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Abstract
Unlike responses to acute stressful events that are protective and adaptive in nature, chronic stress
elicits neurochemical, neuroanatomical and cellular changes that may have deleterious consequences
upon higher brain functioning. For example, while exposure to acute stress facilitates memory
formation and consolidation, chronic stress or chronic exposure to stress levels of glucocorticoids
impairs cognitive performance. Chronic stress or glucocorticoid exposure, as well as impairments in
hypothalamic-pituitary-adrenal (HPA) axis function are proposed to participate in the etiology and
progression of neurological disorders such as depressive illness, anxiety disorders and post-traumatic
stress disorder (PTSD). HPA axis dysfunction, impaired stress responses and elevated basal levels
of Glucocorticoids are also hallmark features of experimental models of type 1 and type 2 diabetes,
as well as diabetic subjects in poor glycemic control. Such results suggest that stress and
glucocorticoids contribute to the neurological complications observed in diabetes patients.
Interestingly, many of the hyperglycemia mediated changes in the brain are similar to those observed
in depressive illness patients and in experimental models of chronic stress. Such results suggest that
common mechanisms may be involved in the development of the neurological complications
associated with Anxiety, Depressive illness and Diabetes: the As and Ds of stress. The aim of the
current review will be to discuss the mechanisms through which limbic structures such as the
hippocampus and amygdala respond and adapt to the deleterious consequences of chronic stress and
hyperglycemia.
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1. Introduction
Acute exposure to stress leads to the activation of the hypothalamic-pituitary-adrenal (HPA)
axis, leading to the release of epinephrine and glucocorticoids from the adrenal gland (Jacobson
and Sapolsky, 1991). Once released, epinephrine and glucocorticoids may produce a wide
variety of effects in the periphery ranging from increases in cardiovascular activities, decreases
in gastrointestinal and immune function, and increasing energy mobilization. Stress hormones
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also play critical functional roles in the central nervous system (CNS), including the facilitation
and consolidation of strong emotional memories that involves glucocorticoid binding and
activation of glucocorticoid receptors in limbic regions such as the hippocampus and amygdala
(Reul and de Kloet, 1985). Unlike these physiological responses to acute stressful events,
chronic stress, exposure to stress levels of glucocorticoids and HPA axis dysfunction are critical
mediators in disease states in the periphery and the CNS. For example, chronic stress is
proposed to contribute to the etiology and progression of cardiovascular disease, hypertension,
cancer metastasis, immune impairments, among other peripheral disorders. Impairments in
HPA axis function and elevated basal glucocorticoids are also implicated in the peripheral
complications of type 1 and type 2 diabetes. In the CNS, the consequences of chronic stress or
glucocorticoid exposure have been extensively studied and are proposed to contribute to the
etiology and progression of Cushing’s syndrome, major depressive disorder and post-traumatic
stress disorder (PTSD) (Reagan and McEwen, 1997). Interestingly, many of the neurological
consequences observed in experimental models of type 1 and type 2 diabetes are strikingly
similar those observed following chronic stress, suggesting that glucocorticoids may be
common mechanistic mediators in the pathophysiological consequences of diabetes and stress-
related disorders.

1.1. Structural and functional deficits in major depression
One of the hallmark clinical features of stress-related disorders is atrophy of the hippocampus.
Functional imaging studies have determined that hippocampal formation volume is decreased
in patients with Cushing’s syndrome (Starkman et al., 1992), PTSD (Bremner et al., 1995;
Gurvits et al., 1996), and in aging populations (Lupien et al., 1998). The volume of the
hippocampus is also decreased in depressive illness patients. Major depressive illness is one
of the most common psychiatric disorders, affecting an estimated 12–15% of the general
population (Kessler et al., 1994). The symptoms of depression include alterations in mood and
perception, as well as physiological changes such as loss of appetite, changes in body weight
and disruption in sleep patterns. The aim of antidepressant treatments is the improvement of
these depressive symptoms; it should also address all the potential complications resulting from
major depression including structural changes in the central nervous system (CNS). For
example, volumetric magnetic resonance imaging (MRI) studies of depressive illness patients
have revealed decreases in left hippocampal volumes (Vythilingam et al., 2002; Frodl et al.,
2002b; Bremner et al., 2000; Mervaala et al., 2000), right hippocampal volumes (Steffens et
al., 2000) and total hippocampal volumes (MacQueen et al., 2003; Sheline et al., 1999). These
studies have also found that depressive illness patients with decreases in hippocampal
formation volume exhibit deficits in hippocampal-dependent measures of cognitive function.

