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We reported previously that low concentrations of sodium citrate strongly promote biofilm formation by
Staphylococcus aureus laboratory strains and clinical isolates. Here, we show that citrate promotes biofilm
formation via stimulating both cell-to-surface and cell-to-cell interactions. Citrate-stimulated biofilm forma-
tion is independent of the ica locus, and in fact, citrate represses polysaccharide adhesin production. We show
that fibronectin binding proteins FnbA and FnbB and the global regulator SarA, which positively regulates
fnbA and fnbB gene expression, are required for citrate’s positive effects on biofilm formation, and citrate also
stimulates fnbA and fnbB gene expression. Biofilm formation is also stimulated by several other tricarboxylic
acid (TCA) cycle intermediates in an FnbA-dependent fashion. While aconitase contributes to biofilm forma-
tion in the absence of TCA cycle intermediates, it is not required for biofilm stimulation by these compounds.
Furthermore, the GraRS two-component regulator and the GraRS-regulated efflux pump VraFG, identified for
their roles in intermediate vancomycin resistance, are required for citrate-stimulated cell-to-cell interactions,
but the GraRS regulatory system does not impact the expression of the fnbA and fnbB genes. Our data suggest
that distinct genetic factors are required for the early steps in citrate-stimulated biofilm formation. Given the
role of FnbA/FnbB and SarA in virulence in vivo and the lack of a role for ica-mediated biofilm formation in
S. aureus catheter models of infection, we propose that the citrate-stimulated biofilm formation pathway may
represent a clinically relevant pathway for the formation of these bacterial communities on medical implants.

Microorganisms commonly adhere to surfaces in multilay-
ered groupings referred to as biofilms (29, 54). Growth in a
biofilm imparts particular properties to member organisms,
including elevated levels of resistance to antibiotics and host
defenses. Staphylococcus aureus, a common nosocomial patho-
gen known for its antibiotic resistance and its ability to cause a
wide range of infections (43), can form biofilms on a number of
medically relevant surfaces such as catheters and intraocular
lenses (56, 71, 75). Biofilm formation by this microbe is
thought to contribute to its ability to cause persistent infections
(19, 71, 74).

Most genetic studies of biofilm formation by S. aureus have
involved the search for biofilm-defective mutants using labo-
ratory medium, typically tryptic soy broth (TSB) supplemented
with glucose. Such an approach has identified a number of
genetic loci required for biofilm formation, including sarA, agr,
dlt, hla, clp, and ica, which codes for the polysaccharide com-
ponent of an extracellular biofilm matrix (9, 25, 27, 45, 55, 66,
72). The ica locus, its gene products, and the polysaccharide

produced by the Ica proteins have been studied extensively in
vitro (17, 44–46, 50, 53). A recent study reported a role for the
ica locus of S. aureus in models of systemic infection and renal
abscess infections (37). In contrast, S. aureus strains lacking the
ica locus appear to colonize to the same extent as the wild type
(WT) in animal models of implant infections (16, 21, 23, 36),
although Fluckiger et al. did show a defect in growth for the ica
mutant in an implant infection model when competed against
the WT (21). Also, several recent studies have shown that the
presence of icaA was not predictive of pathogenicity among
staphylococci (4, 24, 42, 52, 59). In contrast, a clear role for the
ica locus has been demonstrated in biofilm formation and
infection models for Staphylococcus epidermidis (6, 42, 53, 70).
Taken together, these data call into question the importance of
genes identified in vitro using standard laboratory growth con-
ditions in the context of medical device infections in vivo. It is
still unclear what pathways are utilized by S. aureus to form
biofilms on medical implants in vivo; therefore, given the im-
portance of staphylococci in causing implant infections (19,
57), a better understanding of this process is sorely needed.

We previously showed that low concentrations of citrate
strongly stimulate S. aureus biofilm formation by laboratory
strains and clinical isolates in vitro (62). Sodium citrate is used
as an anticoagulant in blood banks and catheter locks and is an
effective antimicrobial at high concentrations (40, 60). Citrate
is thought to exert its antimicrobial effects through the chela-
tion of divalent cations necessary for diverse cellular processes
(31, 41). However, the mechanism by which citrate stimulates
biofilm formation is unknown. Furthermore, molecular com-
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ponents of the citrate-dependent biofilm formation pathway
have not yet been identified. In this study, we show that citrate
stimulates both cell-to-surface and cell-to-cell interactions and
uses distinct sets of genes to mediate these effects. We also
discuss the possible relevance of citrate-stimulated biofilm for-
mation in vivo.

MATERIALS AND METHODS

Strains and medium. Bacterial strains used in this study are listed in Table 1.
Unless otherwise noted, all strains used were derived from RN6390 or MZ100.
MZ100, like RN6390, is a derivative of 8325-4 and was generated in the same way
as RN6390; therefore, these two strains should be isogenic (61, 62). We maintain
the different strain designations as a formality. Bacterium inocula for all studies
were grown overnight in TSB (Bacto; Becton Dickinson, Sparks, MD) or on
tryptic soy agar at 37°C. For all biofilm, aggregation, and expression experiments,
66% TSB–0.2% glucose was used, as this growth medium promotes robust
biofilm formation. Henceforth, in this paper, “TSB” will signify medium with
66% TSB. Some cultures were supplemented with 0.2% trisodium citrate (cat-
alog number S279-500; Fisher Scientific, Fair Lawn, NJ), as indicated in each

experiment. Isocitrate, �-ketoglutarate, succinate, fumarate, and malate were
used at 2.0%, oxaloacetate was used at 0.25%, and glyoxylate was used at
0.003%. Oxaloacetate and glyoxylate were obtained from Sigma Chemical Com-
pany (St. Louis, MO), and isocitrate, succinate, fumarate, and malate were
obtained from Fisher Scientific. Plasmids were maintained with chloramphenicol
at 10 �g/ml at all times.

