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ABSTRACT A filamentary model of ‘‘metallic’’ conduc-
tion in layered high temperature superconductive cuprates
explains the concurrence of normal state resistivities (Hall
mobilities) linear in T (T22) with optimized superconductivity.
The model predicts the lowest temperature T0 for which
linearity holds and it also predicts the maximum supercon-
ductive transition temperature Tc. The theory abandons the
effective medium approximation that includes Fermi liquid as
well as all other nonpercolative models in favor of countable
smart basis states.

For a long time it has been known (1) that in high temperature
cuprate superconductors not only are the normal state resis-
tivity r and reciprocal Hall coefficient RH

21 anomalously
linear in T, but also that this linearity is valid over the widest
temperature range for exactly those compositions with the
highest superconductive transition temperatures Tc. Just as the
isotope effect in simple metals provided the decisive clue that
identified electron-phonon interactions as the attraction re-
sponsible for a condensed superconductive Fermion state, so
this coincidence demonstrates that the microscopic mecha-
nism responsible for high temperature superconductivity
(HTSC) in layered cuprates involves peculiar non-Fermi liquid
features of the normal state. Theorists interested in explaining
the microscopic mechanism responsible for the high Tcs of
these materials could not ask for a more dramatic observation
on which to base their analysis. Nevertheless, in spite of many
efforts, no generally accepted explanation for either phenom-
enon is known, so that their concurrence with optimized
superconductivity remains a mystery. The aim of the present
paper is to show that a consistent model based on bridging
interlayer impurities can be constructed that explains quanti-
tatively not only this coincidence, but which also relates it to
a microscopic model that explains a large number of very
accurate measurements of density and temperature exponents
of the metal-insulator transition (MIT) in the relatively simple
case of semiconductor impurity bands where there is good
reason to believe that the dopants are ideally (randomly)
distributed. In this way the credentials of the cuprate impurity
model are corroborated by independent simple impurity band
data, which is very important because the structures of the
cuprates are so complex. The ideas presented here for both
problems are highly controversial and are far from being
generally accepted, and the reasons for this will be discussed,
as they are more important than the formal technical details
of the calculations or the experiments. It should be remarked
that the connection between the MIT and HTSC is not
accidental, but is essential to the theory, and that there is a

good deal of phenomenological evidence that supports such a
relation in compositional trends of Tc (2, 3).

Linear Temperature Dependence of Normal-State
Transport

The simplest explanation for the normal state linearity is that
it arises solely from Fermi factors for a very narrow (width WR)
peak in the density of band states pinned to the Fermi energy
EF, where the scattering rate is band-width-limited and hence
independent of T; in this model linearity is only asymptotic; it
is obtained not down to T 5 0, but only down to T0 5 WRy5
(4, 36). In some materials (1) this will require values of WR as
small as 3 meV, which seems unreasonable when the calculated
cuprate band widths WB (as well as those observed by photo-
emission) are of order 1 eV. A way around this difficulty was
proposed (5, 6) in the context of the characteristically layered
structure of the cuprates, where intrinsic misfit-strain relieving
domain walls in the layers are expected to suppress all intra-
layer conductivity, forcing currents to flow along paths that
pass between layers (and around domain walls) by means of
resonant tunneling (see figure 1 in ref. 7) through impurity
states pinned narrowly at EF by Coulomb forces through what
was subsequently described as an ‘‘anti-Jahn-Teller effect’’ (8).
However, this mechanism itself creates a new difficulty, just as
one would expect for a phenomenon as rare as HTSC. The new
difficulty is that the impurities are randomly distributed, and
it is widely believed by scaling theorists (9) that there are no
band (ballistic or phase-coherent smart) states associated with
random impurity band conductivity. This point has become
especially pivotal in the light of recent experiments on cuprates
(see ref. 10, Wuyts et al. measured a series of YBCO films with
variable oxygen content and defined T0 as the maximum of
drydT; with increasing Tc they found, as have many others (30),
a decreasing T0 that is not much larger than Tc at the optimal
composition) that have shown that defects (such as oxygen
vacancies) affect normal state linearities not only very strongly
but also scalably, which of course is not the case in ballistic
normal metals (but then the latter do not have linearly
temperature-dependent resistivities either!) and certainly not
in diffusive metallic glasses, where Tc is generally very low and
there are only very weak coherency effects.