More recent analyses have suggested an important role for the amygdala in depressive illness
(McEwen, 2003), including imaging studies that have revealed that amygdala volumes may
be increased (Bremner et al, 2000; Frodl et al., 2002a) or decreased (Sheline et al., 1998;
Sheline et al, 1999; von Gunten et al., 2000) in major depression patients. While these
disparities may be related to illness duration and/or therapeutic interventions (Campbell et al.,
2004), the results demonstrate that the amygdala is also a site for neuroanatomical alterations
in depressive illness and suggest that the amygdala may exhibit time and treatment dependent
changes. Since the hippocampus and the amygdala are major sites of glucocorticoid action in
the CNS, these results lead to the suggestion that stress may be responsible for neuroanatomical
alterations observed in recurrent depressive illness patients (Sheline et al., 1996).

1.2. Chronic stress as an experimental model of depressive illness: advantages and
limitations

Clinical studies provide invaluable information regarding structural and functional integrity of
the hippocampus and amygdala in pathological settings. Unfortunately, these studies are
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limited in their ability to identify the underlying molecular, neurochemical and
neuropharmacological deficits that contribute to structural and functional deficits in patients
with stress related disorders such as depressive illness. For these reasons, many investigators
rely upon stress paradigms as experimental models of depressive illness. While there are
limitations associated with experimental stress paradigms as preclinical models of mood
disorders (Nestler et al., 2002), such studies provide important information regarding stress
related effects upon brain neurochemistry and the mechanisms of antidepressant drugs.
Animals subjected to stress exhibit many similarities to those observed in depressive illness
patients, including changes in body weight, disrupted sleep cycles, impairments in HPA axis
function, as well as morphological changes in the hippocampus and amygdala. The validity of
chronic stress paradigms as a preclinical model of depression gains support from studies that
demonstrated that several clinically-relevant treatments, including tianeptine, clomipramine
and lithium effectively inhibit stress-mediated changes in the hippocampus (Kole et al.,
2002; Czeh et al., 2001; Lucassen et al., 2004; Wood et al., 2004; Reagan et al., 2004; Watanabe
et al., 1992; Magariños et al., 1999; McEwen et al., 2002a; van der Hart et al., 2002; Campbell
et al., 2007) and the amygdala (Vouimba et al., 2006; Reznikov et al., 2007; McEwen and
Chattarji, 2004; Reagan et al., 2007).

1.3. Regulation of the glutamatergic system in chronic stress models: relation to limbic
system plasticity

The role of glucocorticoids in the stress-related disorders might involve steroid modulation of
neurotransmitter activity, including the serotonergic, GABAergic and glutamatergic systems.
The dynamic interactions of these neurotransmitter systems have previously been established
in stress effects upon HPA axis function and activity (Herman and Cullinan, 1997; Van de Kar
and Blair, 1999). Similarly, these neurotransmitter systems are known to participate in stress-
induced changes in the hippocampus [For reviews, see (McEwen, 1997; Reagan and McEwen,
1997)] More specifically, an intimate relationship exists between the glutamatergic system and
the neurological consequences of experimental models of stress (McEwen and Sapolsky,
1995; Reagan and McEwen, 1997). For example, stress affects the electrophysiological
properties of ionotropic glutamate receptors in the hippocampus (Kole et al, 2002) and stress-
induced atrophy of CA3 pyramidal neurons is inhibited by NMDA receptor antagonists
(Magariños and McEwen, 1995). Acute stress also elicits increases in extracellular glutamate
levels that quickly return to baseline in the rat hippocampus and amygdala, as measured by in
vivo microdialysis (Reznikov et al, 2007; Lowy et al., 1993; Bagley and Moghaddam, 1997).
Conversely, acute stress-induced increases in extracellular glutamate efflux remain elevated
in the hippocampus of rats subjected to prior chronic stress (Yamamoto and Reagan, 2006).
This dysregulation of glutamatergic tone that results in sustained increases in extracellular
glutamate levels may be the stimulus for stress mediated morphological changes in the
hippocampus, as well as increases in glial glutamate transporter expression in the CA3 region
of the hippocampus (Reagan et al, 2004). As noted above, tianeptine effectively blocks these
glutamate-dependent changes in the hippocampus and amygdala, thereby providing a potential
mechanism of action through which this antidepressant inhibits stress-induced effects in the
hippocampus and amygdala.

