voltages reflects a switch from an apparent biexponential voltage-dependent inactivation at -20 to 0 mV to a predominantly single-component mechanism at $V_t \ge 10$ mV (see above). One could argue that this result may be due to a specific level of intracellular Ca²⁺ buffering in our experiment. However, CDI in Ca_v1.2 calcium channels exhibits low sensitivity to intracellular Ca²⁺ buffers (32, 33). The possibility that β_2 CED evokes CDI only in the narrow voltage range of -20 to 0 mV is doubtful because

Ca²⁺ currents at these potentials are relatively small, and contribution of the voltage-dependent inactivation is probably greater. Making no further assumptions about the nature of this property, we compared inactivation of I_{Ca} and I_{Ba} near the maximum of I-V curves (Fig. 5, *D* and *E*), where CDI should be the most prominent (30). The difference f between r_{50} values at +30 to +50 mV was close to zero $(f = 0.04 \pm 0.02 \text{ at} + 40 \text{ mV}, \text{Fig. } 5F).$ This result is consistent with the lack of CDI and explains the slow kinetics of I_{Ca} decay in the β_2 CED channel by the lack of the negative feedback regulation of inactivation by the permeating Ca^{2+} ions.

Overlaying of $I_{\rm Ca}$ and $I_{\rm Ba}$ traces, scaled to the same amplitude, is a common approach to estimate the contribution of CDI and voltage-dependent mechanisms in inactivation of the channel. In Fig. 6 we compared inactivation properties

of β_2 CED- and β_{2d} -modulated channels by superimposing I_{Ca} and I_{Ba} traces near the maximum of *I-V* curves. At V_t between +20 and +40 mV, where the currents are larger, the β_{2d} -modulated I_{Ca} inactivated notably faster than I_{Ba} (Fig. 6A) due to CDI. In contrast, we observed a matching decay of I_{Ca} and I_{Ba} for the β_2 CED-modulated channel (Fig. 6*B*) confirming the lack of CDI. We next compared decays of I_{Ca} and $I_{\rm Ba}$ sampled near the maximum of *I-V* curves. Because of CDI, the $\beta_{\rm 2d}$ -modulated $I_{\rm Ca}$ inactivated appreciably faster than with β_2 CED (Fig. 6*C*). However, I_{Ba} through both β_2 CED- and β_{2d} -modulated channels recorded at the same test voltages showed a very similar decay (Fig. 6D) indicating striking similarity of the voltage-dependent inactivation of the channels. Thus, the Ca²⁺/Ba²⁺ test confirmed lack of CDI in the β_2 CED-modulated channel. Lack of CDI is an unusual property that was not previously observed in Ca_v1.2 channels with native pore-forming α_{1C} subunits.

FIGURE 7. Effect of the β_2 CED deletion from β_{2d} on inactivation properties of the channel and binding to AID. A-F, effect on I_{Ca}. COS1 cells were transfected with $\alpha_{1C,77}$, $\alpha_2\delta$, and $ECFP_N-\beta_{2d}$ (A, C, and E) or $ECFP_N-\beta_{2d\Delta CED}$ (B, D, and F). A and B, exemplar traces of I_{Ca} evoked by the indicated test potentials applied for 600 ms from $V_h = -90$ mV. C and D, normalized I-V curves (filled circles) co-plotted with τ -V relations (open circles). Values of τ were obtained from single exponential fitting. β_{2d} , $V_{0.5,act} = 20.7 \pm 0.8$ mV, n = 16 (C). $\beta_{2d\Delta CED}$, $V_{0.5,act} = 8.5 \pm 0.5$ mV; n = 12 (D). E and F, steady-state inactivation curves. $\beta_{2d'}$, $V_{0.5,in} = 0.1 \pm 0.2$ mV, $k_i = 5.8 \pm 0.1$, n = 20 (E). $\beta_{2d\Delta CED}$, $V_{0.5,in} = -5.3 \pm 0.3$ mV, $k_i = 5.3 \pm 0.2$, n = 13 (F). Smooth lines in panels C–F represent fits of the average data. G, deletion of β_2 CED from β_{2d} does not interfere with binding to AID. FLAG_N- β_{2d} (lanes ct and 1) or FLAG_N- $\beta_{2d\Delta CED}$ (*lane 2*) was co-expressed with mVenus (control, *lane ct*) or mVenus_N-I-II_a(*lanes 1* and 2). Proteins were solubilized, immunoprecipitated with anti-FLAG Ab, and both the pre-IP (input) and IP fractions were resolved by SDS-PAGE (see "Experimental Procedures"). FLAG_N-tagged β_{2d} and $\beta_{2d\Delta CED}$ were identified on Western blot by anti-FLAG Ab (top panels). mVenus and mVenus_N-I-II_{AID} were detected by anti-LC Ab (bottom panels). Molecular mass calibration in kDa is shown at the *right*. Amount of plasmid DNA (μ g) per transfection reaction is given in parentheses. In the control assay, binding of mVenus to the tested $Ca_{\nu}\beta$ was not observed (*lane ct*).