Biofilm studies. Studies of biofilm formation on polystyrene were performed
similarly to previously described methods (61, 62). Cultures of staphylococci
were grown overnight in TSB. Cultures were diluted to an optical density at 600
nm of 0.01 in TSB plus glucose (0.2%) and supplemented with citrate to 0.2% as
indicated. One hundred microliters of cells plus medium were added to individ-
ual wells of tissue culture-treated 96-well polystyrene microtiter dishes (Costar
3595; Corning Inc., Corning, NY). These plates were incubated in a closed,
humidified plastic container for 8 h at 37°C and then assayed for biofilm forma-
tion as described previously (61). Nonadherent cells were removed, and adherent
cells were stained with 0.1% crystal violet. Relative biofilm formation was as-
sayed by reading the absorbance at 550 nm using a Molecular Devices (Sunny-
vale, CA) Vmax kinetic microplate reader. Each experiment was repeated at least
twice and consisted of two to three independent cultures, tested in at least four
replicates, under each condition for each experiment.

Genetic manipulations. Mutations of the fnbA and fnbB genes were mobilized
by phage transductions from previously described mutant strains (15, 73) into
strain RN6390 using previously described methods (61).

Cell-cell and cell-surface interactions. Assays of cell-cell and cell-surface in-
teractions were performed as previously described (61).

Aggregation assay. Aggregation of cells was determined by growing 1.5-ml
cultures of TSB plus 0.2% glucose with or without 0.2% citrate overnight on a
rotating drum incubator at 37°C. Twenty microliters of the culture was removed
from the top of the culture and placed into 80 �l of phosphate-buffered saline in
a 96-well plate; the optical density (A600) was determined. The culture tube was
then vortexed for 30 to 60 s to resuspend aggregated cells, 20 �l of this suspen-
sion was removed and mixed with 80 �l of phosphate-buffered saline, and the
optical density was then determined as described above. To determine the
“percent aggregation,” we used the following formula: 100 � (A600 postvortex �
A600 prevortex)/A600 postvortex. Three single colonies were grown under each
condition for each experiment and tested in triplicate. Each experiment was
repeated on different days at least twice.

Measurement of PIA/PNAG levels. Polysaccharide levels were measured by
dot blot assay using antibodies to polysaccharide intracellular adhesion/poly-
meric N-acetyl-glucosamine (PIA/PNAG), as reported previously (17).

RNA extraction and quantitative real-time PCR analysis. RNA was extracted
from cultures grown overnight in TSB, diluted 1:100 into TSB and grown to
mid-logarithmic phase, subcultured to an A600 of 0.1 and grown to mid-logarith-
mic phase an A600 of 0.6, and split into two aliquots. One half was grown in TSB
with 0.2% sodium citrate, and the other half was grown in TSB with an equal
volume of saline. After 30 min, five cultures of each genotype were pooled for
each replicate, and each experiment was done with three replicates. RNA was
extracted from cells as previously described (51).

Quantitative real-time PCR was performed as previously described (38) using
primers for fnbA and fnbB as reported previously for real-time analysis of fnbA
and fnbB transcription (68), and gyrB served as an internal control using primers
gyrBsybrF and gyrBsybrR as previously described (51). The experiment was
performed on three different days with independent samples.

Green fluorescent protein expression studies. The expression of fnbA was
assessed using a plasmid-borne fnbA-gfp transcriptional fusion. Fluorescence of
mid-log-phase TSB-grown cells (at 4 h postinoculation) supplemented with sa-
line or the indicated tricarboxylic acid (TCA) cycle intermediate was measured
with a Bio-Tek Synergy 2 apparatus (Bio-Tek Corporation, Winooski, VT)
equipped with a 485/20-nm excitation filter and a 516/20-nm emission filter.
Sensitivity was set at 100 for fluorescence readings, and the A600 was used for
culture turbidity. Expression is presented as relative fluorescent units and nor-
malized to culture optical density.

Statistical analysis. Microsoft Excel software was used to determine P values
using a Student’s t test. Error bars are shown as one standard deviation.

RESULTS

Citrate stimulates cell-to-surface interactions during bio-
film formation. We previously showed that low concentrations
of citrate strongly stimulate S. aureus biofilm formation (62).
Because staphylococcal biofilm formation is dependent upon

TABLE 1. Strains, plasmids, and primers

Strain, plasmid, or
primer Genotype, description, or sequence Reference or

source

Strains
RN6390 WT laboratory strain 35
ALC42 DB clinical isolate 12
ALC32 DB sarA::Tn917 12
SMC1062 MZ100 laboratory strain isogenic

to RN6390
61

SMC2715 MZ100 sarA::aphA-3 61
ALC136 RN6390 sarA::Tn917 13
ALC600 RN6390 sarA::Tn917 pCL84-sarA 11
SMC2713 MZ100 ica::tetK 61
ALC2629 RN6390 fnbA::tet This study
ALC2634 RN6390 fnbB::erm This study
CMS392 RN6390 �graR 51
CMS399 RN6390 �graS 51
CMS400 RN6390 �vraG 51
ALC4301 Mu50 (VISA) 39
ALC5908 Mu50 �graR 51
ALC960 Col (methicillin-resistant S. aureus) 26
ALC5542 Col �graR 51
SH1000 rsbU� 33
SH1000 acn acn Simon Foster
ALC1745 RN6390 pALC1484 47
ALC1747 RN6390 pALC1747 73

Plasmids
pEPSa5 pC194-based expression vector 22
pEPSAgraR pEPSA5 with graR gene 51
pEPSAgraRS pEPSA5 with graRS genes 51
pALC1484 pSK236 plasmid with promoterless

gfp
47

pALC1747 fnbA-gfp transcription fusion
derived from pALC1484

73

Primersa

gyrBsybrF GGTGCTGGGCAAATACAAGT
gyrBsybrR TGGGATACCACGTCCGTTAT
F-fnbA-rt ACAAGTTGAAGTGGCAC

AGCC
R-fnbA-rt CCGCTACATCTGCTGATCT

TGTC
F-fnbB-rt CACCGAAAACTGTGCAAGCA
R-fnbB-rt TTCCTGTAGTTTCCTTATCAG

CAACTT

a Primers were used for qRT-PCR.
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both cell-to-surface interactions and cell-to-cell interactions
(27), we assessed the effects of citrate on both of these steps in
biofilm formation.

We first determined the effect of 0.2% sodium citrate upon
cell-to-surface interactions with polystyrene by S. aureus at 10
min and 45 min. No increase was observed at 10 min, but at 45
min, citrate-treated cultures showed a small but statistically
significant increase in the number of adherent bacteria per
microscopic field (Fig. 1A and data not shown).

Citrate stimulates cell-to-cell interactions during biofilm
formation. A dramatic representation of citrate promotion of
cell-to-cell interactions was observed when cultures were
grown overnight in the presence versus in the absence 0.2%
sodium citrate (Fig. 1B) (62). The addition of 0.2% citrate
caused the formation of a large aggregate, while the remaining
culture surrounding the aggregate was optically clear. In con-
trast, cultures grown in the absence of citrate grew as uniformly
turbid cell suspensions. This effect was quantified as described
in Materials and Methods, and the percent aggregation in the
absence of citrate was calculated as �1%; this value increased
to �90% when 0.2% citrate was included in the culture me-
dium (Table 2). This phenotype was exhibited by several other
S. aureus strains including N315 and SH1000 (data not shown).

Cell-to-cell interactions were also quantified in the plank-
tonic phase by measuring the degrees of cell clustering in the
absence and in the presence of citrate. Microscopic foci were
characterized as either nonclustered (one to two cells per foci)
or clustered (at least three cells per foci). We found that in the
presence of citrate, there was a significant increase in cell-cell
interactions. At 2 h, in the absence of citrate, 55% 	 1% of foci
were clustered, compared to 67.3% 	 3.2% of foci that were
clustered in the presence of citrate (P � 0.02; n � 300/strain).

Citrate-stimulated biofilm formation is independent of
many global regulators and known biofilm factors. To deter-
mine the mechanism by which S. aureus increases biofilm pro-
duction in the presence of citrate, we screened mutations in

FIG. 1. Citrate stimulates cell-to-surface and cell-to-cell interactions. (A) The number of cells per microscopic field was determined at 45 min
postinoculation by phase-contrast microscopy in the absence (no add’n) and presence of 0.2% citrate. *, P � 0.01 compared to no addition.
(B) Visual aggregation assay with the WT and the fnbB mutant grown overnight with 0% or 0.2% citrate. The white arrow indicates the typical
WT aggregate, and the black arrow indicates the altered aggregate formed by the fnbB mutant. (C) PIA/PNAG levels measured by dot blot assay.
Extracts of the WT strain grown in the absence or presence of citrate were prepared as described in Materials and Methods and spotted in a series
of fivefold dilutions. (D) Biofilm formation of the WT and fnb mutants was assessed in a 96-well plate assay in the absence or in the presence of
0.2% citrate (�Citrate). (E and F) Biofilm formation (E) and aggregation (F) phenotypes were assessed for the WT strain grown in the presence
and absence of citrate and/or heparin. Biofilm formation and aggregation assays were performed as described in Materials and Methods.

