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ABSTRACT The effects of cell toxicity are known to be
inherent in carcinogenesis induced by radiation or chemical
carcinogens. The event of cell death precludes tumor induction
from occurring. A long standing problem is to estimate the
proportion of initiated cells that die before tumor induction.
No experimental techniques are currently available for di-
rectly gauging the rate of cell death over extended periods of
time. The obstacle can be surmounted by newly developed
theoretical methods of carcinogenesis modeling. In this paper,
we apply such methods to published data on multiple lung
tumors in mice receiving different schedules of urethane.
Bioassays of this type play an important role in testing
environmental chemicals for carcinogenic activity. Our esti-
mates for urethane-induced carcinogenesis show that, unex-
pectedly, many initiated cells die early in the course of tumor
promotion. We present numerical estimates for the probabil-
ity of initiated cell death for different schedules (and doses) of
urethane administration.

Section 1

As with many processes of carcinogenesis, the process of cell
killing induced by a carcinogen is difficult to observe directly,
and inferences rely on mathematical models. In a recent study
(1), Moolgavkar et al. reported a statistical analysis of exper-
imental data on enzyme-altered (ATPase-deficient) liver foci
in rats induced by diethylnitrosamine. It is generally believed
that these foci represent clones of initiated cells, and at least
some of them eventually transform into malignant tumors. The
authors used a two-stage birth–death–mutation model of
carcinogenesis, usually referred to as the Moolgavkar–
Venzon–Knudson model (2, 3), to estimate the extinction
probability for clones of altered cells in initiation–promotion
experiments. In the absence of a promoter, the estimated
extinction probability was higher than 0.99, and its value
tended to decrease when two different promoters were ap-
plied; this effect can be attributed to stimulation of cell
proliferation.

The Moolgavkar–Venzon–Knudson model introduces the
clonal expansion of initiated cells as the basic mechanism of
tumor promotion. It is assumed that clonal growth begins
immediately after initiation and can mathematically be de-
scribed as a birth-and-death stochastic process. Under this
model, the probability of a clone to become extinct is a natural
summary characteristic of the susceptibility of initiated cells to
death in the course of tumor development. However, there is
experimental evidence that single initiated cells persist over an
extended time period after the administration of a carcinogen.
Using another biochemical marker (the placental form gluta-
thione S-transferase) of cell initiation, Satoh et al. (4) have

shown that single putative initiated cells (the placental form
glutathione S-transferase-positive hepatocytes) and mini-foci
consisting of such cells (2–10 cells) predominate in the pre-
neoplastic liver within the first 12 weeks after a single exposure
to diethylnitrosamine. Within 1 week after exposure, the
enzyme-altered foci are almost entirely represented by single
cells. Consistent with this evidence are early morphological
effects of urethane on the lung tissue in mice (5, 6). It is well
documented that microscopic foci of adenomatous tumor
begin to appear in the alveolar epithelium not earlier than by
3 weeks after a single injection of urethane. It can be specu-
lated that these foci are rapidly promoted clones of earlier
initiated cells that escaped being killed by urethane.

From the above experimental observations, it may be de-
duced that an initiated cell remains dormant as long as it
proceeds through the early stage of tumor promotion. During
this stage, the event of cell killing caused by a carcinogen is of
decisive importance in the future development of tumor. A
stochastic model of carcinogenesis recently proposed by Ya-
kovlev and Polig (7) allows for cell killing to compete with the
process of tumor promotion at a single-cell level. Much like the
Moolgavkar–Venzon–Knudson model, this model describes
and explains a wide range of experimental findings docu-
mented in the literature, and its structure renders the associ-
ated statistical problems tractable. The phenomenon of cell
death plays a key role in the dose–rate effects observed in
carcinogenesis studies (7, 8). The model by Yakovlev and Polig
provides a good description of various dose–rate effects in
radiation and chemical carcinogenesis (9, 10) while keeping
parametric assumptions to a minimum as far as the depen-
dence of its parameters on dose rate is concerned. In the
present paper, the potentialities of the Yakovlev–Polig model
are exploited to estimate the contribution of cell death to the
development of multiple pulmonary adenomas in mice receiv-
ing different schedules of urethane.