Effect of β_2CED Deletion from β_{2d} on the Ca_v1.2 Calcium Channel—To better understand the functional impact of β_2CED on Ca_v β_2 subunit modulation of Ca_v1.2 channels, the distal 41-amino acid sequence (identical to those of $\beta_{2\Delta g}(124-164)$) was genetically deleted from β_{2d} . Modulation of the Ca_v1.2 channel by the obtained deletion mutant $\beta_{2d\Delta CED}$ was compared with those of β_{2d} (Fig. 7). Similar to other Ca_v β subunits, β_{2d} facilitated large I_{Ca} through the Ca_v1.2 channel. Distinct features of I_{Ca} through the β_{2d} channel include: 1) a relatively large sustained component of the current that comprised ~35% of the peak current at the end of a 600-ms depolarization pulse (Fig. 7*A*), and 2) a prominent shift of the maximum *I*-*V* curve from a typical value of +20 to +30 mV (15) to +40 mV (Fig. 7*C*, *closed circles*). As expected, β_{2d} supported CDI and showed a U-shaped τ -*V* dependence of I_{Ca} peaked near the maximum of *I*-*V* curve (Fig. 7*C*, *open circles*).

The $\beta_{2d\Delta CED}$ -modulated channel generated large inward I_{Ca} (average maximal amplitude 466 \pm 160 pA, n = 12) in response to depolarization in a characteristic range of membrane potentials (Fig. 7*B*). Similar to the β_{2d} -modulated channel, decay of I_{Ca} at all tested potentials was better fitted by a single exponential. The τ -V relation had a distinct U-shape indicating that deletion of the β_2 CED from the β_{2d} subunit did not compromise CDI (Fig. 7D). The maximal inactivation rate of I_{Ca} through the $\beta_{\rm 2d\Delta CED}\text{-}\mathrm{modulated}$ channel was faster (τ = 43 \pm 5 ms at +10 mV) than that modulated by β_{2d} ($\tau = 59 \pm 6$ ms at +20 mV). The voltage dependence of activation $(V_{0.5.act})$ and inactivation $(V_{0.5,in})$ of the $\beta_{2d\Delta CED}$ -modulated channel were shifted by \sim 12 (Fig. 7, *C* and *D*) and 5 mV (Fig. 7, *E* and *F*) to more negative voltages, respectively, suggesting that deletion of β_2 CED endows the channel a higher voltage sensitivity (for statistics, see figure legend). Taken together, these results and data in Fig. 5 point to a synergy between MAGUK and β_2 CED, but they may act independently as modulators of the Ca, 1.2 channel.

At present, the prevailing view suggests that AID is a constitutive binding site for all known $Ca_{\nu}\beta$ subunits. To further test whether deletion of β_2CED from the β_{2d} subunit interferes with binding to AID, we used the I-II_{AID} peptide (amino acids 418 – 455 of the $\alpha_{1C,77}$ subunit) that harbors AID (amino acids 428 – 445) in its central part and retains binding affinity to $Ca_{\nu}\beta$ subunits (34). To ease IP and detection, I-II_{AID} was tagged at the N terminus with the monomeric m*Venus* protein (29). The mVenus_N-labeled I-II_{AID} was co-expressed with FLAG_N-tagged β_{2d} (Fig. 7*G*, *lane 1*) or $\beta_{2d\Delta CED}$ (*lane 2*) in HEK293 cells. Consistent with the results of electrophysiological experiments (Fig. 7, *A*-*F*), Western blot analysis of co-IP showed that deletion of CED from β_{2d} did not compromise binding of $\beta_{2d\Delta CED}$ to I-II_{AID} as compared with β_{2d} (Fig. 7*G*).

 β_2 CED Supports Ca_v1.2 Channels in the Absence of AID— When mVenus_N- β_2 CED and Biotin_N-I-II_{AID} were co-expressed in HEK293 cells (Fig. 8A), β_2 CED was identified (*lane* 1) on Western blot by monoclonal anti-LC Ab in both the immunoprecipitated (*top left panel*) and input (*top right panel*) fractions. However, I-II_{AID} was detected on the blot by streptavidin only in the input fraction (*bottom panel*). Thus, co-IP analysis indicates that β_2 CED does not bind to AID. These data suggest that β_2 CED exerts its modulation of the Ca_v1.2 channel through interaction with a site(s) other than AID.