TABLE 2. Effects of citrate on clinical, laboratory, and genetically
defined strains

Strain (description)a

Biofilm formation
(A550) 	 SDb

%
Aggregationc

Without
citrate

With 0.2%
citrate

WT 0.65 	 0.12 3.06 	 0.04 94.5 	 3.2
sarA::aphA-3 0.28 	 0.06 0.12 	 0.03 0.8 	 2.0
sarA::Tn917 0.41 	 0.17 0.315 	 0.04 ND
sarA::Tn917/pCL84-sarA 0.19 	 0.064 5.49 	 0.24 ND
DB clinical isolate 0.92 	 0.20 3.40 	 0.08 70.2 	 9.2
DB sarA::Tn917 0.07 	 0.01 0.08 	 0.04 1.6 	 3.0
ica::tetK 0.40 	 0.1 3.50 	 0.1 ND
fnbA 0.65 	 0.06 0.66 	 0.04 98.2 	 2.0
fnbB 0.72 	 0.03 0.70 	 0.07 97.5 	 2.6
�graR � pEPSa5 1.20 	 0.14 1.26 	 0.11 13.6 	 2.8
�graR � pEPSAgraR 0.86 	 0.04 2.83 	 0.04 97.8 	 0.8
�graS � pEPSa5 0.97 	 0.06 0.80 	 0.04 30.1 	 3.6
�graS � pEPSAgraRS 0.89 	 0.07 2.15 	 0.05 99.9 	 0.04
�vraG 1.28 	 0.23 1.00 	 0.06 25.8 	 1.8
Mu50 (VISA) 0.12 	 0.02 1.18 	 0.16 25.8 	 2.1
Mu50 �graR 0.24 	 0.03 0.30 	 0.04 3.1 	 0.5
Mu50 �vraG 0.19 	 0.03 0.21 	 0.02 �1

a Unless otherwise indicted, the strain is a derivative of RN6390.
b Biofilm formation of biofilms grown for 6 to 8 h assayed by the microtiter

biofilm assay. Each strain was tested at least twice, six to seven replicates were
assayed per measurement, and one standard deviation is shown.

c Aggregation was determined after 12 to 14 h in the presence of 0.2% sodium
citrate. In the absence of citrate, aggregation was less than 7% for all strains. ND,
not determined.
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global regulators, including several genes known to have a role
in biofilm formation, with TSB-grown bacteria. Mutations in
the following genes had no impact on citrate-stimulated bio-
film formation: the quorum-sensing regulator agr; the regula-
tors rot, mgrA, sigB, and sae; the sarA homologs sarS, sarT,
sarU, sarV, sarX, and sarZ; the toxins hla and hlb; and the ssaA
homolog SA0620 (data not shown).

The stimulation of S. aureus biofilm formation by low con-
centrations of sodium citrate is dependent upon the sarA reg-
ulator but independent of icaADBC. As mentioned above, a
number of genes coding for global regulators previously re-
ported to be important for biofilm formation were tested to
determine if they were required for citrate-stimulated biofilm
formation. Only a mutation in the sarA gene, which codes for
a global virulence regulator (5, 14, 37, 66), blocked the ability
of citrate to promote biofilms, implicating SarA in the response
to citrate. The data using two different sarA alleles are shown
in Table 2. Providing a WT copy of the sarA gene in a single
copy using vector pCL84 complements the citrate stimulation
phenotype of a sarA mutant (Table 2). The positive role of
SarA in citrate-stimulated biofilm stimulation was also ob-
served for S. aureus clinical isolate DB (Table 2).

SarA is thought to exert a positive effect on staphylococcal
biofilm formation through its role in regulating the ica operon
(66). We found that our laboratory strain exhibits high levels of
PIA/PNAG production that are undetectable in the isogenic
sarA mutant, as assessed by immunoassays, and this defect can
be complemented by sarA on a plasmid (data not shown). The
ica genes code for a polysaccharide component of the biofilm
matrix, which is an important adhesin in cell-cell and cell-
surface interactions (27). Therefore, we tested the ability of
citrate to stimulate the biofilm formed by an ica mutant and
showed that the mutant strain was stimulated to the same
degree as the WT (Table 2). To further address a role of the
PIA/PNAG polysaccharide produced by the ica gene products,
we assessed PIA/PNAG levels, as reported previously (17), in
the absence and in the presence of citrate. The addition of
increasing citrate, up to 0.2%, decreased the level of PIA/
PNAG produced by the WT by 
25-fold (Fig. 1C), arguing
against a role for the ica-dependent polysaccharide in citrate-
stimulated biofilm formation.

Citrate-dependent cell-to-surface interactions, but not cell-
cell aggregation, are dependent upon the fibronectin binding
proteins FnbA and FnbB. Because we had evidence suggesting
that the citrate-dependent biofilm formation phenotype is in-
dependent of PIA/PNAG, we sought to determine whether
other genes regulated by SarA had an effect on citrate-stimu-
lated biofilm formation.

Previously, Cheung and colleagues and Wolz et al. showed
that purified SarA binds to a sequence motif found upstream
of the fnbA gene (15, 73). This observation has been corrobo-
rated by a previously published array study that showed that
SarA does indeed positively regulate the fnbA and fnbB genes
(20). FnbA and FnbB are large adhesive proteins that are
important for virulence and that have previously reported roles
in promoting adherence to biotic and abiotic surfaces (30, 34).
Strains carrying either the fnbA or the fnbB mutation were
assessed for citrate-associated phenotypes. Both were found to
be necessary for citrate-dependent biofilm stimulation (Fig. 1D

and Table 2). Similar results were observed for fnbA and fnbB
mutants in the SH1000 background (data not shown).