Section 2: The Model and Estimation Procedures

As applied to multiple tumorigenesis, the model describes the
cumulative number of tumors produced within the time inter-
val (0, t] as a Poisson random variable with the expected value
given by

L~t! 5 u1E
0

t

h~u!SE
0

t2u

f~x!e2u2 *0
u1x h~z!dzdxD du, [1]

where h(u) is the dose rate (the rate of administration of a
carcinogen), f(x) is the promotion time distribution density,
and u1 and u2 are parameters that describe the sensitivity of
cells to carcinogenic and toxic (cell killing) modes of action,
respectively. More specifically, u1h(t) is the mean number of
initiated cells per unit time given the dose rate h(t). Similarly,
the quantity u2h(t) represents the mean rate of formation of the
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lesions responsible for cell death, with the difference that u2
refers to intracellular lesions rather than altered cells. The
derivation and biological substantiation of Eq. 1 are described
at length by Yakovlev and Polig (7).

Suppose that the dose rate is kept constant over the expo-
sure period T, which is a common practice in experiments with
protracted exposures. Then the function h(t) is represented as

h~t! 5
D
T

, 0 # t # T,

h~t! 5 0, t . T, [2]

where D is a total dose of carcinogen. In this special case, it
follows from Eqs. 1 and 2 (see ref. 7 for derivation) that for t .
T:

L~t; T, D! 5 u1w~t; T, D!

5
u1D
T FE

0

T

e2
u2D
T xSE

0

T2x

f~z!e2
u2D
T zdzDdx

1 e2u2DSE
0

T

F~t 2 x!dx 2E
0

T

F~x!dxDG, [3]

where F(x) is the promotion time cumulative distribution
function and f(x) stands for its density. In the context of
urethane-induced carcinogenesis, Eq. 3 refers to situations in
which animals are killed at times larger than the period of
exposure to urethane. A modification of Eq. 3 can readily be
derived for t # T (7) but is of no use for our purposes.

Under the above model, the number of tumors at time t is
thought of as a Poisson process with the integral intensity L(t;
T, D). When analyzing the experimental data on urethane-
induced pulmonary tumors reported by Shimkin et al. (5), we
observed an over-dispersion effect that may be attributed to
pronounced inter-individual variations in the tumor counts.
Grosser and Whittemore (11) noted a similar effect in their
analysis of the number and the size of lung tumors in mice
receiving urethane in the drinking water. Our results of
goodness-of-fit testing clearly indicate that a negative binomial
distribution rather than a Poisson distribution of the number
of tumors is consistent with the data of Shimkin et al. To obtain
negative binomially distributed tumor counts under the model,
we assume that the sensitivity parameter u1 (the mean number
of initiated cells per unit dose) is a random variable that
follows a G distribution, with a and 1yb standing for the shape
and scale parameters of this distribution.

In this paper, we are concerned with experimental data on
the formation of tumors, commonly referred to as adenomas,
in the lungs of mice receiving different schedules of urethane.
It is generally believed that the development of these benign
tumors is irreversible and that some of them may progress to
malignant carcinomas. The usual experimental practice is to
count recognizable tumor foci in the lungs of mice killed at
different time intervals from start of exposure. This and similar
bioassays have been used for the testing of hundreds of
environmental chemicals for carcinogenic potency (12). 0ne of
the first stochastic models of carcinogenesis was intended for
making inference from this type of data (13).

Let ti, i 5 1, . . . , n be the killing times, mi, i 5 1, . . . , n the
number of animals killed at ti, and kij, i 5 1, . . . , n, j 5 1, . . . ,
mi the number of tumors observed in the jth animal killed at
ti. The likelihood function for these data is given by

L 5 P
i51

n P
j51

mi Sa 1 kij 2 1
kij

D
3 F 1

1 1 bw~ti; T, D!G
aF bw~ti; T, D!

1 1 bw~ti; T, D!G
kij

, [4]

where w(t; T, D) is specified by Eq. 3. The parameter u*15ab
represents the mean number of initiated cells per unit dose.
The expected number of tumors developed by the time t is
given by the formula: E{N(t; T, D)} 5 abw(t; T, D).

The promotion time distribution involved in Eq. 4 remains
to be specified. To this end, the function f(u) in Eq. 3 was
assumed to be a G distribution density with scale parameter a
and shape parameter b because this distribution, quite simple
as it is, provides a good fit to various experimental and clinical
data when incorporated in stochastic models of tumor latency
(9, 10, 14, 15). The formulas: t 5 ayb and s 5 =ayb can be
used to calculate the mean and SD of the promotion time,
respectively. To find the maximum likelihood estimates â, b̂, û2,
â, and b̂ of the model parameters, the likelihood L 5
L(a,b,u2,a,b) was maximized numerically by computer using
the flexible simplex algorithm (16). The maximum likelihood
estimate of u*1 is given by û*1 5 âb̂. To ensure stability of the
estimation procedure, the search for estimates of the param-
eters a and a was limited to the set of positive integers.
Comparisons of the parameter estimates pertaining to differ-
ent groups of animals were based on asymptotic confidence
intervals resulting from the likelihood ratio statistic.

Section 3: The Probability of Cell Death

Let q be the probability of initiated cell survival in the course
of tumor promotion. The total expected number of initiated
cells after exposure to dose D is equal to abD. It can be shown
that the following intuitively appealing relation holds true:

q 5

lim
t3`

E$N~t; T, D!%

abD
5

1
D

lim
t3`

w~t; T, D!. [5]

To prove this assertion, let X be the initiation time and Y the
length of the promotion stage of tumor development. Accord-
ing to the model presented in Section 2, the event of cell killing
may occur during the random time U, where U 5 min(X 1
Y,T), and the conditional probability of this event given U is

expH2Su2D
T DUJ .

The probability distribution density for X 1 Y can be written
as

g~t! 5 5
1
T

F~t! 0 # t # T

1
T

@F~t! 2 F~t 2 T!# t . T,
[6]

See ref. 15 for explanations. Therefore, the probability distri-
bution density for U is of the form

g1~u! 5 g~u!I@0,T#~u! 1 d~u 2 T!@1 2 G~u!#,

where g(u) is given by Eq. 6, G(u) 5 *0
u g(s)ds, I[0,T](u) is the

indicator of [0,T], and d(u) is the d function. Thus, the
unconditional survival probability q is given by

q 5E
0

`

e2
u2D
T ug1~u!du

5
1
TE

0

T

e2
u2D
T uF~u!du 1 e2u2DF1 2

1
TE

0

T

F~u!duG. [7]

On the other hand, from Eq. 3 we see that
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Change variables in Eq. 8 by letting

Hu 5 x 1 z
v 5 z,

then
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3 ST 2 E
0

T
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Recalling Eq. 7, we conclude that q 5 T
D

w0(T, D). We will use
Eq. 7 to estimate q from real data in the next section.

Section 4: Results of Data Analysis

We applied the model described in Section 2 to experimental
data on urethane-induced lung tumors reported by White et al.
(17). In these experiments, female strain AyJ mice received
injections of urethane according to different time and dose
schedules, furnishing an opportunity to study the effect of dose
rate on the tumor yield. With a fixed total dose, urethane was
administered either once or in equal fractions every other day
over periods of 8, 16, or 32 days. The animals were killed at 56,
84, 112, 140, and 168 days after the single or the first dose of
urethane, and the number of pulmonary tumors was counted.
At the time of killing, each group consisted of 10 animals.
Three dose levels—0.5, 1, and 2 mgyg body weight—were
selected for our analysis because the corresponding regimens
of urethane administration for these doses were best matched
to the constant dose rate assumption used in the derivation of
Eq. 3. Using published data (18, 19) on the kinetics of urethane
elimination from the body, we conducted numerical experi-
ments to more realistically model the dose–rate variations with
time. The results of our experiments strongly suggest that such
a correction for urethane elimination has very little effect on
the statistical inference based on Eq. 3.

