Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1982 Oct;44(4):909–912. doi: 10.1128/aem.44.4.909-912.1982

Concurrent Production and Consumption of Ethanol by Cultures of Pachysolen tannophilus Growing on d-Xylose

Ryszard Maleszka 1, Henry Schneider 1
PMCID: PMC242116  PMID: 16346115

Abstract

Growing cultures of Pachysolen tannophilus concurrently consumed and produced ethanol in the presence of substantial concentrations of d-xylose. Ethanol was also assimilated in the presence of other sugars, the amount depending on the sugar. Less ethanol assimilation occurred with d-glucose than with d-xylose. The rate of ethanol consumption decreased as the concentration of glucose was increased, but some consumption still occurred when 2% glucose was present. The rate increased with the amount of oxygen available to the culture when d-xylose or ethanol was the carbon source. In most instances, estimates of consumption were based on the extent of incorporation of 14C from [1-14C]ethanol into trichloroacetic acid-insoluble material. The results are pertinent to the use of P. tannophilus for the production of ethanol from d-xylose.

Full text

PDF
910

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett J. A. The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem. 1976;32:125–234. doi: 10.1016/s0065-2318(08)60337-6. [DOI] [PubMed] [Google Scholar]
  2. Ciriacy M. Isolation and characterization of further cis- and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Nov;176(3):427–431. doi: 10.1007/BF00333107. [DOI] [PubMed] [Google Scholar]
  3. De Deken R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966 Aug;44(2):149–156. doi: 10.1099/00221287-44-2-149. [DOI] [PubMed] [Google Scholar]
  4. Lutstorf U., Megnet R. Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Physiological control of ADH-2 and properties of ADH-2 and ADH-4. Arch Biochem Biophys. 1968 Sep 10;126(3):933–944. doi: 10.1016/0003-9861(68)90487-6. [DOI] [PubMed] [Google Scholar]
  5. Wang P. Y., Shopsis C., Schneider H. Fermentation of a pentose by yeasts. Biochem Biophys Res Commun. 1980 May 14;94(1):248–254. doi: 10.1016/s0006-291x(80)80213-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES