Free Ammonia Inhibition of Algal Photosynthesis in Intensive Cultures[†]

Y. AZOV[‡] and JOEL C. GOLDMAN*

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

Received 4 May 1981/Accepted 16 December 1981

The effect of free NH₃ inhibition on short-term photosynthesis was investigated in three microalgal species: the freshwater chlorophyte Scenedesmus obliguus, the marine diatom *Phaeodactylum tricornutum* and the marine chlorophyte Dunaliella tertiolecta. By performing a series of assays at various concentrations of added NH₄Cl and culture pH, we demonstrated that the inhibitory compound was free NH_3 and that pH played no role in determining the magnitude of inhibition, other than in establishing the degree of dissociation of nontoxic NH_4^+ to toxic NH_3 . When corrections were made for pH, all three species displayed the same sigmoidal response curve to free NH₃ concentration; 1.2 mM NH₃ led to 50% reduction in photoassimilation of ¹⁴C. Based on literature values, some marine phytoplankton appear to be significantly more sensitive to free NH_3 than were the test species, which are noted for their excellent growth characteristics. However, the combination of low algal biomass and strong pH buffering commonly found in most marine and many freshwater environments probably limits the possibilities for NH_3 toxicity to low alkalinity freshwaters and intensive algal cultures in which NH_4^+ is the main source of N. Such conditions occur commonly in algal wastewater treatment systems.

Although ammonia is thought to be an excellent source of nitrogen for algal growth (13), virtually no distinction is made between ionic NH_4^+ and free NH_3 as N sources, and little is known about which chemical species is the substrate for assimilation or how the actual transport into the cell occurs (15). Part of this problem arises because the equilibration between NH_4^+ and NH_3 via the reaction

$$NH_4^+ + OH^- \rightleftharpoons NH_3 + H_2O$$

pK_a = 9.25 (25°C) (1)

is so rapid that it is impossible to distinguish on the basis of pH which form of N actually is taken up. On the other hand, the uncoupling effect of ammonia on photosynthetic processes in isolated chloroplasts is a well-established phenomenon (3, 5). Inhibitory effects of ammonia on algal growth and photosynthesis have been occasionally reported (1, 2, 14, 16, 17). However, difficulties in separating the effect of pH on the ratio of NH₃ to NH₄⁺ from numerous other adverse effects on growth that are related to increasing pH have plagued most researchers. Moreover, virtually no quantitative data exist to relate free NH₃ concentration calculated for pH to the inhibition of algal metabolism. In this study, by

† Contribution no. 4879 from the Woods Hole Oceanographic Institution.

[‡] Present address: Israel Oceanographic & Limnological Research, Haifa 31080, Israel.

varying both the pH and the addition of NH_4Cl , we examined the effect of NH_3 concentration on carbon assimilation in the freshwater alga *Scen*edesmus obliquus and two marine algae, *Phae*dodactylum tricornutum and Dunaliella tertiolecta.

MATERIALS AND METHODS

Cultures of the marine species *Phaeodactylum tri*cornutum (TFX-1) Bohlin and *Dunaliella tertiolecta* (Dun) Butcher were obtained from the culture collection of R. R. L. Guillard at the Woods Hole Oceanographic Institution, and the freshwater chlorophyte *Scenedesmus obliquus* (Turpin) Kützing Kutz was obtained from the laboratory of M. Gibbs at Brandeis University.

Each species was first grown to steady state at different pH values in continuous cultures maintained at a dilution rate of 0.5 day^{-1} . Medium for the marine species was synthetic seawater containing 400 mM NaCl, 20 mM MgCl₂, 20 mM MgSO₄, 10 mM CaCl₂, 10 mM KCl, 0.8 mM KBr, 0.2 mM H₃BO₃, 2 mM NaHCO₃, 5 mM NaNO₃, 0.5 mM KH₂PO₄, and vitamins and trace metals plus the sodium iron salt of EDTA in a twofold dilution of the amount specified in *f*-medium (10). The freshwater medium contained 0.4 mM MgCl₂, 0.4 mM MgSO₄, 0.2 mM CaCl₂, 2 mM NaHCO₃, 12 mM NaNO₃, 1 mM KH₂PO₄, and the same concentrations of EDTA and trace metals as found in the seawater medium.