Quantum Percolation Theory. This brings us to the central
point, which is the development (over a long period of time)
of a new viewpoint that is in excellent agreement with exper-
iment and that says that ballistic (or smart) basis states do exist
for impurity bands in d 5 3 dimensions, but that they are
defined only along filamentary network that separates these
smart states from localized states that coexist at the same
energy (refs. 11–16 and unpublished work). Moreover evenThe publication costs of this article were defrayed in part by page charge
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though there is no algorithm that can be used to compute in
full detail such phase-coherent ‘‘random’’ states explicitly,
their number is still countable. These existence and countabil-
ity arguments have proved to be of great value in recent
analyses of the characteristic exponents for the MIT as ob-
tained in three extremely informative experiments on Si:P
(17), neutron transmutation doped Ge:Ga [both uncompen-
sated (18) and compensated (19)] and antiferromagnetic Ni(S,
Se)2 alloys (20). The details of the comparison between
experiment and theory are lengthy (13–16) and will not be
given here, but two important general points can be men-
tioned. First, in carefully prepared samples (17–20) the density
exponents, which are valid in the very wide asymptotic region
0.01 , (n 2 nc)ync , 0.4, are always observed to be integers
or half integers (within the few % experimental uncertainties).
This digital behavior is not observed for exponents determined
from numerical simulations of conventional geometrical (bond
or site) branching percolation models, nor for dynamical
threshold exponents calculated, for example, by many-particle
renormalization group methods (« expansions) for magnetic
transitions in crystals or electron-electron interactions in im-
purity bands, which sum selected diagrams using plane wave
(effective medium) basis states. This crucial difference arises
because the effective medium approximation (EMA) (ref. 16
and unpublished work) is valid in crystals but is not valid in the
presence of applied fields for randomly distributed impurities
near the MIT. It is just this failure of the EMA, the inadequacy
of plane wave basis states for the description of quantum
percolation, the extraordinarily wide asymptotic width, and the
startling absence of many-electron renormalization effects,
that one must find a way around, and this is done by the
existence and countability theorems (10, 11) for smart ballistic
states. Second, the filaments, properly speaking, are an array,
not a network, as they are not allowed to interfere destruc-
tively, and so are required neither to branch nor cross (13).

Failure of the EMA

Before the discussion becomes more technical, it is convenient
to elaborate further on the deficiencies of the EMA, as these
have had pervasively misleading effects on theoretical discus-
sions of both impurity band transport and the normal state
transport and superconductivity in HTSC. Thus in the impurity
band case the measured exponents for the density dependence
are quite unexpectedly much smaller (and the transitions are
much sharper) than can be explained within the EMA using
scaling theory and plane wave (dirty Fermi liquid) basis states,
whether or not electron-electron interactions are included.
Indeed, as a last and truly desperate resort, it has recently often
been suggested (9, 22) that materials like three-dimensional
Si:P or two-dimensional Si MOSFETS are exhibiting super-
conductive behavior, which is scarcely credible. [The density of
resonant phonon states (dispersion linear in q) is negligible
compared with that of electronic states (dispersion quadratic
in q) at large dilution.)] At the same time it is sometimes
suggested that magnetic spins can promote HTSC, which goes
against the fundamental idea of Cooper pairing (23). It is most
probable that the EMA itself is the source of much of this
confusion.