To assess whether the fnb mutations impacted cell-to-cell
interactions, we performed a visual aggregation assay. The
fnbA mutant (not shown) and the fnbB mutant (Fig. 1B) still
aggregated to a degree similar to that observed for the WT
strain (Table 2); however, the aggregation pattern was altered
compared to that of the WT, with most fnb mutant cells bind-
ing to the air-liquid interface rather than being tightly associ-
ated in an aqueous aggregate. These data suggest that the
primary defect of the fnb mutants is in cell-to-surface interac-
tions.

S. aureus fibronectin binding proteins have heparin binding
domains, and it has been reported that the addition of exoge-
nous heparin results in the inability of these proteins to par-
ticipate in adherence to fibronectin-coated coverslips (3, 67).
We predicted that if fibronectin binding proteins are required
for citrate-stimulated biofilm formation, then the addition of
heparin could disrupt the ability of the cells to aggregate. The
WT strain grown with either citrate (0.2%) or heparin (1,000
U/ml) was stimulated for biofilm formation (Fig. 1E). The
addition of both heparin and citrate resulted in an approxi-
mately fivefold decrease in biofilm formation with respect to
biofilms formed by the WT in the absence of any additions
(P � 0.01). Heparin also inhibited the ability of citrate to
promote aggregate formation (Fig. 1F).

Finally, strain Newman has been reported to have nonsense
mutations in the fnbA and fnbB genes, resulting in FnbA/FnbB
protein truncations and reduced adherence to fibronectin (28).
Newman would therefore be predicted to have reduced citrate-
stimulated biofilm formation, and consistent with this predic-
tion, Newman was previously shown to not demonstrate a
statistically significant increase in biofilm formation upon ci-
trate treatment (62).

Sodium citrate stimulates fnbA and fnbB expression. As
demonstrated above, the fnbA and fnbB genes are required for
citrate-dependent biofilm formation. To assess whether citrate
impacts the regulation of these genes, quantitative reverse
transcription-PCR (qRT-PCR), as reported previously (38),
was performed on strains grown in the absence and those
grown in presence of citrate. An approximately twofold in-
crease in fnbA and fnbB gene expression was reproducibly
observed when exponential-phase cultures were exposed to
0.2% citrate for 1 h (Fig. 2A).

FIG. 2. Citrate-mediated gene expression. (A) qRT-PCR analysis
of fnb gene expression in the WT strain in the absence (black bar) and
presence (gray bar) of citrate. �, P � 0.05. (B) qRT-PCR analysis of fnb
gene expression in the �graR mutant in the absence (black bar) and
presence (gray bar) of citrate. �, P � 0.05. The expression of the fnb
genes is normalized to gyrB expression.
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Citrate stimulation of aggregation is dependent upon a pu-
tative two-component regulatory system. As described above,
SarA and the SarA-regulated fibronectin binding proteins are
required for the early cell-to-surface interaction events during
biofilm formation in the presence of citrate. In an effort to
identify other genes in the process, including functions re-
quired for the downstream aggregation events promoted by
citrate, we screened strains with mutations in a number of
putative two-component system regulators for their responses
to citrate. In-frame deletions in the SA0215, graR (SA0614),
SA1159, SA2151, and SA2478 genes, all of which encode pre-
dicted two-component system response regulators, were sub-
jected to biofilm and aggregation assays to determine whether
citrate’s phenotypic influence upon staphylococci is dependent,
directly or indirectly, upon the proteins encoded by these
genes.

Biofilm formation was strongly stimulated by citrate in all of
these strains except the �graR (SA0614) strain, which encodes
a two-component response regulator with a role in resistance
to glycopeptides and lysozyme (18, 32, 51) The �graR mutant
showed no stimulation of biofilm formation by 0.2% sodium
citrate (Fig. 3A). Interestingly, the basal level of biofilm for-
mation was significantly increased by the deletion of graR (P �
0.026), suggesting that GraR may play a role in modulating the
adherence of S. aureus cells in the absence of citrate.

GraR was also found to be necessary for increased cell-to-
cell interactions in the presence of citrate. Aggregation assays
revealed that the �graR mutant did not aggregate in response
to citrate (Fig. 3B and Table 2).

The open reading frame SA0615 (designated graS) encodes

the cognate sensor kinase of the graR (SA0614) response reg-
ulator. The graS mutant, like the graR mutant, does not show
citrate-stimulated biofilm formation (data not shown) or ag-
gregation. In the absence of citrate, basal levels of aggregation
in the planktonic culture were increased 16-fold in the graS
deletion strain relative to the levels of the WT strain (P � 0.01)
(Fig. 3C). In the presence of citrate, the �graS mutant showed
a small but significant increase in aggregation (P � 0.01 for
�graS versus �graS plus citrate), while aggregation by the WT
was stimulated 67-fold in the presence of citrate versus in the
absence of citrate. The expression of WT copies of graR or
graRS on multicopy plasmids was able to complement the phe-
notypic defects of the corresponding mutant strains (Table 2).

Because both fnbAB and graRS are required for citrate-
dependent biofilm stimulation, we predicted that GraRS might
be important for the regulation of fnbA and fnbB. Using qRT-
PCR, we observed that fnbA and fnbB expression levels are
similarly increased in the �graRS cultures exposed to citrate
(Fig. 2B). Similar results were observed in the �graR mutant
bearing WT graR on a multicopy plasmid (data not shown).
These data indicate that GraRS does not regulate fnbA or fnbB
transcription.

