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Abstract
A core group of transcriptional regulatory factors regulate circadian rhythms in mammalian cells.
While the suprachiasmatic nucleus in the brain serves as the central core circadian oscillator,
circadian clocks also exist within peripheral tissues and cells. A growing body of evidence has
demonstrated that >20% of expressed mRNAs in bone and adipose tissues oscillate in a circadian
manner. The current manuscript reports evidence of the core circadian transcriptional apparatus
within primary cultures of murine and human bone marrow-derived mesenchymal stem cells
(BMSCs). Exposure of confluent, quiescent BMSCs to dexamethasone synchronized the oscillating
expression of the mRNAs encoding the albumin D binding protein (dbp), brain-muscle arnt-like 1
(bmal1), period 3 (per3), rev-erb α, and rev-erb β. The genes displayed a mean oscillatory period of
22.2 to 24.3 hours. The acrophase or peak expression of mRNAs encoding “positive” (bmal1) and
“negative” (per3) transcriptional regulatory factors were out of phase with each other by ∼8-12 hours,
consistent with in vivo observations. In vivo, glycogen synthase kinase 3β (GSK3β) mediated
phosphorylation regulates the turnover of per3 and core circadian transcriptional apparatus. In
vitro addition of lithium chloride, a GSK3β inhibitor, significantly shifted the acrophase of all genes
by 4.2-4.7 hours oscillation in BMSCs; however, only the male murine BMSCs displayed a
significant increase in the length of the period of oscillation. We conclude that human and murine
BMSCs represent a valid in vitro model for the analysis of circadian mechanisms in bone metabolism
and stem cell biology.
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Introduction
Circadian mechanisms regulate physiologic processes in organisms ranging from algae to man
(28,43). Conserved transcription regulatory factors belonging to the basic Helix-Loop-Helix
and/or Period-Arnt-Singleminded (bHLH-PAS) domain families regulate the oscillatory
expression of genes according to a circadian rhythm (28). These include the heterodimeric
partners, Brain Muscle Arnt-Like 1 (Bmal1) and Clock, which positively regulate transcription,
and their counter-regulators, Cryptochrome (Cry) and Period (Per), which repress transcription
(9). In addition, a number of their immediate downstream targets have been identified,
including albumin D Binding Protein (DBP) (39), Rev-erbα, and Rev-erbβ; the latter two
belong to the nuclear hormone receptor family and are related to the estrogen and glucocorticoid
receptors (36). The enzyme glycogen synthase kinase 3β (GSK3β) mediates a critical event
necessary to maintain the 24 hour nature of the circadian clock, namely, the phosphorylation
of the Period and Rev-erbα proteins and their subsequent targeting to the proteasome for
turnover and degradation (6,29,33,55). Lithium chloride (LiCl) can be used to inhibit the
actions of GSK3β and to modulate and lengthen the oscillatory circadian period in animal
models (24,26,55).

While the mammalian circadian clock is located centrally in the suprachiasmatic nucleus of
the brain, recent studies have demonstrated that the circadian transcriptional apparatus can be
found in peripheral tissues throughout the body, including adipose tissue and bone (22,27,44,
56). A number of observations are consistent with a circadian regulatory role in the metabolism
of adipose tissue and bone. The levels of circulating biomarkers of adipose (adiponectin, leptin)
(15,41,45,54) and bone (osteocalcin, C-telopeptide) (21,32,48) activity display circadian
rhythmicity in animal experiments and human clinical studies. Murine mutants deficient in the
Clock or Per genes exhibit metabolic abnormalities. The Clock-/- mice show increased
incidence of obesity (51) while Cry-/- and Per-/- mice display increased bone mass relative to
wild type controls (14). Microarray analyses of murine adipose tissue depots and calvarial bone
have found that >20% of transcripts are expressed according to a circadian oscillatory rhythm
(38,57,58). In addition to the conserved transcriptional regulatory factors associated with the
core circadian apparatus (Bmal1, Clock, Cry, Per, Rev-erb), these included genes expressing
critical proteins in oxidative phosphorylation, gluconeogenesis, lipogenesis, and steroid
metabolism (38,57,58). Together, these findings suggest that circadian mechanisms are integral
to the fundamental biochemical processes necessary for adipose and bone formation.