Of course, most experimental probes average over the
sample, just as the EMA does, but there is no need to suppose
that these averages (that may probe different local properties
differently) provide an adequate description of microscopi-
cally different local properties. As a simple example, for
composition x suppose that all conductive paths pass repeat-
edly and sequentially (ABCA. . . ) through two or three local
environments A(x), B(x), C(x), and that these local environ-
ments are equivalent within each group, but that the groups
themselves differ. Such iterated series percolative models in
general cannot be described by the EMA in terms of a single

effective medium D(x), and they apparently contain a plethora
of adjustable parameters, but as we shall see, the values of
these parameters need not be known in detail to understand
the principal features of the data, including the scaling behav-
ior. In other words, scaling behavior can transcend the EMA,
and observation of scaling behavior, while compatible with the
EMA, should not be taken as evidence for its validity. More-
over, schematic theoretical phase diagrams based on the EMA,
such as that shown in ref. 10, may actually obscure the true
microscopic nature of the mechanisms responsible for HTSC
by providing the appearance, but not the substance, of a proper
spatially inhomogeneous microscopic theory.

Counting Conductivity Paths in the High-Tc Cuprates

The essence of the counting model (5, 6) discussed here is
illustrated in cross-section in Fig. 1. Fig. 1a is drawn for
YBa2Cu3O7-x but easily generalized to other cuprates with
metallic CuO2 planes and secondary metallic planes replacing
the CuO1-x chains of YBCO. In Fig. 1a, the percolative paths
pass through three kinds of environments: (i), two-dimensional
CuO2 planes that are not metallic because of intraplanar
domain walls; (ii), the chains, which are metallic only in short
CuO segments that establish a very convenient and intrinsic
length scale as they are interrupted every x21 molecules by an
O vacancy, and (iii), resonant interplanar tunneling centers
with an orbital pinned to EF by the anti-Jahn-Teller effect (8),
again probably an O vacancy; without the latter the material
would be insulating. (The electronic structure associated with
ideal CuO2 layers may contain a logarithmic peak in its density
of states associated with a two-dimensional saddle point, but
the width of this peak is too great and it is essentially invariant
from one cuprate to the next, so that it is highly unlikely (2) that
this peak can explain either the composition dependence of the
normal state or superconductive HTSC properties.) Similarly
the CuO chain segments, by themselves, are not even metallic.
However, if the density of resonant tunneling centers (RTC) is
low enough, their width W 5 WR can be only '10 meV or less,
and thus they are potential candidates for explaining (4, 36)
normal state transport linearities. A key point here is that the
segments A, B, and C are connected to form filaments because
the lattice relaxation associated with the anti-Jahn-Teller
effect maximizes the conductivity.

To carry the discussion further, it is necessary to understand
what are the transport properties of percolative paths com-
posed of these three elements in series. It seems that there is
nothing special about the CuO2 planes or the CuO chain
segments, which are at least locally crystalline and periodic, but
the randomly distributed RTC can certainly be expected to
contribute anomalously (4, 36) to the normal state conductiv-
ities. It seems that the easiest way to approach these anomalies
is to consider a case where only RTC are present, that is, the
impurity band ‘‘random metal.’’ In refs. 11–16 it was rigorously
shown that the explanation for the anomalously sharp impurity
band MIT lies in recognizing that for d 5 3 an applied electric
field selects (or projectively separates) coherent extended
states from incoherent localized states. Because of static and
thermal disorder these states are inseparable in the absence of
applied fields in the normal state, but in the presence of a
steady state drift velocity vD that is parallel to an applied
electric field F the requirements of Galilean invariance can be
satisfied by adding to a Ginzburg-Landau free energy a kinetic
energy m(v 2 vD)2y2. This term properly distinguishes local-
ized states (vD 5 0) from extended ones (but only with respect
to the component of crystal velocity parallel to F; the trans-
verse components are still mixed by the static disorder). It
represents a new kind of broken symmetry and because of this
new broken symmetry one need only count the number of
ballistic states and it is no longer necessary to make analogies
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in the normal states of either impurity bands or cuprates to
superconductivity.