GraR is necessary for the citrate responses in clinically
relevant S. aureus strains. Over 95% of tested S. aureus strains
have exhibited a robust response to citrate (n � 25) (62). We
sought to determine the requirement of GraRS for this re-
sponse in other laboratory strains and clinically relevant iso-
lates. Biofilm formation of methicillin-resistant S. aureus strain
Col is significantly stimulated by 0.2% sodium citrate at 16 h,
with the biofilm A550 reading increasing from 0.20 	 0.06
without citrate to 0.32 	 0.08 in the presence of 0.2% citrate
(P � 0.026). The Col �graR deletion strain is not stimulated by
the presence of 0.2% sodium citrate (A550 of 0.36 	 0.04
without citrate and 0.25 	 0.05 with 0.2% citrate).

The importance of graR was also tested in vancomycin-in-
termediate S. aureus (VISA) strain Mu50 to determine
whether these genes were important for the citrate response in
diverse strain backgrounds. Mu50 was induced to aggregate in
the presence of sodium citrate from 6.7% 	 2.0% to 25.8% 	
3.1%. However, the isogenic graR mutant was not stimulated
(4.6% 	 0.5% versus 3.1% 	 0.5%). A similar pattern was
observed with biofilm formation. WT Mu50 exhibited an 853%
increase in biofilm formation in the presence of citrate, while
the isogenic �graR mutant was stimulated only 26% (Fig. 3D
and Table 2).

VraFG is required for citrate responses in laboratory and
clinical S. aureus strains. The VraFG ABC transporter has
been shown to be required for full levels of vancomycin resis-
tance, and the transcription of vraFG is controlled by GraRS
(18, 32, 51). We questioned whether this putative pump plays
a role in citrate-stimulated cell-to-cell and cell-to-surface phe-
nomena. RN6390 and Mu50 with clean deletions of the vraG
gene were compared to their respective WT strains for biofilm
formation and aggregation in the presence and absence of
citrate. The mutation of vraG conferred phenotypes identical
to those mutations of genes coding for the GraRS regulatory
system (Table 2), that is, a loss of citrate-stimulated biofilm
formation and aggregation.

Role for TCA cycle intermediates in biofilm formation by S.
aureus. In addition to its role as a chelator, citrate is an im-

FIG. 3. The GraRS two-component regulatory system is required
for citrate-stimulated biofilm formation and aggregation. (A) Biofilm
formation in the absence and presence of 0.2% citrate for the indicated
strain. *, P � 0.001 compared to WT with no citrate; **, P � 0.026
compared to WT with no citrate; #, P � 0.98 compared to the graR
mutant without citrate. (B) Aggregation assay after overnight growth
for the indicated strains without and with 0.2% citrate. The arrow
indicates the aggregate formed by the WT grown with citrate.
(C) Quantification of an aggregation assay for citrate-stimulated ag-
gregation by the WT and the �graS mutant. *, P � 0.001 compared to
the WT with no citrate. (D) VISA isolate Mu50 requires a functional
graR gene for citrate-stimulated biofilm formation in a 96-well plate
assay. Biofilm and aggregation assays were performed as described in
Materials and Methods.
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portant intermediate in the TCA cycle (Fig. 4A). A previous
study by Vuong and colleagues (69) showed that in S. epider-
midis, TCA cycle stress stimulated the production of the ica-
dependent polysaccharide, suggesting a role for the TCA cycle
in biofilm formation. Furthermore, a mutation in the clpC gene
reduced the expression of citB, which codes for the TCA cycle
enzyme aconitase, and resulted in a loss of biofilm formation in
S. aureus (10, 25). Again, these data suggested a link between
the TCA cycle and biofilm formation, thus prompting us to
examine the roles of other TCA cycle intermediates in biofilm
formation.

The TCA cycle intermediates isocitrate, succinate, fumarate,
malate, and oxaloacetate all stimulated biofilm formation by S.
aureus compared to growth on TSB medium (Fig. 4B, black
bars). Interestingly, for all of these compounds, with the ex-
ception of succinate, the stimulation of biofilm formation was
strongly dependent on a functional fnbA gene (Fig. 4B, white
bars), a finding identical to that observed for the addition of
citrate. These data indicate that isocitrate, fumarate, malate,
and oxaloacetate may stimulate biofilm formation via the same
pathway utilized by citrate. The addition of glyoxylate and
�-ketoglutarate had no impact on biofilm formation (data not
shown). Also, the addition of glucose at up to 2% did not
stimulate biofilm formation, suggesting that the effects on bio-
film formation mediated by the addition of TCA cycle inter-
mediates are somewhat specific.

We next examined the effect of mutating the gene coding for
aconitase on biofilm formation in the presence of TCA cycle
intermediates. In TSB medium, a loss of aconitase function did

result in a decrease in biofilm formation. This observation is
consistent with previous work showing that a decrease in
aconitase activity in a clpC mutant results in decreased bio-
film formation (10, 25). However, in all cases, a functional acon-
itase was not shown to be required for the stimulation of biofilm
formation by TCA cycle intermediates (Fig. 4C).