First we maximized the likelihood Eq. 4 for each value of
total dose and each exposure period separately. The estimated
values of parameters indicate that dose rate does not exert any
tangible effect on the parameter u*1 5 ab. The same is true for
the mean promotion time t 5 ayb as well as for the corre-
sponding variation coefficient v 5 1y=a. In view of this fact,
the number of unknown parameters can be reduced. In doing
so, we keep a, b (or a and u*1), a, and b constant for all
administration regimens at a fixed dose D. As an example, for
D 5 2 mgyg, two groups of animals characterized by different
values of T (T 5 16 and T 5 32) were used to estimate the
model parameters. When a, b, a, and b were kept equal for
both groups of animals, the parameter estimates were as
follows: â 5 3, b̂ 5 0.04, (t̂ 5 74, ŝ 5 43), â 5 35, b̂ 5 17.8,
û2 5 2.76 for T 5 16, û2 5 2.94 for T 5 32. Note that the value
of û2 is also relatively insensitive to variations in the exposure
period.

The model provides a good description of adenoma counts
for all dose values included in the analysis. For D 5 2 mgyg,
the resulting fit is shown in Fig. 1. Depicted in this figure are
the expected number of tumors per animal computed with the
above values of the model parameters and the corresponding
sample mean tumor counts at various times after the first
injection of urethane.

An extensive discussion of biological effects of urethane in
terms of the model parameters will be addressed in another
paper (20). In the present communication, our focus is on
estimation of the probability of initiated cell death P 5 1 2 q.
Using the maximum likelihood estimates of the parameters
incorporated into Eq. 7, we estimated the probability P for
different values of D and T. The results are presented in Table
1. It is evident from Table 1 that a large proportion of initiated
cells die in the course of tumor promotion, even at a dose as
small as 0.5 mgyg body weight. The estimates of P appear to
be robust to very large variations in the promotion time
parameters. Shown in Table 2 are the values of P resulting from
a numerical experiment in which the mean promotion time was
substantially reduced whereas the other parameters, including
the variation coefficient of the promotion time, were fixed at

FIG. 1. Expected number of tumors as a function of time for D 5
2 and different exposure periods. Theoretical curves are shown with
solid lines, experimental data are represented by the sample mean
values. Bars indicate 1 SE for each experimental point.

Table 1. Estimated proportion of initiated cells killed in the
course of tumor promotion

D 5 0.5 mg,
t̂ 5 133.3 days

D 5 1 mg,
t̂ 5 70.4 days

D 5 2 mg,
t̂ 5 74.4 days

T, days
Fraction
killed, % T, days

Fraction
killed, % T, days

Fraction
killed, %

1 83.1 1 91.5 – –
4 85.9 8 93.2 – –
8 84.6 16 93.3 16 93.6

16 87.8 32 94.5 32 94.4
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their estimated values. Comparing data in Table 1 and Table
2, we see that even a 3-fold decrease in the mean promotion
time does not affect the estimated values of the probability of
cell death. This suggests that a major part of initiated cells are
killed by urethane in a very early stage of promotion, i.e., at a
time when only single initiated cells are present in the alveolar
epithelium. The estimates of P have proved to be fairly robust
to perturbations in the promotion time variance as well. It
should be noted that the target for urethane action is the
population of stem cells; this explains why the lung tissue
survives in the presence of that strong cell toxicity.

It is clear that the analysis of dose–effect relationships in
chemical carcinogenesis is hampered by the fact that carcinogen-
induced cell death contributes significantly to the observed
carcinogenic effect of a given compound. In the case of urethane-
induced carcinogenesis, this difficulty can be surmounted by
invoking biologically meaningful endpoints other than tumor
counts. One possibility is to use some of the model parameters for
that purpose. In particular, we obtained the following estimates
of the mean number of initiated cells as a function of dose: 85 for
D 5 0.5, 252 for D 5 1, and 623 for D 5 2. These estimates suggest
that the dependence of the initiation rate on the dose of urethane
is slightly super-linear. In terms of the probability of cell death,
the dose–response relationship can be inferred from Table 1; it
clearly reaches a plateau between 1 and 2 mgyg body weight.
More data are necessary to perform an appropriate regression
analysis of these relationships.
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Table 2. The probability of cell death with a reduced mean
promotion time

D 5 0.5 mg,
t 5 40 days

D 5 1 mg,
t 5 23.5 days

D 5 2 mg,
t 5 24.8 days

T, days
Fraction
killed, % T, days

Fraction
killed, % T, days

Fraction
killed, %

1 80.4 1 91.5 – –
4 83.2 8 93.2 – –
8 81.9 16 93.0 16 92.9

16 78.6 32 92.2 32 91.7
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