Calculation of the Cutoff Temperature T0

From this analysis (13–16) we see that current can be carried
coherently along filamentary paths passing from one RTC to
the next. What do these coherent states look like? At the
optimized composition (minimum T0, maximum Tc), with a
low concentration c of RTC and one orbital stateyRTC, the
fraction of localized metallic planar states with a band width
WB that can be locally and resonantly hybridized with RTC
states to form extended states is cWByWR. These two kinds of
states alternate, which suggests equal weighting by dynamical
equipartitioning (13–16), that is, at the optimal composition
their numbers should be equal. (The validity of the equipar-
titioning principle for weighting dynamical degrees of freedom
in the presence of ideal static disorder has been tested in a wide
variety of classical experimental contexts and so far no excep-
tions to it have been found (13–16); however, here the same
result is obtained by requiring that exactly one filamentary
path passes through each RTC.) This means that cWByWR '
1 or

WR , cWB [1]

With WR ' 5T0 (3), WB ' 1 eV and c 5 x 5 0.06 (24),
corresponding to one RTCy(CuO chain segment or CuO2

planar domain), we obtain a new result,

T0 , 150K [2]

that agrees (fortuitously) well with the experimental value T0

'150K (10). Of course, the model is oversimplified, because
we have neglected the effects of composition dependence of
the chain and plane conductivities, but for small x these are
expected to be small and merely to contribute constants to the
background resistivity. Whatever the limitations of this model,
it is certainly much more quantitative and specific than sche-
matic phase diagrams based on the EMA (10).

Calculation of Tc

The next question is how one understands a filamentary
superconductive phase, where each filament must be Cooper
paired. Near Tc only the broad plane and chain band states
resonant with the narrow band of RTC states are expected to
be superconductive (see Fig. 1b), and according to Eq. 1 the
total numbers of superconductive broad band and RTC narrow
band states are about equal. Although the unitary transfor-
mation that constructs filamentary states exists in principle
and quite a lot is known about these states in the impurity band
case (refs. 11–16, unpublished work), it is not easy to transfer
this knowledge to the composite layeryresonant tunneling
cuprate structure filaments. As the filamentary currents are
carried in series, one can guess that the transition temperature
Tcf of each filament is the harmonic average of the localized Tcs
of the RTC and bands separately. [In a mixed good metal-bad
metal system the harmonic average often gives a good result
for effective or average medium conductivities (21).] Thus

Tc 5 Tcf , ~TcBTcR!1y2 [3]

For TcB one can use (20–30)K, and for TcR the Debye
temperature for Cu vibrations adjacent to an O vacancy,
(300–400)K. Then Eq. 3 gives Tc ' 100K, again in good
agreement with experiment. The implications of Eq. 3 may
come as a surprise. Thus Tc is high because of strong electron-
phonon interactions in the CuO1-x chain ends and RTC, not
because of interactions in the CuO2 planes, which are insulat-
ing by themselves and that function only to stabilize the lattice
and connect the chain-RTC complexes.

There is a third observable to be considered, the optimal
composition c 5 c0. If one knew how to calculate this com-
position one could equivalently calculate WR. It appears that
c0 depends not only on the intralayer domain wall spacing
(which may be measurable; ref. 24), but also on the interlayer
domain wall correlation length, as the latter determines the
phase-space weighting for zigzag or hopscotch interlayer per-
colation paths (Figs. 1 and refs. 5 and 6). This is not known.
However, when c , c0 (x , 0.06 in YBCO) it appears that
phase separation can occur (25), probably accompanied by

FIG. 1. (a) The spatial percolative filaments, shown in cross section, follow planar locally metallic CuO2 layers until they approach a domain
wall, when they resonantly tunnel through a state associated with a defect (such as an oxygen vacancy) with an orbital pinned at EF by the
anti-Jahn-Teller effect to reach a CuO1-x chain segment, which is also locally metallic. Note that it is only the filament (metal A)-RTC-(metal B)-
sequence that is actually metallic, and the filament itself is metallic only for longitudinal wave packet motion. (b) The densities of states of the metallic
band sections of the filament and the RTC near EF, with ratios of WRyWB of only 4 (or 2, dashed line); a more realistic value for optimized YBCO
would be 10–15. At optimized doping the total numbers of localized band states and resonant impurity states between 6WRy2 are equal and they
combine exactly, like beads on a string, to produce only pure filamentary states in this energy range, which is separated perfectly from the wider
energy range where there are conventional band states localized by domain walls. In underdoped samples there are some uncombined localized
band states in this range (the string is broken into sections), and in overdoped samples because of destructive interference (refs. 11–16 and
unpublished work) again there are fewer independent filamentary states, which leaves behind a residue of Fermi liquid band states.
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layer or chain buckling. Lattice instabilities of this kind are the
characteristic factor limiting Tc in metallic alloys (26).