To confirm this conclusion, we abolished binding of the β subunit MAGUK domain to α_{1C} by the combined substitution with alanine at four key positions (Asp⁴³³, Gly⁴³⁶, Tyr⁴³⁷, and Trp⁴⁴⁰) of the α_{1C} I-II linker (10, 12, 35). Co-IP assay (Fig. 8*B*) confirmed that binding of β_{2d} to I-II_{AID} (*lane 1*) was abolished by the AID mutation independently on the presence (*lane 2*) or absence (*lane 3*) of β_2 CED. The AID mutation was then incorporated into the $\alpha_{1C,77}$ subunit, and the resulting mutant $\alpha_{1C,77AIDM}$ was co-expressed in COS1 cells with $\alpha_2\delta$ and β_{2d} (Fig. 8*C*), $\beta_{2d\Delta CED}$ (Fig. 8*D*), $\beta_{2\Delta g}$ (Fig. 8*E*), or β_2 CED (Fig. 8*F*).

FIGURE 8. Evidence that β_2 CED does not target AID. A, β_2 CED does not bind to AID. mVenus (control, lane ct) or mVenus_N- β_2 CED (lane 1) was co-expressed with Biotin_N-I-II_{AID} in HEK293 cells. Proteins were immunoprecipitated (IP) with polyclonal anti-LC Ab and resolved by SDS-PAGE. mVenus (ct) and β_2 CED (1) were identified on Western blot (IB) by monoclonal anti-LC Ab (top panels), whereas I-II_{AID} was identified by streptavidin (bottom panels). B, combined mutation D433A,G436A,Y437A,W440A of I-II_{AID} (I-II_{AIDM}; see "Experimental Procedures") inhibited binding of β_{2d} . Co-IP of mVenus (*ct*), mVenus_N-I-II_{AID} (lane 1), or mVenus_N-I-II_{AIDM} (lanes 2 and 3) with FLAG_N- β_{2d} (lanes ct, 1 and 2) or FLAG_N- $\beta_{2d\Delta CED}$ (lane 3) was assayed as described in the legend to Fig. 7G. The amount of plasmid DNA (μ g) per transfection reaction is shown in parentheses. C–G, modulation of the $\alpha_{1C,77AIDM}$ channel current by β_{2d} (C), $\beta_{2d\Delta CED}$ (D), $\beta_{2\Delta q}$ (E), β_2 CED (F), or no Ca_v β (G) after co-expression with $\alpha_2 \delta$ in COS1 cells. Shown are representative traces of maximal I_{Ca} recorded in response to a stepwise depolarization to +10 (E) or +30 mV (all other) applied for 600 ms from $V_h = -90$ mV.

Electrophysiological experiments showed that, despite the inhibited binding between MAGUK and AID (Fig. 8*B*), β_{2d} facilitated I_{Ca} through the mutated $\alpha_{1C,77AIDM}$ channel that showed little, if any, inactivation (Fig. 8*C*). As it is shown in Fig. 2*B*, no current could be detected in COS1 cells expressing $\alpha_{1C}/\alpha_2\delta$ in the absence of Ca_v β . The AID mutation did not inhibit conductance completely, but reduced the amplitude of the maximal I_{Ca} induced by β_{2d} to 131 ± 25 pA (n = 5) suggesting that the channel activation outside of AID by the full-size Ca_v β_2 does occur, but is less effective than that with the participation of intact AID. The same conclusion was obtained with $\beta_{2d\Delta CED}$, $\beta_{2\Delta g}$, and β_2 CED. When β_{2d} was substituted for $\beta_{2d\Delta CED}$ (Fig. 8*D*), we observed a functionally active channel that exhibited a slowly inactivating I_{Ca} with an average maximum amplitude of

$Ca_{\nu}\beta_{2}$ Subunit C-terminal Determinant

FIGURE 9. Both β_{2d} and $\beta_{2d\Delta CED}$ bind to the LA/IQ domain independently on AID. mVenus_N- β_{2d} (*lanes* 1 and 3) or mVenus_N- $\beta_{2d\Delta CED}$ (*lanes* 2 and 4) were co-expressed with FLAG_N-LA/IQ in the presence (*lanes* 3 and 4) or absence of mVenus_N-I-II_{AID}. *ct*, control showing lack of interaction between mVenus and FLAG_N-LA/IQ. Upper panels, identification of β_{2d} , $\beta_{2d\Delta CED}$, and I-II_{AID} on Western blot by monoclonal anti-LC Ab. *Lower panels*, identification of LA/IQ by anti-FLAG Ab. Amount of plasmid DNA (μ g) per transfection reaction is shown in *parentheses*. *IB*, immunoblot.

150 ± 24 pA (n = 6). Similar to $\beta_{2\Delta g}$ (Fig. 8*E*), inactivation of a large fraction of I_{Ca} was inhibited by substitution of β_{2d} for β_2 CED (Fig. 8*F*), whereas the average amplitude of the peak I_{Ca} through the $\alpha_{1C,77AIDM}$ channel was smaller (40 ± 15 pA, n = 3). No appreciable modulation of the $\alpha_{1C,77AIDM}$ channel (*i.e.* zero I_{Ca}) was observed in the absence of Ca_v β (Fig. 8*G*). Thus, inhibition of the MAGUK domain binding to AID did not abolish the sensitivity of the channel to β_2 CED. These data confirm that essential regulatory properties of Ca_v β are AID-independent (17) and show that β_2 CED can serve as a weak I-II linker-independent activator of the Ca_v1.2 channel even when AID is mutated causing large conformational changes in the I-II loop.

Analysis of β_2 CED Interaction with the LA/IQ Region of α_{1C} — A meaningful characterization of the β_2 CED modulation of the channel requires identification of its functional target. A recent report (36) demonstrated that the N-terminal domain of MAGUK in Ca_v β binds to the α_{1C} subunit C-terminal region (amino acids 1571–1636 in $\alpha_{1C,77}$) that is involved in CaMmediated CDI regulation and includes LA and IQ loci of interaction with apo-CaM and Ca²⁺/CaM, respectively (37) (Fig. 1). Because β_2 CED does not support CDI, we tested β_{2d} (containing β_2 CED) and $\beta_{2d\Delta CED}$ (lacking β_2 CED) for binding to LA/IQ. Co-IP analysis showed (Fig. 9) that LA/IQ binds β_{2d} and $\beta_{2d\Delta CED}$ independently on the presence of I-II_{AID}; moreover, β_{2d} and $\beta_{2d\Delta CED}$ bound to LA/IQ do not form triple complexes with I-II_{AID}.

We then tested β_2 CED for binding to LA/IQ. The FLAG_Ntagged LA/IQ domain was co-expressed with mVenus_N- β_2 CED (Fig. 10) in the presence (*lanes 1* and 2) or absence of ECFP_N-CaM (*lanes 3* and 4). To assess for Ca²⁺ dependence of binding, cells were permeabilized for external Ca²⁺ before co-IP by incubating with ionophore ionomycin (5 μ M) in the bath medium containing 2 mM EGTA (*lanes 1* and 3) or 2 mM Ca²⁺ (*lanes 2* and 4). Co-IP analysis confirmed that β_2 CED binds to LA/IQ independently on Ca²⁺ or co-expressed CaM.

Is LA/IQ the only region necessary for β_2 CED action? To answer this question, we deleted LA/IQ from the $\alpha_{1C,77}$ subunit and co-expressed the resulting $\alpha_{1C,77\Delta LK}$ mutant with $\alpha_2\delta$ and β_{2d} or β_2 CED (Fig. 11*A*). β_{2d} modulated the channel via

$Ca_{\nu}\beta_{2}$ Subunit C-terminal Determinant

FIGURE 10. β_2 CED binds to LA/IQ domain independently on Ca²⁺ and CaM. FLAG_N-LA/IQ was co-expressed with mVenus (control, *lane ct*) or mVenus_N- β_2 CED (*lanes* 1–4) in the presence (*lanes* 1 and 2) or absence (*lanes* 3 and 4) of ECFP_N-CaM. Before co-IP, cells were incubated for 5 min in 10 mm HEPES, 150 mm NaCl (pH 7.4), containing 5 μ m of ionomycin and either 2 mm EGTA (*lanes* 1 and 3) or 2 mm CaCl₂ (*lanes* 2 and 4). Proteins were co-IP with anti-FLAG Ab and resolved by SDS-PAGE. Upper panels, identification of CaM and β_2 CED on Western blot by monoclonal anti-LC Ab (*lanes* 1–4). Lower panels, identification of LA/IQ by anti-FLAG Ab. The amount of plasmid DNA (μ g) per transfection reaction is shown in parentheses.

FIGURE 11. Functional assessment of the role of LA/IQ in modulation of the Ca_v1.2 calcium channel by β_2 CED. *A*, deletion of LA/IQ from $\alpha_{1C,77}$ abolished facilitation of the $\alpha_{1C,77\Delta LK}$ channel I_{Ca} gating by β_2 CED, but not by β_{2d} . $\alpha_{1C,77\Delta LK}$ was co-expressed in COS1 cells with $\alpha_2\delta$ in the presence of mVenus_N- β_{2d} (panel a) or mVenus_N- β_2 CED (panel b). *B* and *C*, β_2 CED supports gating of the IQ-mutated $\alpha_{1C,77L}$ channel but not the LA-mutated $\alpha_{1C,77K}$ channel. $\alpha_{1C,77L}$ (*B*) or $\alpha_{1C,77K}$ (*C*) was co-expressed in COS1 cells with $\alpha_2\delta$ in the absence (panels a) or presence (panels b) of mVenus_N- β_2 CED. *D*, evidence that β_{2d} supported I_{Ca} in the $\alpha_{1C,77K}$ (panel a) and $\alpha_{1C,77L}$ (panel b) channels. *E*, simultaneous mutation of AID and deletion of LA/IQ abolished modulation of the $\alpha_{1C,77AIDM/\Delta LK}/\alpha_2\delta$ channel by β_{2d} . Shown are representative traces of maximal I_{Ca} recorded in response to a stepwise depolarization to +30 (*A* and *D*) or +20 mV (*B*, *C*, and *E*) applied for 600 ms from $V_h = -90$ mV.