The continuous culture apparatus (a bank of six 0.5liter cultures), the culturing protocols, and the experimental analyses were virtually identical to those described previously (9). The cultures were grown under continuous illumination with cool white fluorescent light (3,000 J of visible light per m^2 per min) and temperature control (20°C for the marine algae and 25°C for *S. obliquus*); they were mixed with magnetic bar stirring.

Culture pH was maintained at various levels in the range 8.0 to 9.5 with a pH-stat system described previously (7a). Fluctuations in pH did not exceed ± 0.1 units from the set value. Upon reaching steady state, samples were withdrawn from each culture and used for a series of short-term incubations to measure photoassimilation of inorganic carbon during exposure to various concentrations of NH₄Cl.

Appropriate buffers were added to the assay chambers during the incubation to maintain constant pH that was similar to the pH of the steady-state culture. The buffers employed were HEPPS (Research Organics, Cleveland, Ohio) for pH 8.0, BICINE (Sigma Chemical Co., St. Louis, Mo.) for pH 8.5, and AMPSO (Research Organics) for pH 9.0 to 9.5. All buffers were added to obtain a final concentration of 10 to 20 mM, depending on algal biomass concentration in the assay (biomass levels were varied in some experiments to determine whether the degree of NH₃ toxicity was dependent on algal concentration). We were unable to carry out incubations at pH values above 9.5 because the only appropriate buffers, CAPS (Sigma, $pK_a = 10.4$) and CHES (Sigma, $pK_a = 9.3$), were toxic to all three test species. In each experiment an unbuffered control sample was used to test for buffer toxicity. Variations in pH during incubations did not exceed ± 0.05 units. The experimental assays, in final volume of 40 ml, were placed in 150-ml, water-jacketed, glass incubation vessels (light intensity and temperature were identical to steady-state cultures), and NaH14CO3 (New England Nuclear Corp., Boston, Mass.) was added to give a final radioisotope concentration of about 0.05 µCi/µmol of the total dissolved inorganic carbon. During the incubation the contents were gently mixed with small magnetic stirring bars. Samples (1 ml) were harvested every 10 min for the first hour of the assay, and a final sample was taken at 90 min. The samples were transferred to a scintillation vial containing 2 ml of methanol (acidified with 5% acetic acid); the contents were evaporated to dryness under an infrared lamp and resuspended in 1 ml of distilled water, and 10 ml of scintillation fluid (Handifluor) was added. Radioactivity was measured by liquid scintillation counting on a Beckman LS-100C instrument. Algal particulate carbon was analyzed on precombusted filters (Whatman GF/C) with a Perkin Elmer 240 elemental analyzer. Total dissolved inorganic carbon was measured on a Dohrmann PR-1 analyzer (7).

The effect of NH₃ concentrations on algal photosynthesis was determined by comparing the linear regression analyses of the time course uptake curve. Linear ¹⁴C uptake during the incubation period was a prerequisite for making this determination. Concentrations of NH₃ were determined from the pH and the ionization coefficient for equation 1, corrected for temperature and salinity (4, 6).

Most of the experiments were performed with S. obliquus and P. tricornutum in the pH range 8.0 to 9.5 and with NH₄Cl additions varying from 0.5 to 16 mM. One set of experiments at pH 9.0 and with NH₄Cl additions ranging from 2 to 8 mM was performed with D. tertiolecta.