1.4. The glutamate system in depressive illness
Clinical studies also support a role for the glutamatergic system in the pathology of major
depressive illness. For instance, plasma and cerebrospinal fluid (CSF) glutamate levels and
glutamate/glutamine ratios are modulated in affective disorders (Levine et al., 2000; Kim et
al., 1982; Altamura et al., 1995; Altamura et al., 1993). More recent clinical studies support
these findings and identified specific neuronal populations where these changes in
glutamatergic neurotransmission may take place. For example, proton magnetic resonance
spectroscopic analyses have identified decreases in glutamate levels the anterior cingulate
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cortex of depressive illness patients (Mirza et al., 2004; Auer et al., 2000). Conversely, occipital
cortex glutamate levels were significantly increased in depressed subjects (Sanacora et al.,
2004). Decreased GABA levels were also observed in these subjects, suggesting that an
imbalance between excitatory and inhibitory tone in depressive illness patients (Sanacora et
al., 2000). Decreases in glial cell densities observed in depressive illness patients (Rajkowska
et al., 1999; Hamidi et al., 2004; Cotter et al., 2001; Ongur et al., 1998) may result in decreased
glial glutamate transporter expression, thereby reducing the capacity to regulate synaptic
concentrations of glutamate. Indeed, a recent microarray study suggested that glial glutamate
transporter expression is decreased in the anterior cingulate cortex and dorsolateral prefrontal
cortex of depressive illness patients (Choudary et al., 2005). When combined with results from
experimental models of stress, these clinical observations support the hypothesis that
modulation of glutamatergic neurochemistry participates in the pathophysiology of major
depressive disorder.

2. Neurological complications in diabetes phenotypes: adaptive plasticity or
increased vulnerability?

It is interesting to note that many of the neurological consequences observed following chronic
stress are strikingly similar to the observed in experimental models of type 1 and type 2 diabetes
(Reagan, 2002; Gispen and Biessels, 2000). The accumulated data from experimental models
of diabetes suggest that a consequence of chronic hyperglycemia is accelerated brain aging, a
hypothesis originally proposed by Gispen, Biessels and co-workers (Kamal et al., 2000). For
example, streptozotocin diabetic rats, an experimental model of type 1 diabetes, rapidly exhibit
dendritic remodeling in the CA3 region of the rat hippocampus (Magariños and McEwen,
2000). Subsequent studies revealed that dendritic changes may be more widespread in the
hippocampus of streptozotocin rats and may also include synaptic reorganization (Grillo et al.,
2005). These neuroanatomical changes may represent the initiation of irreversible neuronal
damage in the hippocampus of diabetic subjects since neuronal apoptosis has been observed
in the hippocampus of type 1 diabetic rats (Li et al., 2002b). However, it is important to note
that neuronal loss, decreases in neuronal density and increases in apoptosis are only observed
following several months of uncontrolled hyperglycemia, suggesting that short-term exposure
to hyperglycemia/insulinopenia is associated with reversible, not irreversible neuronal
changes. Indeed, our previous studies illustrated that diabetes-induced morphological changes
in the CA3 region of the rat hippocampus are reversed with insulin replacement (Magariños
et al., 2001) and are not associated with irreversible neuronal loss (Reagan, 2002; Grillo et al,
2005). Nonetheless, in view the consequences of hippocampal atrophy associated with other
clinical disorders (McEwen, 1997), diabetes-induced neuronal atrophy and redistribution of
synaptic proteins would undoubtedly have functional consequences and may also increase
neuronal vulnerability to subsequent insults or pathologies (Brands et al., 2004; Reagan,
2002)