MAGUK/AID interaction and induced I_{Ca} with an average maximal amplitude \sim 90 ± 25 pA (*panel a*, *n* = 3). Under the same conditions, with β_2 CED no appreciable I_{Ca} was observed on cell depolarization (panel b). This result suggests that the LA/IQ region is the only functional target of the α_{1C} subunit where β_2 CED may exert its action. To test whether LA or IQ determinants of CDI are essential for modulation of the channel by β_2 CED, we examined the effect of β_2 CED on the $\alpha_{1C.77}$ mutants lacking IQ (Fig. 11*B*, $\alpha_{1C,77L}$) or LA (Fig. 11*C*, $\alpha_{1C,77K}$) determinants defined in Fig. 1. In the absence of $Ca_v\beta$, none of the tested channels showed appreciable I_{Ca} in response to V_t = +20 mV applied from $V_h = -90$ mV for 600 ms (Fig. 11, B and *C*, *panels a*). Co-expression of β_2 CED induced I_{Ca} only with $\alpha_{1C.77L}$ (average maximal amplitude \sim 208 ± 28 pA, *n* = 5, see Fig. 11B, panel b) indicating that it is the LA determinant of CDI that is the functional target of β_2 CED modulation of the channel. Under the same conditions, β_{2d} supported I_{Ca} through both $\alpha_{1C,77K}$ (Fig. 11*D*, *panel a*; average maximal amplitude 231 ± 13 pA, n = 14) and $\alpha_{1C,77L}$ channels (Fig. 11D, panel b; average

maximal amplitude 389 ± 24 pA, n = 8). However, mutation of AID combined with the deletion of LA/IQ from the α_{1C} subunit ($\alpha_{1C,77AIDM/ALK}$) completely inhibited modulation of the channel by β_{2d} (Fig. 11*E*).

DISCUSSION

Our study revealed that modulation of Ca_v1.2 channels by large $Ca_{v}\beta_{2}$ subunits is mediated by inputs from multiple binding sites. There are at least three interactions between α_{1C} and $Ca_{v}\beta_{2}$ subunits (Fig. 12, A-C) that induce activity of the channel not only jointly, but also when any two of the interactions are disrupted by mutations of α_{1C} . The Ca_v1.2 channel modulation common to all large $Ca_{\nu}\beta$ subunits is supported by the binding of the central MAGUK domain to the AID site of the α_{1C} subunit I-II linker (4) (Fig. 12A). This interaction stabilizes the functional conformation of AID (and, respectively, the I-II linker), as well as provides specific orientation of the rigid core of Ca, β important for multiple isoform-specific interactions leading to differential modulation of the channel (15, 17). However, disruption of this interaction by the mutation of AID (Fig. 8B) does not prevent activation of the channel by $Ca_v\beta$ that relies on two other α_{1C} determinants located in the LA-IQ region (Figs. 5 and 8, C, *D*, and *F*). Deletion of these LA/IQ

	α_{1C}/β	interactio	on:		
A maguk/aid	SI	B 13/IQ		$\underset{\beta_2 \text{CED/LA}}{C}$	
H ₂ N GK		GK SH3)	GK H3 NI CED LA IQ	H ₂
Channel	А	В	С	$I_{Ca}/I_{Ca}(\beta_{2d})^*$	Fig.
$\alpha_{1C,77}/\alpha_2\delta/\beta_{2d}$	+	+	+	1.00	7 <i>A</i>
$\alpha_{1C,77}/\alpha_2\delta/\beta_{2d\Delta CED}$	+	+	-	0.72	7B
$\alpha_{1C77,AIDM}/\alpha_2\delta/\beta_{2d}$	-	+	+	0.20	8C
$\alpha_{1C77,AIDM}/\alpha_2\delta/\beta_{2d\Delta CED}$	-	+	-	0.23	8D
$\alpha_{1C77,AIDM}/\alpha_2\delta/\beta_2CED$	-	-	+	0.06	8F
$\alpha_{1C,77}/\alpha_2\delta/\beta_2CED$	-	-	+	0.19	5
$\alpha_{1C,77AIDM/\Delta LK}/\alpha_2\delta/\beta_{2d}$	-	-	-	-	11E
$\alpha_{1C,77\Delta LK}/\alpha_2\delta/\beta_2CED$	-	-	-	-	11 <i>A</i> (b)
$\alpha_{1C,77\Delta LK}/\alpha_2\delta/\beta_{2d}$	+	-	-	0.14	11 <i>A</i> (a)
$\alpha_{1C,77L}/\alpha_2\delta/\beta_2CED$	-	-	+	0.32	11 <i>B</i> (b)
$\alpha_{1C,77L}/\alpha_2\delta/\beta_{2d}$	+	-	+	0.60	11 <i>D</i> (b)
$\alpha_{1C,77K}/\alpha_2\delta/\beta_2CED$	-	-	-	-	11 <i>C</i> (b)
$\alpha_{1C,77K}/\alpha_2\delta/\beta_{2d}$	+	+	-	0.36	11 <i>D</i> (a)