FIG. 1. Time course uptake of ${}^{14}CO_2$ by S. obliquus exposed to various additions of NH₄Cl. (A) pH 8.9; \oplus , no added NH₄Cl (control); \triangle , 2 mM NH₄Cl; \bigcirc , 3 mM NH₄Cl; \blacksquare , 4 mM NH₄Cl; \triangle , 6 mM NH₄Cl; \bigtriangledown , 8 mM NH₄Cl. (B) pH 8.4; \oplus , no added NH₄Cl (control); \triangle , 8 mM NH₄Cl; \bigcirc , 10 mM NH₄Cl; \blacksquare , 12 mM NH₄Cl; \triangle , 14 mM NH₄Cl.

RESULTS

Linearity of ¹⁴C uptake. We observed linearity of ¹⁴C uptake in each 90-min incubation regardless of algal species, pH, or concentration of added NH₄Cl (Fig. 1). However, as exemplified by the results of the *S. obliquus* assays at pH 8.9 (Fig. 1A) and pH 8.4 (Fig. 1B), uptake rates of ¹⁴C at each pH and biomass level decreased systematically with increasing concentration of added NH₄Cl.

Effect of pH on NH₄Cl inhibition. By comparing the ¹⁴C uptake rates at a given pH for increased concentrations of added NH₄Cl with the rate for no NH₄Cl addition (ratio of V to V_{max}), we observed a dramatic effect of pH on the inhibition of ¹⁴C uptake by NH₄Cl addition for S. obliguus (Fig. 2). For example, exposure

FIG. 2. Effect of added NH₄Cl concentration on the ratio of V to V_{max} for S. *obliquus* incubated for 90 min at various pHs. V_{max} is the rate of ¹⁴CO₂ in the absence of added NH₄Cl. Symbols: \triangle , pH 8.0; \blacktriangle , pH 8.4; \bullet , pH 8.9; \bigcirc , pH 9.4.

FIG. 3. Effect of calculated free NH₃ concentration on the ratio of V to V_{max} for S. obliquus incubated for 90 min at various pHs. Free NH₃ concentration was determined from NH₄Cl and pH data in Fig. 2. Symbols: Δ , pH 8.0; \blacktriangle , pH 8.4; \bigoplus , pH 8.9; \bigcirc , pH 9.4.

to 10 mM NH₄Cl at pH 8.0 led to a slight reduction in the ratio of V to V_{max} to 0.95, but this same NH₄Cl concentration at pH 8.4 resulted in a dramatic decrease in the ratio of V to V_{max} to 0.50. To reduce the ratio of V to V_{max} to 0.50 at pH 8.9 required only 3.0 mM NH₄Cl (Fig.2).

NH₃ inhibition. When the relative uptake results shown in Fig. 2 were plotted as a function of free NH₃ concentration calculated from culture pH rather than as the concentration of added NH₄Cl, a single curve relating the ratio of V to V_{max} with NH₃ concentration in the assay chamber was formed (Fig. 3; each point in Fig. 3 represents one point from Fig. 2; the same symbols are used). The curve represented a modified threshold response in which exposure up to ~0.5 mM NH₃ caused no inhibition of ¹⁴C uptake, but between 0.5 and 2.0 mM NH₃ suppression of ¹⁴C uptake increased dramatically so that the ratio of V to V_{max} was <0.05 at free NH₃ concentrations >2.0 mM.

The inhibitory effect of NH₃ on the carbon uptake rates of both marine algae, *P. tricornutum* and *D. tertiolecta*, seemed to follow an identical response curve as found for *S. obliquus*. As seen in Fig. 4, the relative uptake data for the marine species fit the response curve generated from the experiments with *S. obliquus* very well.

We were unable to discern an effect of algal biomass concentration on ammonia photosynthetic inhibition expressed as a reduction in the ratio of V to V_{max} . Doubling the biomass concentration of S. obliquus at either pH 8.4 or 8.9 did not change the amount of NH₃ necessary to reduce the ratio of V to V_{max} to levels of 0.9, 0.5, or 0.1 (Table 1).