Disjoint Densities of States

In addition to the resistivity anomaly the T22 dependence of
the Hall mobility mH 5 RHyr at the optimized composition in
YBCO is also mysterious (27). It can be explained (27),
however, with an extreme (and at that time apparently arbi-
trary) two-carrier model. Rereading this paper nearly 10 years
later the author was quite surprised to find that this model is
essentially identical to his (filamentary ballistic)y(localized
band) model. Their high mobility, narrow band states corre-
spond to zigzag filamentary ballistic, anti-Jahn-Teller nar-
rowed states, and their low mobility, wide band to domain-wall
localized band states. An essential feature of their two-carrier
model, Fig. 1b, which represents the extra information con-
tained in the T linearity of RH

21, is that the narrow band is not
embedded in the wide one, but is totally separate from it; the
latter ends abruptly just when it contacts the narrow one, which
of course is pinned at EF. This exact separation (refs. 11–16 and
unpublished work) of the localized wide and extended narrow
bands is an essential feature of the present model; it occurs
when the equipartition condition (1) is satisfied, which defines
the optimized composition. This exact separation is a peculiar
feature of the layered cuprates that is made possible by the
quasiperiodic nature of the intrinsic layer domain structure; it
is probably absent for random impurity band metals (refs.
13–16 and unpublished work).

One of the questions that naturally arises in the zigzag
filamentary model is what happens to electrons isolated in
states not in the filaments. In the normal state these nonfila-
mentary states are diffusive in the sense that they hop inco-
herently either between layers or across domain walls in the
CuO2 planes (or vacancies in the CuO12x chains). In normal
metals far from an MIT one ordinarily argues (28) that
scattering by nonmagnetic impurities of extended states into
extended states has little effect on Cooper pairing, apart from
quenching the anisotropy of the Cooper pair amplitude D(k,
k9). Here at the optimal composition the nonfilamentary states
are insulating and localized and in a mean field approximation
have negligible overlap with the extended filamentary states.
As a result the phases of electrons in the small nonfilamentary
islands thermally fluctuate randomly relative to adjacent fila-
mentary Cooper pairs, so that the latter form an isolated and
self-contained system that is a relatively small part of the whole
and that is strongly coupled to layer buckling at CuO2 planar
domain walls. This may well be related to the many first-order
structural anomalies that have been observed at the super-
conductive transition, for example, by ion channeling com-
pared with neutron scattering (29).

Optimized Quantum Percolation

It may be that the present model is more informative than any
based on the EMA because it goes to the heart of the
mechanisms explicitly responsible for the simultaneous max-
imization of Tc and minimization of T0 that were proposed long
ago (4–6, 36). Current wisdom has it that the normal electronic
state of the cuprates is not a Fermi liquid, but in contrast to this
negative view, which is of marginal utility, the present non-
EMA model of an optimized quantum percolative metal is
explicit. Its central idea, the countability of ballistic states in
the presence of intrinsic disorder, has already been authenti-
cated in the context of the impurity band MIT. The discussion
of the impurity band case (refs. 11–16 and unpublished work)
showed that the exponents for compensated and uncompen-
sated impurity bands are qualitatively different. The former
are essentially classical because scattering from the secondary
impurities destroys the phase coherence of the filaments

associated with the primary impurities. Similarly here HTSC
are divided into two classes that depend on whether or not the
filamentary paths are all of the same type. If they are, then
linear normal-state transport properties occur at the optimal
composition, as in YBCO and LSCO; if not, then linearities are
not observed, as in BSCCO (30).