The majority of mammalian circadian studies have required the use of intact animals.
Pioneering work by the Schibler and Dunlap laboratories have demonstrated that circadian
rhythms can be studied in vitro, using cell models (2-4,8,13). This group has demonstrated that
fibroblasts from both the rat and man can express the core circadian transcriptional apparatus
genes in an oscillatory manner. This response can be elicited following cell exposure to high
concentrations of fetal bovine serum or glucocorticoid (3,4,8). Based on this literature, we
hypothesized that circadian mechanisms contribute to the metabolism and differentiation of
bone marrow-derived mesenchymal stem cells (BMSCs). In this manuscript, we report that
both murine and human BMSCs respond to dexamethasone with an oscillatory expression of
genes encoding circadian-associated transcriptional regulatory factors. These responses can be
further modulated by the addition of LiCl. These observations suggest that BMSC may serve
as an alternative to in vivo models for the study of circadian processes.
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Materials and Methods
Materials

All materials were obtained from Sigma/Aldrich (St. Louis, MO) or Fisher Scientific
(Pittsburgh, PA) unless otherwise noted.

MSC isolation and expansion
All protocols for animal use were reviewed and approved by the Pennington Biomedical
Research Center Institutional Animal Care and Use Committee. Cohorts of 20-30 C57BL/6
male or female mice (age 6-12 weeks) were euthanized by carbon dioxide asphyxiation and
the femur and tibia removed under aseptic conditions. The marrow cavities were flushed with
sterile medium using a #25 gauge needle and cultured established in T25 flasks in Stromal
Medium (DMEM/F-12 Ham's with 10% FBS and 100 U penicillin/100 μg streptomycin/0.25
μg Fungizone) with little modification of previously described protocols(19). After 24 to 48
hours of culture at 5% CO2 and 37°C, the non-adherent cells were removed by gentle rinsing
with sterile, prewarmed PBS, and the cells maintained in Stromal Medium until confluent.
Cells were harvested by typsin/EDTA digestion and seeded at a density of 5 X 103 per cm2

through two subsequent passages and were designated murine bone marrow MSCs
(muBMSCs). Human bone marrow MSCs (huBMSCs) from normal donors (one female, age
25, and two males, ages 32) were obtained from the Tulane Center for Distribution of Adult
Stem Cells (wolfe@tulane.edu) as previously described (10,37). These samples were obtained
under a protocol reviewed and approved by the Tulane University Institutional Review Board.
Cryopreserved vials of huBMSCs at passage 5-7 were thawed, expanded in Stromal Medium,
and plated after 1-2 passages in 24 well plates at a density of 5 X 103 per cm2; thus, the
huBMSCs from the three individual donors were at passages 6-9 at the time of the experiment.

Murine Bone Marrow MSC Differentiation
Confluent cultures of primary murine bone marrow-derived MSCs (passage 3) were maintained
in Stromal Medium alone for fibroblast assessment; induced to undergo osteogenesis by
continuous maintenance in Stromal Medium supplemented with 10 nM dexamethasone, 10
mM β-glycerophosphate, and 50 μg/ml sodium ascorbate2-phosphate; or induced to undergo
adipogenesis by replacing the stromal media with adipocyte induction medium composed of
DMEM/F-12 with 3% FBS, 33 μM biotin, 17 μM pantothenate, 1 μM bovine insulin, 1 μM
dexamethasone, 0.5 mM isobutylmethylxanthine (IBMX), 5 μM rosiglitazone, and 100 U
penicillin/100 μg streptomycin/0.25 μg Fungizone (30). After three days, adipocyte induction
medium was changed to an adipocyte maintenance medium that was identical except for the
deletion of both IBMX and rosiglitazone. Cells were maintained in culture for up to 10 days,
with 90% of the maintenance media replaced every three days. Fibroblast cultures were rinsed
with PBS, fixed in formalin, and stained for 20 minutes with 0.1% Toluidine Blue in formalin.
Osteogenic cultures were rinsed in 0.9% NaCl, fixed in 70% ethanol, and stained with Alizarin
Red for detection of o calcium phosphate mineralization.