FIG. 4. Effect of calculated free NH₃ concentration on the ratio of V to V_{max} for test algae incubated for 90 min at various pHs. Solid curve is inhibition curve for S. obliquus transposed from Fig. 3. Symbols: •, P. tricornutum; \bigcirc , D. tertiolecta.

DISCUSSION

Although free NH₃ generally is believed to act as an inhibitor of algal photosynthesis, to date most of the evidence to support this conclusion has been circumstantial. Lack of precise pH control, together with difficulties in distinguishing between responses to NH₄⁺ and NH₃ on the basis of pH and in separating other pH-related effects from those involved with the dissociation of NH₄⁺ (equation 1), has prevented a clear interpretation of NH₃ toxicity data.

One of the possible effects of high pH on algal photosynthesis is the reduction of free CO_2 in water (Y. A., manuscript in preparation). To eliminate such an interpretation of our results, we did not compare absolute carbon uptake rates but only relative uptake rates ($V:V_{max}$),

TABLE 1. Effect of algal biomass concentration at two pH values on NH₃ concentration required to

reduce ¹⁴C uptake rate with NH₄Cl addition relative to maximum uptake rate without NH₄Cl addition for cultures of S. obliguus^a

Ratio of V to V _{max}	NH ₃ conc. (mM)			
	pH 8.4		рН 8.9	
	78 mg of PC per liter	158 mg of PC per liter	84 mg of PC per liter	153 mg of PC per liter
0.9	0.4	0.6	0.7	0.7
0.5	1.4	1.3	1.0	1.2
0.1	1.9	1.9	1.8	N.M. ^b

^{*a*} Units: algal biomass concentration, milligrams of algal particulate carbon per liter; NH₃ concentration, millimolar; ¹⁴C uptake rate with NH₄Cl addition, V; uptake rate without NH₄Cl addition, V_{max} .

^b N.M., Not measured.

where V_{max} was determined for each pH value tested from the control assay (without NH₄Cl addition). This way we were able to demonstrate that NH₃ inhibition of algal photosynthesis is not a pH-dependent phenomenon, but rather the dissociation of NH₄⁺ as a function of pH is the main determinant of how much NH₃ is available to inhibit photosynthesis.

The biochemical basis for NH₃ inhibition of algal photosynthesis remains unclear. The best evidence points toward NH₃ uncoupling of electron transport in photosystem II by the breakdown of proton gradients necessary to drive photophosphorylation (5) or by inhibition via NH₃ competition with H₂O in oxidation reactions leading to O_2 evolution (18), or both. In either case free NH₃ molecules are believed to be the reactive chemical species, a conclusion substantiated by Fig. 3 and 4. Although beyond the scope of this work, the sigmoidal shape of the NH₃ inhibition curve (Fig. 3) is analogous to the type of inhibition curve that results from allosteric interactions between inhibitors and enzymes (12) and thus indicates a complex mode of inhibition. The form of inhibition, however. does not appear to be related to the biomass present or more appropriately, to total cell surface area (Table 1) as has been demonstrated for mercury, chlorine, and chloramine toxicity in phytoplankton (8, 11). Mercury toxicity in phytoplankton involves initial toxicant accumulation through absorptive mechanisms on cell surfaces (11), whereas chlorine and chloramine inhibition is through total oxidation of organic matter (8). Hence, it is not surprising that the inhibitory effects of some toxicants are biomassdependent and that there is no biomass effect on NH₃ toxicity which involves passive transport of NH₃ molecules across cell membranes succeeded by complex enzyme inhibition reactions that are concentration-dependent.