2.1. Glucocorticoids elicit insulin resistance in the hippocampus
Impairments in HPA axis function and elevated basal glucocorticoids are implicated in the
peripheral complications of type 1 and type 2 diabetes. Diabetic patients in poor glycemic
control exhibit elevated plasma cortisol levels (Couch, 1992); neuroendocrine dysfunction,
including greater sensitivity to both acute and chronic stress is also observed in experimental
models of diabetes (Leedom et al., 1987; Scribner et al., 1991; Oster et al., 1988; Magariños
and McEwen, 2000; Winocur et al., 2005). One of the major metabolic effects of chronic
increases in glucocorticoid levels is insulin resistance, a condition characterized by increases
in serum glucose levels which are not effectively regulated by the elevations in serum insulin
(Amatruda et al., 1985; McMahon et al., 1988). Under physiological conditions, increases in
plasma insulin levels stimulate the translocation of the insulin sensitive glucose transporter
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GLUT4 from intracellular stores to the plasma membrane in organs such as muscle and adipose
tissue, hereby increasing glucose uptake and utilization [For review see (Saltiel and Pessin,
2002)]. Elevated levels of circulating glucocorticoid lead to impairment in the functionality of
GLUT4, an effect that may contribute to peripheral insulin resistance (Garvey et al., 1989;
Dimitriadis et al., 1997). Based upon these peripheral findings, we have recently analyzed the
effects of short-term corticosterone treatment on insulin receptor expression and signaling in
the rat hippocampus (Piroli et al., 2007a). Our results indicate that insulin receptor expression
was unchanged in corticosterone-treated rats compared to vehicle-treated rats. However,
insulin stimulated phosphorylation of insulin receptor, as well as total Akt levels, were reduced
in corticosterone-treated rats when compared to vehicle-treated controls. Furthermore, total
expression of GLUT4 and insulin-stimulated translocation of GLUT4 to the plasma membrane
was reduced by corticosterone administration. These results demonstrate short-term
corticosterone administration impairs insulin signaling in rat hippocampus, thereby providing
a potential mechanism thorough which glucocorticoids modulate hippocampal glucose
utilization in rats (Kadekaro et al., 1988; Landgraf et al., 1978) and humans (de Leon et al.,
1997). Moreover, hippocampal insulin resistance elicited by corticosterone may contribute to
the deleterious consequences of hypercortisolinemic/hyperglycemic states observed in type 2
diabetes.

2.2. Diabetes mediated disruption of pro-oxidant and anti-oxidant cascades
Hyperglycemia-induced shifts in the balance of pro-oxidant and anti-oxidant cascades may
contribute to increased neuronal vulnerability in diabetic subjects. Oxidative stress, lipid
peroxidation and increased production of reactive oxygen species reduce the activity of a
variety of proteins that are critical to neuronal homeostasis (Mattson, 1998). Oxidative stress
and reactive oxygen species are increased in diabetes (Baynes, 1991; Wolff, 1993) and are
proposed to contribute to the development of diabetic encephalopathy (Gispen and Biessels,
2000). In this regard, superoxide production is increased in the serum of type 1 diabetic patients,
increases that are reduced with improved glycemic control (Ceriello et al., 1991). Lipid
peroxidation products such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA) are
increased in the brains of type 2 diabetic mice, and more specifically in the hippocampus of
streptozotocin rats (Grillo et al., 2003; Reagan et al., 2000; Reagan, 2002; Tuzcu and Baydas,
2006). HNE has been shown to mediate β-amyloid toxicity (Mark et al., 1997) and oxidative
stress-induced apoptosis in hippocampal primary cultures (Kruman et al., 1997). The glial
glutamate transporter GLT-1 is a protein target of HNE protein conjugation, which may
contribute to HNE mediated decreases in glutamate transport in primary astrocytic cultures
(Blanc et al., 1998) and in rat cortical synaptosomal fractions (Keller et al., 1997a). HNE
treatment also impairs glucose uptake (Keller et al., 1997b) and our previous studies have
identified the neuron-specific glucose transporter GLUT3 as a target of HNE protein
conjugation in the hippocampus of diabetic rats (Reagan et al, 2000). Collectively, these results
suggest that lipid peroxidation products such as HNE adversely affect neuronal metabolism
and neurochemistry. Moreover, since oxidative stress and lipid peroxidation are hallmark
features of Alzheimer’s disease pathology (Mattson, 1998), hyperglycemia-induced increases
in oxidative stress provide another example of accelerated brain aging in diabetic subjects.