Flow Cytometry
Flow cytometry was performed on representative murine bone marrow derived MSCs cultured
from passages 4 (30). All cells were cryopreserved at concentrations of 1.0 million cells per
ml in 80% fetal bovine serum, 10% DMSO, and 10% DMEM/F12 Ham's medium for a period
∼1 month prior to analysis. Prior to flow cytometric analysis, individual vials of cells were
rapidly thawed in a 37°C water bath (1-2 minutes of agitation), resuspended in 5 to 10 ml of
Stromal Medium, centrifuged at room temperature, and expanded in culture for a period 4 days
prior to utilization for immunostaining. The MSCs were trypsin digested, assessed for viability
by trypan blue exclusion, and analyzed using the following mouse monoclonal antibodies
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conjugated to phycoerythrin (with the exception of CD45, conjugated to Per CP) directed
against the indicated antigen: from BD Pharmingen CD44 (Cat. # 553134), CD45 (Cat.#
553093), CD73 (Cat.# 550741), CD90 (Cat.#554898), CD117 (Cat.# 553869), Sca1 (Cat.#
553336), IgG1κ control (Cat.# 554680); from eBiosciences CD14 (Cat.# 12-0141-81), CD29
(Cat.# 12-0291-81), CD105 (Cat.# 12-1051-81). 10,000 events were acquired per antibody set
on a Becton Dickinson FACSCaliber flow cytometer using CELLQuest acquisition software
(Becton Dickinson). Data analysis was performed using Flow Jo analysis software (Tree Star).

Dexamethasone Exposure and Core Circadian Transcription Factor mRNA Analysis
The medium was removed from confluent cultures of undifferentiated murine or human MSCs
in 12 well plates and replaced with DMEM/Ham's F12 medium supplemented with 2 % FCS
and 100 U penicillin/100 μg streptomycin/0.25 μg Fungizone alone or further supplemented
with 1 μM dexamethasone. The MSCs were exposed to the dexamethasone for 2 hrs. After 2
hrs, the medium was replaced with DMEM/Ham's F12 medium and 100 U penicillin/100 μg
streptomycin/0.25 μg Fungizone alone. The cells did not receive any further medium changes
from this point onward until the time of harvest. Individual plates were harvested for total RNA
at 4-hr intervals up to 52 hrs following the initial exposure. When present, lithium chloride
was added at a concentration of 20 mM and was present during both the 2 hr induction period
and the subsequent 2% FCS replacement medium (53).

Semi-Quantitative Real-time RT-PCR
Total RNA was purified from tissues using TriReagent (Molecular Research Center) according
to the manufacturer's specifications. Approximately 2μg of total RNA was reverse transcribed
using Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV-RT; Promega), with
Oligo dT at 42°C for 1 hr in a 20μL reaction. Primers for genes of interest (listed in Table 1)
were identified using Primer Express software (Applied Biosystems). Real time RT-PCR was
performed on diluted cDNA samples with SYBR® Green PCR Master Mix (Applied
Biosystems) using the 7900 Real Time PCR system (Applied Biosystems) under universal
cycling conditions (95°C for 10 min; 40 cycles of 95°C for 15 sec; then 60°C for 1 min). The
RT-PCR for all primer pairs had been validated and determined to display single peaks in their
dissociation curves. All results were normalized relative to a Cyclophilin B expression control
(20,57).

Periodicity Analysis
Periodicity of the circadian data obtained by RT-PCR was tested with Time Series Analysis-
Single Cosinor v. 6.0 software (Expert Soft Technologie). Each data set was fitted to a general
cosine equation model A cos(2p t/T) + B sin(2p t/T) + M, where A is the amplitude, T is the
period (24 hrs), and M is the MESOR (Midline Estimating Statistic Of Rhythm) (5,31),
providing the percentage of data points that behave in a rhythmic manner, and the r2 value for
the fit of the data set to the model curve. The model was also tested for validity at the 0.950
probability level (ANOVA). The period was determined using the chronobiometric ellipse test.
The mean ± the standard deviation of the acrophase (peak) gene expression levels were
compared using the Student's t-test.