FIGURE 12. Simplified diagrams of the three $Ca_V\beta_2/\alpha_{1C}$ interactions. A, MAGUK/AID (4, 10–12); B, SH3/LA/IQ (36); C, β_2 CED/LA. For clarity, potential interaction motifs are shown with sizes not to scale. Because the number of $Ca_v\beta$ per functional channel is not yet known, these schematic interactions are not unified into a single regulatory model. In the *lower part*, the mutated channels, implemented $Ca_V\beta_2/\alpha_{1C}$ interactions, relative size of I_{Ca} (*asterisk*) (normalized to those through the $\alpha_{1C,77}/\alpha_2\delta/\beta_{2d}$ channel) as well as references to the respective figure are listed.

determinants partially inhibited activity of the channel in the presence of β_{2d} as can be seen from the smaller I_{Ca} amplitude (Fig. 11*A*, *panel a*). A dynamic Ca²⁺-dependent interaction between the N-terminal SH3 region of MAGUK and the IQ domain of the α_{1C} subunit (36) (Fig. 12*B*) appears to also be common to all large Ca_v β subunits. This interaction alone is sufficient to support I_{Ca} (Fig. 8*D*).

In this study, we localized the third molecular determinant of the Ca_v1.2 channel modulation, β_2 CED (Fig. 12*C*), which is specific only to $Ca_v\beta_2$ (Fig. 4) and resides in the C termini of β_{2a} , β_{2b} , β_{2c} , β_{2d} , β_{2e} , β_{2f} , and $\beta_{2\Delta g}$ subunits. Thus, β_2 CED represents a functional element of the Cav1.2 modulation that is conserved in primary cardiac $Ca_{\nu}\beta_{2}$ subunits. In the case of full size $Ca_v\beta_2 (\beta_{2a}-\beta_{2e})$ (20), β_2CED acts in synergy with other determinants, as seen from the ability of β_2 CED and $\beta_{2d\Delta CED}$ to support I_{Ca} with different properties (Figs. 5 and 7). However, β_2 CED may induce activity of the channel independently on MAGUK, *i.e.* either alone (Fig. 5) or in the context of "short" β_2 subunits, as in the case of the naturally occurring $\beta_{2\Delta g}$ subunit (19) (Fig. 8*E*). Similar to other $Ca_v\beta$ subunits, β_2CED activates the channels by binding to α_{1C} (Fig. 3F) and targeting to PM (Fig. 3E), but does not support CDI (Fig. 5D). It appears that β_2 CED affects voltage gating of the channel. Indeed, similar to β_{2d} (Fig. 7*C*), the β_2 CED-modulated channel has the maximum *I-V* curve at +40 mV (Fig. 5*D*), whereas deletion of β_2 CED from β_{2d} shifted the voltage dependence of I_{Ca} by 20 mV to lower potentials (Fig. 7D). We find that β_2 CED binds to the LA/IQ

$Ca_{\nu}\beta_{2}$ Subunit C-terminal Determinant

region of the α_{1C} subunit C-terminal tail in a Ca²⁺- and CaMindependent manner and needs the LA, but not IQ, motif to activate the channel (Fig. 10). This is the first observation of the Ca_v β_2 subunit regulation of the Ca_v1.2 calcium channel that does not rely on Ca_v β /AID interaction.

Although β_2 CED did not bind to AID (Fig. 8*A*), mutation of AID interfered with the interaction of the channel with β_2 CED that was reflected in the smaller amplitude of I_{Ca} (*cf.* Figs. 5*A* and 8*F*). This result points to high sensitivity of all three $\alpha_{1C}/$ Ca_v β_2 interactions (Fig. 12) to the conformation of AID that is probably a key component of mutually dependent determinants of channel regulation (7, 24).

Another important conclusion from our study is that CDI does not depend solely on the α_{1C} subunit. Indeed, co-expression of intact α_{1C} and $\alpha_2\delta$ subunits with β_2 CED generates the channel lacking CDI (Figs. 5 and 6). It is known that CDI is mediated by interactions of CaM with two adjacent sites (LA and IQ) of the α_{1C} subunit C terminus (for review, see Ref. 38). We found that CDI ultimately requires both MAGUK/AID and SH3/IQ interactions (Fig. 12, *A* and *B*). Thus the role of Ca_v β , AID, and LA/IQ interactions in the ensemble of mutually coordinated determinants of CDI is essential.