In addition to increases in pro-oxidant pathways, hyperglycemia also decreases ant-oxidant
pathways in the diabetic brain. For example, glutathione levels (Tuzcu and Baydas, 2006), as
well as the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (Aragno et
al., 2005), are reduced in the hippocampus of streptozotocin rats. Interestingly, anti-oxidant
treatments such as melatonin, vitamin E (Tuzcu and Baydas, 2006) and
dehydroepiandrosterone (DHEA) (Aragno et al., 2000; Aragno et al, 2005) reverse the
imbalances in anti-oxidant/pro-oxidant ratios by increasing anti-oxidant expression and
activity. In view of these observations, we examined the ability of DHEA to reduce diabetes/
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stress mediated increases in lipid peroxidation in the hippocampus. Diabetic rats subjected to
chronic stress were provided access to normal rat chow or rat chow supplemented with 0.4%
DHEA; control rats were provided control chow. With the exception of increased plasma levels
of DHEA, diabetic rats provided the DHEA-supplemented chow exhibited similar plasma
endocrine measures as diabetic rats provided standard chow (Table 1). Diabetic rats subjected
to stress and provided standard chow exhibited the expected increases in lipid peroxidation in
the Ammon’s Horn, increases that were attenuated in DHEA-treated rats. However, HNE
radioimmunoreactive levels were reduced in CA1, CA2 and CA3 of Ammon’s Horn in diabetic
rats subjected to chronic stress provided the DHEA-supplemented diet (Figure 1. Panel A).
Similarly, DHEA attenuated diabetes/stress-induced increases in malondialdehyde (MDA)
immunoreactive levels in CA1, CA2 and CA3 compared with diabetes/stress group provided
normal chow (Figure 1, Panel B). These results suggest that anti-oxidant treatments provide
neuroprotection against hyperglycemia-induced increases in oxidative stress. In addition to
supplementation with anti-oxidants, the hippocampus itself may activate compensatory
mechanisms in diabetic rats. In this regard, our previous studies revealed that superoxide
dismutase (SOD) isoform expression increases during prolonged periods of hyperglycemia in
streptozotocin diabetic rats, which may account for decreases in lipid peroxidation products
observed in these rats (Grillo et al, 2003). As such, both endogenous and exogenous
mechanisms may help to restore the appropriate balance between anti-oxidant and pro-oxidant
activities in the diabetic brain.