A major difficulty in comparing our NH₃ toxicity results with similar data is that in most previous studies either pH was not rigorously regulated or no attempt was made to measure inhibitory effects on the basis of free NH₃ concentration (estimated from added ammonium salt and culture pH), or both. In addition, many of the assay protocols, including ours, deviate widely from each other, particularly the duration of exposure to NH₄Cl and the light intensity used during the incubation. For example, we observed linear ¹⁴C uptake during relatively short (90-min) incubation periods in response to various additions of NH₄Cl (Fig. 1). However, Abeliovich and Azov (1) have found that longer (5-h) exposure to a given NH₄Cl concentration at a fixed pH led to significant reductions in photosynthesis, thus leading them to suggest that exposure time is a critical factor in defining

FIG. 5. Effect of culture pH on the total ammonia concentration $(NH_4^+ + NH_3)$ required to inhibit photosynthesis of test algae grown at 25°C by 10% (broken curve), 50% (dashed line), and 90% (solid line) level of inhibition as determined by the free NH₃ (data in Fig. 4) required to cause these levels of toxicity.

relationships between NH₃ concentration and inhibition of photosynthesis. Similarly, whereas we used only one light intensity, Admiraal (2) has found a magnifying effect of increasing light intensity on NH₃ toxicity. If this is true, then NH₃ toxicity to microalgae in outdoor conditions, in which both light intensity and exposure duration are unregulated, could be far more severe than represented by the summary NH₃ toxicity curves shown in Fig. 5. In this figure the concentrations of total ammonia (NH₄⁺ + NH₃) required to produce the 10, 50, and 90% levels of inhibition determined from Fig. 4 are plotted as a function of pH.

It is surprising that the two marine and one freshwater test species which belong to different taxonomic orders are inhibited in a similar fashion by free NH₃ (Fig. 4); yet it is difficult to extrapolate these results into a general model of NH₃ toxicity in phytoplankton without more data. A major problem, as mentioned, is the difficulty of comparing our results with the limited NH₃ toxicity data available. However, from our estimates of the free NH₃ concentration necessary to inhibit algal metabolism in previous studies (based on reported pH and added ammonium salts), it appears that some marine phytoplankton are far more sensitive to NH₃ than were the three test species in our study. For example, photosynthesis in a variety of marine diatoms was severely inhibited at free NH₃ concentrations in the range 0.05 to 0.2 mM (2, 14). In the case of the dinoflagellate *Gymnodinium splendens*, exposure to only about 10 μ M free NH₃ was lethal (17).

In most natural waters, particularly the marine environment, the combination of low total ammonia ($NH_4^+ + NH_3$) and relatively neutral pH prevents the development of NH_3 toxicity to phytoplankton. However, in both low carbonate alkalinity freshwaters and intensive microalgal cultures, in which NH_4^+ is the major form of N and bicarbonate is the main source of inorganic carbon, high pH can be expected concomitant with NH_3 toxicity.

The possibilities for extreme NH₃ inhibition are most likely in algal wastewater treatment systems in which millimolar concentrations of total ammonia are typically present in the influent domestic wastewater. For example, when the pH rises to 9.5 and the temperature is 20 to 25°C, only 2 and 3 mM total ammonia will lead to 50 and 90% reductions in photosynthesis, respectively (Fig. 5). Moreover, because the equilibrium in equation 1 is shifted towards increased NH₃ formation with increasing temperature, the problem of NH₃ toxicity in outdoor ponds is magnified considerably during the summer. For example, at 25°C only onethird of the total ammonia is required to produce the same free NH₃ as at 10°C.

Our results clearly demonstrate that the role of pH in NH₃ inhibition of algal metabolism is to establish the concentrations of free NH₃ relative to NH_4^+ via equation 1. Hence, for most situations, NH₃ toxicity will only become important at high pH. For example, according to the summary inhibition curves of Fig. 5, to achieve 50% reduction in algal photosynthesis, more than 15 times less total ammonia is required at pH 10 as is necessary at pH 8. For algal mass culture operation, NH₃ toxicity is a distinct possibility when NH₄⁺ and HCO₃⁻ are major nutrient sources. To avoid such conditions, pH control or substitution of ammonium salts with another suitable N source (e.g., NO_3^- or urea compounds), or both, are required. When algal systems are used for wastewater treatment and the source of N cannot be regulated, pH control will be the only effective method to avoid NH₃ toxicity.