Results
In the initial experiments, muBMSCs were isolated from the marrow of female FEV mice. The
immunophenotype and differentiation potential of representative cultures were determined
(Figure 1). Flow cytometry demonstrated that the muBMSCs expressed the following stromal-
associated surface antigens: CD29, CD44, Sca1, >90% positive; CD73, >60% positive; and
CD105, >40% positive (Figure 1 A). In contrast, the hematopoietic marker, CD45, was
expressed on ∼10% of the cell population. When maintained in the presence of Stromal
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Medium, the muBMSCs displayed fibroblast morphology (Figure 1 B). Nine days following
exposure to adipogenic factors, the muBMSCs exhibited vacuoles staining Oil Red O+ for
neutral lipids while the presence of osteogenic medium for the same period led to positive
staining with Alizarin Red for calcium phosphate mineralization.

In the initial studies, confluent and quiescent muBMSCs (passage 3) were exposed to 1 μM
dexamethasone for 2 hours and then converted to medium alone. Individual plates were
harvested at 4 hour intervals for total RNA isolation and subsequent real time PCR analysis of
mRNA expression. The expression of representative positive (bmal1), negative (cry1, per1,
per3), and downstream target genes (dbp, rev-erbα, rev-erbβ) associated with the core circadian
transcriptional apparatus were determined and normalized relative to cyclophilin B (Figure 2).
Our previous studies on murine tissues have documented these genes to display a robust
circadian oscillation and determined cyclophilin to be an appropriate control for normalizing
circadian analyses (38). Dexamethasone exposure synchronized an oscillating expression
profile of the mRNAs as a function of time. Of note is the fact that the peak expression or
“acrophase” of bmal1 was 5.9, 11.0 and 12.6 hours out of phase with those of cry1, per1, and
per3, respectively. This is consistent with in vivo observations, where the expression of the
mRNAs encoding the “positive” and “negative” arms of the core circadian transcriptional
apparatus are expressed in anti-phase relative to one another (28).

Further studies compared muBMSCs isolated from male and female mice in response to
dexamethasone exposure in the absence and presence of 20 mM lithium chloride, an inhibitor
of GSK3β known to modulate the circadian rhythm in vivo (24,55) (Figure 3). A subset of the
circadian-associated genes was selected for further analysis; bmal1 and per3 served as
“positive” and “negative” representatives while dbp, rev-erbα and rev-erbβ served as
downstream targets. Cosinor analysis was used to evaluate the datasets statistically. The
acrophase for each gene in response to dexamethasone alone was not significantly different as
a function of gender (Table 2). Consistent with the previous experiment, the bmal1 acrophase
(13.1-13.8 hrs) was phase shifted 12.2-13.3 hrs relative to the acrophase of per3 (2.0-2.4 hrs).
The period of oscillation for the five circadian-associated genes following exposure to
dexamethasone alone ranged between 22.0 to 26.4 hrs for the male mice and 19.3 to 28.3 hrs
for the female mice (Table 2). Making the assumption that the period of each gene was subject
to regulation by a similar mechanism, we determined the mean period length for all five genes
as 24.3 hrs (male) and 22.2 hrs (female); there was no significant difference between genders
(Table 2). With the exception of per3 in the female mice, the addition of lithium chloride to
muBMSCs in the presence of dexamethasone increased the oscillation period of gene
expression for each of the five circadian-associated genes (Table 2). It should be noted that
there was a wide range in the period lengths among the individual genes in the presence of
lithium chloride. Despite this variability, the mean period length for the male muBMSCs
increased significantly by 7.5 hrs; however, the increase of 1.4 hrs for mean period length for
the female muBMSCs did not achieve significance. In contrast, the presence of lithium chloride
had a more consistent effect on the acrophase of the individual genes, shifting the time of peak
expression by 2.3 to 6.9 hrs. Again, assuming the existence of a shared common mechanism,
we determined that the mean shift in the acrophase for all genes was 4.2 hrs in the males and
4.7 hrs in the females. These values were not significantly different between genders.