Finally, we demonstrated above that citrate was able to stim-
ulate the expression of fibronectin binding proteins (Fig. 2)
and, furthermore, that the stimulation of biofilm formation by
TCA cycle intermediates, including isocitrate and fumarate,
was dependent upon the fibronectin binding proteins (Fig. 4B).
Further supporting a role for fibronectin binding proteins in
the stimulation of biofilm formation by TCA cycle intermedi-
ates, we demonstrated that isocitrate and fumarate, like citrate,
can stimulate the expression of fnbA (Fig. 4D).

DISCUSSION

Previous work from our group showed that while a high
concentration of citrate (2%) is bactericidal, a low citrate con-
centration (0.2%) stimulates biofilm formation (62). Work pre-
sented here extends this finding by showing that citrate stim-
ulates two distinct steps in biofilm formation: cell-to-surface
interactions and cell-to-cell interactions. Interestingly, most of
the known factors that have previously been reported to be
important for biofilm formation in S. aureus appear to play no
role in citrate-stimulated biofilm formation, including the ica
genes, the agr-encoded global regulator, and the hla toxin (9,
17, 72). The studies here did identify several genetic factors

FIG. 4. TCA cycle intermediates stimulate biofilm formation. (A) Diagram of the TCA cycle. Boxed compounds stimulate biofilm formation
in an FnbA-dependent manner. (B) Biofilm formation by the WT (black bars) and the fnbA mutant (white bars) in the presence of TCA cycle
intermediates. Saline served as a control in these studies. The biofilm assay was performed as described in Materials and Methods. (C) Biofilm
formation by the WT (black bars) and the acn mutant (white bars) in the presence of TCA cycle intermediates. These assays were performed as
described above (B). (D) Expression of the fnbA-gfp fusion was assessed in a solution containing TSB plus 0.2% glucose supplemented with saline
or the indicated TCA cycle intermediates. Expression is presented as relative fluorescence units (RFU).
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that are required for citrate-stimulated biofilm formation by S.
aureus, including the global regulator SarA, the SarA-regu-
lated fibronectin binding proteins, the GraRS two-component
regulatory system, and the GraRS-regulated VraFG efflux
pump.

The following observations support the conclusion that fi-
bronectin binding proteins are required for citrate’s positive
effect on biofilm formation: (i) the fnbA and fnbB mutants in
different strains are insensitive to citrate with respect to in-
creased biofilm formation, (ii) exogenous citrate increases the
transcription of fnbA and fnbB, and (iii) heparin, which is
known to inhibit fibronectin binding protein function, can pre-
vent citrate-dependent biofilm stimulation. Furthermore, our
data are consistent with fibronectin binding proteins mediating
enhanced cell-to-surface interactions that lead to increased
biofilm formation in the presence of sodium citrate. The fnb
mutants appear to still be capable of aggregation, although the
pattern of aggregation is altered compared to that of the WT
strain, indicating that the fibronectin binding proteins, while
not required for this process, may also be involved in some
aspect(s) of cell-to-cell interactions during biofilm formation.
Finally, given the role of fibronectin binding proteins in adher-
ence to abiotic surfaces, the range of surfaces to which these
proteins can bind may be broader than their name implies.

We also showed that biofilm formation by the �sarA mutant
is not stimulated by citrate. This finding is consistent with the
previously reported role of SarA as a regulator of fnb gene
expression. Indeed, previous studies identified a SarA binding
site, and such a site is found upstream of the fnbA gene,
implicating SarA as a being direct regulator of expression of
the fnb genes. Therefore, our data suggest that the early steps
in citrate-stimulated biofilm formation are controlled as part of
a larger network of virulence factors under the control of SarA.

Citrate can serve as a chelator of divalent cations. Previous
studies from our laboratory indicate that the chelation activity
of citrate cannot explain the ability of this compound to stim-
ulate biofilm formation. For example, the addition of 0.2%
citrate altered free Ca2� by less than 3%. Furthermore, the
addition of additional divalent cations to the medium (includ-
ing Mn and Mg) still resulted in citrate-mediated stimulation
of biofilm formation (62). However, both vancomycin and bac-
itracin require divalent cations to be effective, and the antimi-
crobial capacity of bacitracin is reported to be inhibited by
citrate, suggesting that citrate inhibits these antibiotics through
the sequestration of cations (1, 7, 8, 58). Furthermore, since
emerging glycopeptide resistance in S. aureus is an important
concern for human health (2), we chose to test glycopeptide
resistance determinants as potential regulators of citrate-stim-
ulated biofilm formation. A number of genes have been shown
by microarray to be up-regulated in the presence of glycopep-
tides, such as vancomycin, and in strains that exhibit inherent
elevated levels of vancomycin resistance (18, 48, 49). Among
these is a set of two-component regulators including graRS
(18, 48).

We observed that a mutation of graRS leads to elevated
levels of biofilm formation compared to that of the WT in the
absence of citrate. It has recently been reported that a muta-
tion of graRS leads to a net increase in the negative charge of
the cell surface (42). Furthermore, GraRS has been shown to
positively regulate dlt expression (26). Dlt is required for the

processing of cell surface lipoteichoic acid molecules, and dlt
mutants exhibit elevated negative charges and increased levels
of biofilm formation (21, 26). Therefore, it is possible that the
increased basal levels of biofilm formation on positively
charged plastic surfaces, exhibited by graRS mutants, is a man-
ifestation of reduced Dlt levels, leading to an alteration in
surface charges that favors attachment.