2.3. Diabetes mediated changes in hippocampal synaptic plasticity
As seen in experimental models of chronic stress, neurochemical and cellular deficits in
hippocampal synaptic plasticity have been identified as long-term consequences of
hyperglycemia. For example, cell proliferation and/or neurogenesis is a form of synaptic
plasticity that is observed in the dentate gyrus region of the hippocampus (Gould and Gross,
2002; Gage, 2002) and glucocorticoids have been shown to reduce the birth of new neurons in
this region (Pham et al., 2003; Gould et al., 1992). Cell proliferation and neurogenesis are also
reduced in the dentate gyrus in experimental models of type 1 diabetes (Kim et al., 2003;
Beauquis et al., 2006; Saravia et al., 2006). Interestingly, diabetes-induced decreases in
neurogenesis/cell proliferation were reversed by treatments that have previously been shown
to increase cell proliferation in the dentate gyrus, including exercise (Kim et al, 2003), estrogen
treatment (Saravia et al, 2006) and antidepressant treatment (Beauquis et al, 2006).
Electrophysiological deficits have also been identified in experimental models of diabetes. For
example, type 1 diabetic rodents exhibit impairments in hippocampal long-term potentiation
and enhancement of long-term depression (Biessels et al., 1996; Kamal et al., 1999; Artola et
al., 2005; Izumi et al., 2003; Valastro et al., 2002), electrophysiological deficits that are
inhibited by insulin replacement. Electrophysiological studies in experimental models of type
2 diabetes have failed to reach a consensus, with some studies stating that type 2 animals exhibit
deficits in long-term potentiation (Gerges et al., 2003; Li et al., 2002a), while others have failed
to observe electrophysiological changes (Belanger et al., 2004). A potential explanation for
these discrepancies is that the physiological characteristics of the type 2 diabetic animals used
in these studies may be dissimilar; such considerations may also be particularly relevant to the
equivocal findings from clinical studies (see below).

2.4. Glutamatergic activity in diabetes phenotypes
Alterations in glutamate neuropharmacology may contribute to these diabetes mediated deficits
in hippocampal synaptic plasticity. For example, deficits in long-term potentiation are
associated with increased expression of NMDA and AMPA receptors in the hippocampus of
NOD mice, as determined by quantitative autoradiographic receptor binding studies (Valastro
et al, 2002). Conversely, these same investigators reported that AMPA receptor binding activity
is decreased in the hippocampus of streptozotocin-treated rats (Gagne et al., 1997), suggesting
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that hyperglycemia may mediate species-specific changes in glutamate receptor pharmacology.
In support of this hypothesis, unlike the observations in NOD mice, NR2B mRNA and protein
are decreased in the hippocampus of streptozotocin rats (Di Luca et al., 1999). Moreover,
Ca+/CaM stimulated phosphorylation of hippocampal NR2A and NR2B subunits expressed in
the post-synaptic density were reduced in streptozotocin rats. As described above,
redistribution and reorganization of synaptic proteins such as post-synaptic density-95 may be
indicative of ongoing synaptogenesis in the hippocampus of streptozotocin rats (Grillo et al,
2005) and thereby modulate glutamatergic tone. Collectively, these results suggest that
transcriptional, translational and post-translational modification of glutamate receptors may
adversely affect synaptic transmission and the electrophysiological properties of hippocampal
neurons in diabetic rodents.

Other components of glutamatergic synapses may also be modulated by diabetes phenotypes.
As noted above, glutamate transporters are regulated by stress and antidepressant treatment;
glutamate transporter expression has also been examined in experimental models of diabetes.
Glial glutamate transporter expression was not modulated in the hippocampus and cortex of
streptozotocin rats compared to control rats, as determined by immunoblot analysis (Coleman
et al., 2004). In agreement with these findings, we examined GLT-1 expression using
radioimmunocytochemical approaches and determined that total GLT-1 expression is
unchanged in the hippocampus of streptozotocin rats or diabetic rats subjected to acute stress.
However, more region-specific analysis revealed that GLT-1 protein expression is significantly
increased in the CA3 region of streptozotocin rats subjected to acute stress compared to non-
stressed streptozotocin rats or control rats (Figure 2). Since increases in GLT-1 expression in
the CA3 region are associated with elevations in extracellular levels of glutamate in the
hippocampus of rats subjected to chronic stress (see above), these results suggest that basal
glutamatergic tone may also be increased in the hippocampus of diabetic rats.