The response of huBMSCs (n = 3 donors) to dexamethasone in the absence and presence of
lithium chloride was evaluated in comparable studies (Figure 4). The huBMSCs exhibited a
time dependent oscillation in their expression of bmal1, DBP, per3, rev-erbα, and rev-erbβ
mRNAs. As observed in the murine model, the acrophase of bmal1 in response to
dexamethasone alone (14.1 hrs) was out of phase with that of per3 (2.4 hrs) by approximately
12 hrs (Table 3). The mean period of oscillation for all genes considered together with
dexamethasone alone (22.8 hrs) was not significantly different that in the presence of lithium
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chloride (23.6 hrs). Nevertheless, the addition of lithium chloride resulted in a significant shift
in the acrophase of each mRNA, with a mean value for all genes considered together of 5.0 ±
1.2 hrs.

Discussion
The current data indicate that murine and human BMSCs can serve as in vitro models for the
circadian analysis of gene expression profiles. We report that dexamethasone exposure
synchronizes an oscillatory expression profile in representative mRNAs involved in the core
circadian transcriptional apparatus. This is consistent with previous in vitro studies performed
using rat and human skin derived fibroblasts (2-4,8,13). In these models, exposure to
dexamethasone or serum shock initiated the oscillatory expression of mRNAs associated with
the core circadian transcriptional apparatus over a 48 hrs period (2-4,8,13). Using a
sophisticated in vitro luciferase reporter assays and in vivo wheel running analyses, Brown et
al. (8) compared the circadian period in different murine strains. Based on activity
measurements in vivo, two murine strains displayed periods between the ranges of 22.6 to 23.8
hrs. The in vitro period following dexamethasone synchronization in fibroblasts from these
same murine strains ranged between 20-23.4 hrs as determined by bmal1 promoter/luciferase
reporter construct (8). Our in vitro analyses in male and female muBMSCs, based on mRNA
measurements of multiple genes, determined a period range of 19.5-28.3 hrs. Using the same
in vitro approach, Brown et al. (8) found that dexamethasone synchronized response of human
dermal fibroblasts isolated from foreskin, buttock, or abdomen of 19 donors had a period range
of 22.7 to 26.2 hrs, with a mean of 24.5 ±0.75 hrs. Based on our analysis of multiple mRNA
expression profiles in human BMSCs, we observed a mean period of 22.8 ± 1.2 hrs, albeit in
a smaller population of donors. Just as has been reported for human dermal fibroblasts with
respect to circadian profiles (8), there is evidence in the literature indicating that BMSCs
isolated from different human donors or murine strains are not identical with respect to
osteogenic capability (34,35). Thus, it is likely that some donor to donor variability will exist
in circadian measurements in vitro.

In addition, we found that the lithium chloride shifted the acrophase of multiple genes in both
murine and human BMSCs by >4 hrs. We postulate that lithium chloride modulates the
acrophase of gene expression by inhibiting GSK3β-mediated phosphorylation of period and
related target proteins, further studies will be necessary to document such a mechanistic
explanation. In the male muBMSCs, where the presence of lithium chloride significantly
lengthened the period of oscillation, we hypothesize that this same mechanism may be
responsible; however, in the female muBMSCs and huBMSCs, the period increase did not
achieve significance. This suggests that there may be gender specificity to the actions of lithium
chloride as well as inter-specie differences in the behavior of the circadian apparatus.
Nevertheless, the lithium chloride-dependent lengthening of the oscillatory period in male
muBMSCs and the acrophase shift observed in all BMSCs are consistent with our observations
in human adipose-derived stem cells (huASCs) (53). Like the BMSCs, dexamethasone
exposure of huASCs (n = 4) synchronized the oscillatory expression profile in mRNAs
encoding the core circadian transcriptional apparatus. Similar to the current study, the presence
of lithium chloride significantly increased the oscillatory period of per3 and rev-erbα, but not
bmal1, by ∼5 hrs in huASCs (53). In addition to ourselves, (25), De Ugarte et al. (12), Huang
et al. (23), Romanov et al. (40), Sakaguchi et al. (42), and Wagner et al. (52) have compared
the differentiation potential and biochemical properties of human adipose and bone marrow-
derived stem cells. The current findings provide another example of the similarities between
these cell populations.