The GraRS two-component regulatory system appears to be
required specifically for citrate stimulation of cell-to-cell inter-
actions, as the graR and graS mutants do not form aggregates
in the presence of citrate. Our expression studies show that
GraRS does not regulate the expression of the fnb genes,
consistent with our model that these genes impact different
steps during citrate-stimulated biofilm formation. The vraFG
ABC transporter genes are both controlled transcriptionally by
GraRS and are required for citrate-associated phenotypes (18,
32, 51). Although it is not clear how a molecular pump is
involved in citrate-stimulated biofilm formation, our data sug-
gest that the mechanism underlying the �graRS mutant phe-
notypes is the reduced levels of vraFG expression. Taken to-
gether, our findings are consistent with a model wherein the
stimulation of cell-to-surface interactions and the stimulation
of cell-to-cell interactions are distinct processes that are genet-
ically separable. This model will be tested more rigorously in
future studies.

We showed that other TCA cycle intermediates, in addition
to citrate, including isocitrate, succinate, fumarate, malate, and
oxaloacetate, also stimulated biofilm formation. These findings
have several important implications. First, the fact that these
other TCA cycle intermediates with no known role as chelators
stimulate biofilm formation is consistent with our conclusion
that citrate’s effects on biofilm formation are not mediated via
its chelation activity. Furthermore, the observation that biofilm
stimulation by isocitrate, fumarate, malate, and oxaloacetate
requires a functional fnbA gene and also stimulates the expres-
sion of this gene, as was observed for citrate, suggests that all
of these compounds act through a common pathway. Interest-
ingly, succinate still stimulates biofilm formation even in the
fnbA mutant, indicating that this carbon source may have an
additional impact on the cell’s ability to form a biofilm. Also of
interest is the observation that a functional aconitase is not
required for stimulation by these TCA cycle intermediates,
arguing against the need for a functional TCA cycle when
biofilm formation is stimulated by intermediates in the TCA
cycle, a point which merits further investigation.

In S. aureus, the TCA cycle is typically induced in postexpo-
nential growth after glucose is exhausted and acetate has ac-
cumulated (63–65). The observation that an aconitase mutant
strain is defective in biofilm formation when grown on TSB
plus glucose indicates that the TCA cycle does indeed contrib-
ute to biofilm formation under these laboratory conditions.
Interestingly, a study of S. epidermidis indicated that TCA cycle
stress stimulates the production of the ica-encoded polysac-
charide (69), although biofilm formation was not assessed in
this study. In contrast, we observed that mutating a component
of the TCA cycle results in a loss of biofilm formation in TSB
medium, suggesting that the interaction between TCA cycle
function, polysaccharide production, and biofilm formation is
complex. However, a functional TCA cycle does not appear to
impact the ability of TCA cycle intermediates to stimulate
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biofilm formation. At this point, we cannot fully explain the
link between citrate and the other TCA cycle intermediates
with regard to their abilities to stimulate biofilm formation
and, in particular, how these compounds mediate SarA-,
FnbA/B-, and GraRS-dependent biofilm stimulation. Addi-
tional studies will be required to fully dissect how these carbon
sources can act to promote biofilm formation.

In a previous study, we showed that heparin enhanced S.
aureus biofilm formation (61). Heparin was shown to rescue
the biofilm-deficient status of a number of mutant strains in-
cluding a �sarA mutant, and additionally, while heparin does
stimulate cell-cell interactions, it does not initiate the dramatic
aggregation phenotype displayed by cells grown in the pres-
ence of 0.2% sodium citrate. Taken together, these data indi-
cate that heparin and citrate stimulate biofilm formation
through independent mechanisms. Furthermore, the relation-
ship between citrate and heparin with regard to biofilm forma-
tion appears to be complex. While individually, both com-
pounds stimulate biofilm formation, together, they cause a
modest decrease in the formation of biofilms and aggregates.
At this point, it is not clear if heparin and citrate impact the
same biofilm formation pathway or, alternatively, that the ef-
fects of heparin on citrate-stimulated biofilm formation are
distinct from those of the heparin-mediated stimulation of
biofilm formation. We are currently investigating these ques-
tions.

The possibility of multiple independent mechanisms re-
quired for biofilm formation by S. aureus has important impli-
cations both in the clinic and for drug discovery programs
targeted at antibiofilm therapeutics. Simply put, at this point, it
is not clear which pathway or pathways should be targeted to
block biofilm formation in vivo. For example, while the ica
locus may be important for biofilm formation in vitro and for
systemic infections, previous studies using three different im-
plant models concluded that the ica locus was not important
for biofilm formation by S. aureus on abiotic surfaces in vivo
(16, 36). It is possible that there are redundant pathways by
which S. aureus forms biofilms on medical implants or, alter-
natively, that the citrate-dependent and/or heparin-dependent
pathways reported by our groups are utilized by S. aureus when
adhering to medical implants in vivo. It will be important to
distinguish between these models if efforts to develop antibio-
film therapies are to be fruitful.
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