The exact number of $Ca_{\nu}\beta$ subunits (of the same or different type) that bind to an individual α_{1C} subunit is unknown. Results in Fig. 9 show that β_{2d} is not involved in a simultaneous binding to LK and AID, although this subunit can be engaged in all three types of interactions shown in Fig. 12. Therefore, it is possible that there is more than one $Ca_{\nu}\beta_2$ subunit interacting with the same α_{1C} . On the other hand, if $Ca_{\nu}\beta$ does dissociate from the AID of the functional channel (39), then it is possible that modulation of the channel may be mediated by a single $Ca_{\nu}\beta_2$ molecule alternating between AID and LA/IQ sites. An additional complexity (36) to this general picture may be brought about by the N-terminal palmitoylation site known to anchor the β_{2a} subunit in PM (40).

Taken together, our results provide new insight into potential role(s) of β_2 CED in modulation of Ca_v1.2 channels. Ca_v β_2 is a major cardiac β subunit and its splice variation is an important correlate of the Ca, 1.2 calcium channel regulation (20, 41). One of the most puzzling questions raised by our study is why $Ca_{\nu}\beta_{2}$ contains more than one α_{1C} interaction motif. One possible reason for this complexity may be associated with the role of β_2 CED in additional tuning of the voltage dependence of the current (20). Indeed, results of electrophysiological measurements (Fig. 7) show that deletion of β_2 CED from β_{2d} significantly changed kinetics of inactivation of I_{Ca} and shifted the peak of the I-V curve by 20 mV toward more negative potentials. Another reason may be that differential, tissue-specific splicing of the $Ca_{\nu}\beta_2$ gene (18) may generate subsets of the Ca_v1.2 calcium channel modulated only through β_2 CED. These channels do not support CDI and generate small, but longlasting Ca^{2+} currents. It is usually assumed that I_{Ca} is rapidly and fully inactivated, but our results raise the hypothesis that Ca^{2+} signaling in human cardiac cells expressing small $Ca_{\nu}\beta_{2}$ subunits (19) may involve Ca^{2+} -insensitive Ca_v 1.2 channels in addition to L-type channels regulated by CDI. One possibility is that Ca²⁺ channels that rely on β_2 CED-dependent, MAGUKindependent modulation in cardiac muscle cells may account

$Ca_{v}\beta_{2}$ Subunit C-terminal Determinant

for the prolongation of L-type I_{Ca} and therefore contribute to the balance that controls the shape of the action potential plateau. Whichever role of β_2 CED is predominant, it may be a new potential pharmacological target.

Acknowledgments—We thank Dr. S. S. Vogel (NIAAA, National Institutes of Health) for the gift of mVenus C1 plasmid, Dr. Kuanghueih Chen (NIA, National Institutes of Health) for the gift of pFLAG-2AB-pcDNA3, and Dr. Josephine Egan (NIA) for critically reading the manuscript.

REFERENCES

- Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T., and MacKinnon, R. (2002) Nature 417, 523–526
- 2. Catterall, W. A. (2000) Annu. Rev. Cell Dev. Biol. 16, 521-555
- García, R., Carrillo, E., Rebolledo, S., García, M. C., and Sánchez, J. A. (2002) J. Physiol. (Lond.) 545, 407–419
- 4. Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T. P., and Campbell, K. P. (1994) *Nature* **368**, 67–70
- 5. Doyle, D. A., Morais Cabral, J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) *Science* **280**, 69–77
- 6. Shi, C., and Soldatov, N. M. (2002) J. Biol. Chem. 277, 6813-6821
- Stotz, S. C., Jarvis, S. E., and Zamponi, G. W. (2004) J. Physiol. (Lond.) 554, 263–273
- Hanlon, M. R., Berrow, N. S., Dolphin, A. C., and Wallace, B. A. (1999) FEBS Lett. 445, 366–370
- Opatowsky, Y., Chomsky-Hecht, O., Kang, M.-G., Campbell, K. P., and Hirsch, J. A. (2003) J. Biol. Chem. 278, 52323–52332
- Chen, Y.-h., Li, M.-h., Zhang, Y., He, L.-l., Yamada, Y., Fitzmaurice, A., Shen, Y., Zhang, H., Tong, L., and Yang, J. (2004) *Nature* 429, 675–680
- Opatowsky, Y., Chen, C.-C., Campbell, K. P., and Hirsch, J. A. (2004) Neuron 42, 387–399
- Van Petegem, F., Clark, K. A., Chatelain, F. C., and Minor, D. L., Jr. (2004) Nature 429, 671–675
- Beurg, M., Sukhareva, M., Ahern, C. A., Conklin, M. W., Perez-Reyes, E., Powers, P. A., Gregg, R. G., and Coronado, R. (1999) *Biophys. J.* 76, 1744–1756
- Cens, T., Mangoni, M. E., Richard, S., Nargeot, J., and Charnet, P. (1996) *Pflügers Arch. Eur. J. Physiol.* **431**, 771–774
- Kobrinsky, E., Kepplinger, K. J. F., Yu, A., Harry, J. B., Kahr, H., Romanin, C., Abernethy, D. R., and Soldatov, N. M. (2004) *Biophys. J.* 87, 844–857
- 16. Dolphin, A. C. (2003) J. Bioenerg. Biomembr. 35, 599-620
- Maltez, J. M., Nunziato, D. A., Kim, J., and Pitt, G. S. (2005) Nat. Struct. Mol. Biol. 12, 372–377
- 18. Foell, J. D., Balijepalli, R. C., Delisle, B. P., Yunker, A. M. R., Robia, S. L.,