Circadian mechanisms have been implicated in the physiology and metabolism of adipose
tissue and bone. The mRNAs encoding the protein components of the core circadian
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transcriptional apparatus display an oscillatory expression profile in multiple adipose tissue
depots (1,38,57). Consistent with this, small interfering RNAs for bmal1 inhibited adipogenesis
of 3T3-L1 cells pre-adipocytes in vitro (46). The bmal1/clock heterodimers were found to bind
to cis elements within the promoters of adipocyte-associated genes such as SREBP1(46).
Likewise, in murine calvarial bone, the mRNA expression of osteocalcin and related osteogenic
biomarkers were found to display a circadian rhythmicity in microarray analyses of (58).
Analyses of an osteocalcin promoter luciferase reporter transgenic mice lend support to this
observation by demonstrating circadian rhythmicity in the level of bioluminescence detected
in the skeletal tissues (manuscript in preparation: Y. Gafni, A. Ptitsyn, G. Peled, J.M. Gimble,
D. Gazit). To date, the core circadian transcriptional apparatus has received little attention in
the context of the stromal component of the bone marrow microenvironment. Instead, a greater
level of scrutiny has been focused on the circadian rhythmicity of hematopoietic stem cells and
their progeny (7,11,47,49,50). Hematopoietic cell models provide evidence that the core
circadian transcriptional apparatus can modulate cell cycle and cell division (16-18). These
findings from the literature imply that circadian mechanisms have the potential to modulate
the two defining hallmarks of all stem cells, namely, their ability to self-renew and their
multipotentiality.

The current manuscript provides a rationale supporting the use of primary human and murine
BMSCs as in vitro models for the analysis of circadian mechanisms. The use of in vitro cultures
reduces the need for costly and variable animal models or the need to perform multiple biopsies
on a single human donor within a relatively short period of time. The outcomes from such
studies will have potential relevance to bone physiology, the differentiation of BMSCs for
tissue engineering applications, and fundamental mechanisms relating to stem cell biology.
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Figure 1.
Characterization of muBMSCs. (A) Flow cytometry assessment of immunophenotype.
Representative muBMSC cultures were examined for the following surface antigen expression:
CD14 (LPS receptor), CD29 (integrin β1), CD44 (hyaluronate receptor), CD45 (leukocyte
common antigen), CD73 (5′ ectonucleotidase), CD90 (Thy1), CD105 (endoglin), CD117 (c-
kit), Sca1 (stem cell antigen). The black lines represent the histogram determined with the
antigen specific antibody while the gray lines represent the histogram determined with the
isotype-matched non-specific antibody control. (B) Histochemical assessment of morphology.
Primary cultured muBMSCs (passage 3) were maintained in Stromal Medium (a) or induced
to undergo adipogenesis (b) or osteogenesis (c) for 6 to 9 days. Individual wells were fixed
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and stained for (a) fibroblasts (Toluidine Blue), (b) adipocytes (Oil Red O), or (c)
mineralization (Alizarin Red).
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Figure 2.
Expression profile of mRNAs encoding transcriptional regulatory factors relating to the core
circadian oscillator following dexamethasone exposure of muBMSCs. Confluent, quiescent
cultures of muBMSCs isolated from FEB female mice were exposed to 1 μM dexamethasone
for 2 hrs and subsequently harvested at 4 hr intervals for isolation of total RNA. Real time PCR
analysis was performed to examine expression of mRNAs Albumin D binding protein (DBP),
Brain-Muscle Arnt-Like 1 (bmal1), Cryptochrome 1 (cry1), Period 1 (per1), Period 3 (per3),
Rev-erb α., and Rev-erb β, all normalized relative to the control, cyclophilin B. Assays were
preformed in triplicate and display the mean ± S.D.
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Figure 3.
Influence of lithium chloride on dexamethasone exposure of male and female derived
muBMSCs. Confluent, quiescent cultures of muBMSCs isolated from male (left panel) and
female (right panel) C57BL/6 mice were exposed to 1 μM dexamethasone for 2 hrs in the
absence (diamond symbol) or continuous presence (square symbol) of 20 mM lithium chloride
and subsequently harvested at 4 hr intervals for isolation of total RNA. Real time PCR analysis
was performed to examine expression of mRNAs bmal1, DBP, Per3, Rev-erb α., and Rev-erb
β, all normalized relative to the control, cyclophilin B. Assays were preformed in triplicate and
represent the mean ± S.D. Calculation of mean acrophase of gene expression. The acrophase
is expressed in Circadian Time hours and a single acrophase is displayed following