Under- and Overdoping. What happens in under- or over-
doped samples is illustrated in the plan views (projected ab
planes) in Fig. 2. For simplicity it is assumed that the CuO2

intraplanar domain walls are eclipsed; staggered or interme-
diate geometries would not change the results qualitatively. In
b the optimal doping geometry is illustrated, with two impu-
rities injecting and removing carriers from each domain. In the
underdoped configuration (a) there are fewer than two impu-
rities on the average per domain, so that the conductive
filaments must sometimes pass through the insulating domain
walls and the network contains metal-insulator-metal junc-
tions that localize metallic states, destroy the thermal lineari-
ties of the normal-state transport and reduce Tc. More inter-
esting is the overdoped configuration (c). Now there are more
than two impurities on average per domain and some will have

FIG. 2. Schematic filamentary paths in plan view, (a) underdoped,
(b) optimally doped, and (c) overdoped. The solid lines are filamentary
segments in CuO2 planes, while interplanar bridging impurities (RTC)
are indicated by dots. The intraplanar domain walls are shown as
straight lines. Filamentary segments in secondary metallic planes (the
CuO1-x chains in YBCO, or CuO2 planes in LSCO) are shown as
dashed lines. Shown are the effects of localization in a, where
domain-wall tunneling is marked by crosses, and strong electron-
electron interpath scattering in c, as indicated by the double-headed
arrow. With sufficient overdoping c becomes equivalent to a dirty
Fermi liquid with strong electron-electron scattering. Note that what
matters is the number of filamentary segments per domain; their
geometrical disposition is irrelevant.
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three. Then there are alternative paths across a given domain,
and these permit electron-electron scattering as in dirty Fermi
liquids. The normal-state data for La2-xSrxCuO4 (ref. 31, for
example) illustrate localization on the underdoped side, but
the phase transition on the overdoped side (32, 33) is generally
much broader. Between x 5 0.16 and x 5 0.4, as x increases,
Tc decreases and the resistivity temperature exponent in-
creases from 1 to the Fermi liquid value of 2 while the material
remains metallic. This suggests that dopant-dopant interac-
tions have broadened WR, as sketched in Fig. 1, and decreased
TcR, so that inhomogeneous electron-electron interactions, not
topological filamentary disruption, are the factor that usually
dominates overdoped LSCO.

Conclusions

In conclusion, the answer to the question of why Tc is so high
in the cuprates is a simple one. The metallic CuO2 layers have
a low density of domain walls that render them metallic only
in large patches. The equally low density RTC connect these
patches via the secondary metallic layers to form bulk metallic
paths. The band width of the RTC is very narrow because their
density is low and because in a crystal with ionic bonding the
usual Jahn-Teller effect is reversed by self-screening. These
features, together with exact separability (11) and countability
(refs. 12–16 and unpublished work) of localized and extended
states at the optimal composition, explain the normal-state
transport anomalies quantitatively. Wave packets moving
along these metallic paths spend half the time on the RTC
where they see maximal mechanically stable electron-phonon
interactions, giving rise to a high Tc. The present filamentary
or topological model enables us to explain why the normal-
state resistivity is most linear in T (lowest T0) in samples where
Tc is maximized, and to calculate both T0 and Tc in such
optimized samples in good agreement with experiment. In
spite of its schematic character and some obvious limitations
(for example, why T0 . Tc is explained for YBCO but not
LSCO), the model enables us to distinguish and explain
qualitative differences in the phase diagrams of YBCO, LSCO,
and BSCCO. In many earlier papers (34) we have reviewed
many kinds of data that show that the EMA does not describe
the observed properties of superconductive cuprates, either at
the superconductive or metal-insulator transitions. However,
the present discussion is much more explicit in its focus on
normal-state transport properties. Moreover, the model is
based on, and is corroborated by, a successful quantitative
analysis (refs. 10–16 and unpublished work), based on a new
kind of broken symmetry, of the density, temperature and
magnetic field dependences of the normal state transport
properties of the much simpler, but still surprisingly analogous,
semiconductor impurity bands in the asymptotic regions near
their MITs. Intimations of linear transport anomalies associ-
ated with an MIT have been observed recently in quasicrys-
talline AlPdRe (35) and these may be explained also by
quantum percolation involving narrow peaks in the electronic
density of states near EF.
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