Walker, J. W., McEnery, M. W., January, C. T., and Kamp, T. J. (2004) *Physiol. Genomics* **17**, 183–200

- Harry, J. B., Kobrinsky, E., Abernethy, D. R., and Soldatov, N. M. (2004) J. Biol. Chem. 279, 46367–46372
- Colecraft, H. M., Alseikhan, B., Takahashi, S. X., Chaudhuri, D., Mittman, S., Yegnasubramanian, V., Alvania, R. S., Johns, D. C., Marban, E., and Yue, D. T. (2002) *J. Physiol. (Lond.)* 541, 435–452
- Soldatov, N. M., Bouron, A., and Reuter, H. (1995) J. Biol. Chem. 270, 10540-10543
- 22. Carlsson, J., Drevin, H., and Axén, R. (1978) Biochem. J. 173, 723-737
- Xiang, C. C., Mezey, E., Chen, M., Key, S., Ma, L., and Brownstein, M. J. (2004) *Nucleic Acids Res.* 32, e185
- Kobrinsky, E., Tiwari, S., Maltsev, V. A., Harry, J. B., Lakatta, E., Abernethy, D. R., and Soldatov, N. M. (2005) *J. Biol. Chem.* 280, 12474–12485
- Berjukow, S., Döring, F., Froschmayr, M., Grabner, M., Glossmann, H., and Hering, S. (1996) Br. J. Pharmacol. 118, 748–754
- Kurejova, M., Uhrik, B., Sulova, Z., Sedlakova, B., Krizanova, O., and Lacinova, L. (2007) *Eur. J. Pharmacol.* 567, 10–18
- Meir, A., Bell, D. C., Stephens, G. J., Page, K. M., and Dolphin, A. C. (2000) Biophys. J. 79, 731–746
- Ravindran, A., Lao, Q. Z., Harry, J. B., Abrahimi, P., Kobrinsky, E., and Soldatov, N. M. (2008) Proc. Natl. Acad. Sci. U.S.A., in press
- Koushik, S. V., Chen, H., Thaler, C., Puhl, H. L., III, and Vogel, S. S. (2006) Biophys. J. 91, L99–101
- Zhou, J., Olcese, R., Qin, N., Noceti, F., Birnbaumer, L., and Stefani, E. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2301–2305
- Peterson, B., Lee, J., Mulle, J., Wang, Y., de Leon, M., and Yue, D. (2000) Biophys. J. 78, 1906–1920
- Cens, T., Restituito, S., Galas, S., and Charnet, P. (1999) J. Biol. Chem. 274, 5483–5490
- Liang, H., DeMaria, C. D., Erickson, M. G., Mori, M. X., Alseikhan, B. A., and Yue, D. T. (2003) *Neuron* 39, 951–960
- Takahashi, S. X., Miriyala, J., Tay, L. H., Yue, D. T., and Colecraft, H. M. (2005) J. Gen. Physiol. 126, 365–377
- 35. Seu, L., and Pitt, G. S. (2006) J. Gen. Physiol. 128, 605-613
- Zhang, R., Dzhura, I., Grueter, C. E., Thiel, W., Colbran, R. J., and Anderson, M. E. (2005) *FASEB J.* 19, 1573–1575
- Romanin, C., Gamsjaeger, R., Kahr, H., Schaufler, D., Carlson, O., Abernethy, D. R., and Soldatov, N. M. (2000) *FEBS Lett.* 487, 301–306
- 38. Morad, M., and Soldatov, N. (2005) Cell Calcium 38, 223-231
- Gerster, U., Neuhuber, B., Groschner, K., Striessnig, J., and Flucher, B. E. (1999) J. Physiol. (Lond.) 517, 353–368
- Qin, N., Platano, D., Olcese, R., Costantin, J. L., Stefani, E., and Birnbaumer, L. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 4690 – 4695
- Hullin, R., Khan, I. F. Y., Wirtz, S., Mohacsi, P., Varadi, G., Schwartz, A., and Herzig, S. (2003) *J. Biol. Chem.* 278, 21623–21630