Wu et al. Page 14

Bone. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dexamethasone synchronization in the absence (triangle facing up) or presence (triangle facing
down) of LiCl. The mean shift is the difference calculated between the acrophase in the absence
and presence of LiCl.
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Figure 4.
Effect of dexamethasone and lithium chloride exposure on mRNA expression in huMSCs.
Confluent, quiescent cultures of huBMSCs isolated from n = 3 normal bone marrow donors
(represented by closed circle, closed square, open triangle, respectively) were exposed to 1
μM dexamethasone for 2 hrs in the absence (left panel) or continuous presence (right panel)
of 20 mM lithium chloride and subsequently harvested at 4 hr intervals for isolation of total
RNA. Real time PCR analysis was performed to examine expression of mRNAs bmal1, DBP,
Per3, Rev-erb α., and Rev-erb β, all normalized relative to the control, cyclophilin B. Assays
were preformed in triplicate and represent the mean ± S.D. Calculation of mean acrophase of
gene expression. The acrophase is expressed in Circadian Time hours. Each acrophase within
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the two period cycle is displayed after dexamethasone synchronization in the absence (triangle
facing up) or presence (triangle facing down) of LiCl. The mean shift is the difference
calculated between the acrophase in the absence and presence of LiCl.
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Table 1
Primer Sequences

Specie Gene Accession Number Forward Reverse
Mu Bmal1 AF010305 AACCTTCCCGCAGCTAACAG AGTCCTCTTTGGGCCACCTT
Mu Cry1 NM_053208 AGGAGGACAGATCCCAATGGA GCAACCTTCTGGATGCCTTCT
Mu CycloB NM_010431 GGTGGAGAGCACCAAGACAGA GCCGGAGTCGACAATGATG
Mu DBP NM_053207 GGAACTGAAGCCTCAACCAAT CTCCGGCTCCAGTACTTCTCA
Mu Per1 NM_011065 CCAGATTGGTGGAGGTTACTGAGT GCGAGAGTCTTCTTGGAGCAGTAG
Mu Per3 AF050182 CCGCCCCTACAGTCAGAAAG GCCCCACGTGCTTAAATCCT
Mu Rev-

erbα
NM_145434 CCCTGGACTCCAATAACAACACA GCCATTGGAGCTGTCACTGTAG

Mu Rev-
erbβ

MMU09504 GGAACGGACCGTCACCTTT TCCCCTGCTCCCATTGAGT

Hu Bmal1 NM_001178 GTACCAACATGCAACGCAATG TGTGTATGGATTGGTGGCACC
Hu CycloB M60857 GGAGATGGCACAGGAGGAAA CGTAGTGCTTCAGTTTGAAGTTCTCA
Hu DBP NM_001352 CCAATCATGAAGAAGGCAAGAAA GGCTGCCTCGTTGTTCTTGT
Hu Per3 NM_016831 AGATGTCCTGGCGTCTTCTCA TCATACCGTGCAGCTCTTTGG
Hu Rev-

erbα
X72631 GTTTGCCAAACACATCCCG AAGCAAAGCGCACCATCAG

Hu Rev-
erbβ

NM_005126 AACAAGCAAATCGAGTGCACC TCCATAGTGGAATCCTGACGC
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