ACKNOWLEDGMENTS

This study was supported by a postdoctoral fellowship from the Rothschild Foundation to Y.A. and by subcontract no. XR-9-91441 from the Solar Energy Research Institute to J.C.G.

The technical assistance of Mark R. Dennett and Carol B. Riley is gratefully acknowledged.

LITERATURE CITED

- Abeliovich, A., and Y. Azov. 1976. Toxicity of ammonia to algae in sewage oxidation ponds. Appl. Environ. Microbiol. 31:801-806.
- Admiraal, W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Mar. Biol. 43:307-315.
- Avron, M., and N. Shavit. 1965. Inhibitors and uncouplers of photophosphorylation. Biochim. Biophys. Acta 109:317-331.
- Bower, C. E., and J. P. Bidwell. 1978. Ionization of ammonia in seawater: effect of temperature, pH, and salinity. J. Fish. Res. Board Can. 35:1012–1016.
- Crofts, A. R. 1966. Uptake of ammonium ion by chloroplasts, and the mechanism of amine uncoupling. Biochem. Biophys. Res. Comm. 24:127-134.
- Emerson, K., R. C. Russo, R. E. Lund, and R. V. Thurston. 1975. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J. Fish. Res. Board Can. 32:2379-2383.
- Goldman, J. C. 1979. Bioengineering aspects of inorganic carbon supply to mass algal cultures, p. 25-32. In Proceedings of the third annual biomass energy systems conference, Report SERI/TP-33-285. Solar Energy Research Institute, Golden, Colo.
- 7a. Goldman, J. C., Y. Azov, C. B. Riley, and M. R. Dennett. 1982. The effect of pH in intensive microalgal cultures. I. Biomass regulation. J. Exp. Mar. Biol. Ecol. 57:1-13.
- Goldman, J. C., and J. A. Davidson. 1977. A physical model of marine phytoplankton chlorination at coastal power plants. Environ. Sci. Technol. 11:908-913.
- Goldman, J. C., and D. G. Peavey. 1979. Steady-state growth and chemical composition of the marine chlorophyte *Dunaliella tertiolecta* in nitrogen-limited continuous cultures. Appl. Environ. Microbiol. 38:894-901.
- Guillard, R. R. L., and J. H. Ryther. 1962. Studies on marine plankton diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.
- Hannen, P. J., N. P. Thompson, C. Patouillet, and P. E. Wilkniss. 1973. ²⁰³Hg as tracer in pigments of *Phaeodactylum tricornutum*. Int. J. Appl. Radiat. Isot. 24:665-670.
- Monod, J., J. Wymon, and J. P. Changeux. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88-118.
- Morris, I. 1974. Nitrogen assimilation and protein synthesis, p. 583-609. *In* W. D. P. Stewart (ed.), Algal physiology and biochemistry. University of California Press, Berkeley.
- Natarajan, K. V. 1970. Toxicity of ammonia to marine diatoms. J. Water Pollut. Control Fed. 42:R184-190.
- Raven, J. A. 1980. Nutrient transport in microalgae. Adv. Microb. Physiol. 21:47-226.
- Shilo, M., and M. Shilo. 1953. Conditions which determine the efficiency of ammonium sulfate in the control of *Prymnesium parvum* in fish breeding ponds. Appl. Microbiol. 1:330–333.
- Thomas, W. H., J. Hastings, and M. Fujita. 1980. Ammonium input to the sea via large sewage outfalls. 2. Effects of ammonia on growth and photosynthesis of southern California phytoplankton cultures. Mar. Environ. Res. 3:291-296.
- Velthuys, B. R. 1980. Mechanisms of electron flow in photosystem II and toward photosystem I. Annu. Rev. Plant Physiol. 31:547-567.