2.5. Insulin receptor expression and signaling in diabetes phenotypes
The insulin receptor is expressed in discrete neuronal populations in the CNS, including the
cerebellum, hypothalamus and the hippocampus (Marks et al., 1991; Doré et al., 1997; Kar et
al., 1993). The insulin receptor is proposed to participate in a variety of functional activities
of the CNS, including cognition (Park, 2001). For example, insulin improves cognitive
performance in humans and animals in a wide variety of settings, including healthy subjects
(Kopf and Baratti, 1994; Parkes and White, 2000; Park et al., 2000), aged subjects (Winocur
and Gagnon, 1998; Messier et al., 1997; Manning et al., 1998), Alzheimer's disease patients
(Messier and Gagnon, 1996; Manning et al., 1993) and in experimental models of insulin
resistance (Greenwood and Winocur, 2001). Additionally, insulin receptor expression and
signaling is increased following spatial learning of a hippocampal-dependent task, the Morris
water maze, (Zhao et al., 1999). Our recent studies have focused upon insulin signaling deficits
in diabetic rodents, especially as how they may contribute to impairments in hippocampal
synaptic plasticity. To this end, we have examined the expression, localization and
translocation of the insulin-sensitive glucose transporters GLUT4 and GLUT8 in the
hippocampus. GLUT4 is expressed in principle and non-principle neurons in the rat
hippocampus (Aplet et al., 1999; LeLoup et al., 1996; McEwen and Reagan, 2004) and
physiologically relevant increases in plasma insulin levels stimulates the translocation of
GLUT4 to the plasma membrane (McEwen and Reagan, 2004; Piroli et al, 2007a). GLUT8 is
localized to the cytosol and the rough endoplasmic reticulum (RER) in the rat hippocampus
(Piroli et al., 2002) and cortex (Piroli et al., 2007b). Unlike GLUT4 translocation to the plasma
membrane, insulin stimulates GLUT8 translocation from the cytosol to the RER in the rat
hippocampus (Piroli et al, 2002; Piroli et al., 2004). Under pathological conditions such as
diabetes phenotypes, plasma membrane association of GLUT4 (McEwen and Reagan, 2004;
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Winocur et al, 2005) and RER association of GLUT8 is reduced (Piroli et al, 2004), further
supporting a role for insulin the in the translocation of these GLUTs.

One of the lingering questions that remains to be determined is the functional significance of
insulin-stimulated trafficking of GLUTs in the hippocampus. Given the abundant expression
of GLUT1 and GLUT3, it is unlikely that GLUT4 makes a significant contribution to glucose
uptake and metabolism in the hippocampus. The functional role of GLUT8 remains to be
determined, although we have previously speculated that GLUT8 participates in protein
glycosylation events that occur in the RER (Piroli et al, 2002; Piroli et al., 2005). Nonetheless,
it is interesting to note that GLUT4 and GLUT8 translocation events are correlated with
behavioral performance of hippocampal-dependent tasks. Moreover, the rapid time course of
increased hippocampal glucose uptake during learning and memory tasks (McNay et al.,
2000; McNay and Gold, 1999) suggests that a readily mobilizable pool of GLUTs quickly
enhances metabolic capacity during increased neuronal activity. Conversely, decreases in
plasma membrane association of GLUT4 are observed in streptozotocin diabetic rats (McEwen
and Reagan, 2004) that exhibit deficits in hippocampal dependent tasks (Biessels et al, 1996).
More recently we have shown that deficits in hippocampal-dependent behavioral tasks in type
2 Zucker diabetic rats is associated with decreases in plasma membrane levels of GLUT4
(Winocur et al, 2005). Since total GLUT4 levels were not affected in diabetic rats compared
to control rats in these studies, these data strengthen the link between insulin signaling, GLUT4
trafficking events and behavioral performance.

2.6. Neurological consequences of diabetes and stress: common etiological mechanisms?
As detailed above, there are striking similarities when comparing the neurological
consequences of chronic exposure to stress levels of glucocorticoids and those observed in
diabetes phenotypes. These include deficits in long-term potentiation, changes in neuronal
morphology and synapse formation, elevations in oxidative stress, all of which may contribute
to the development of cognitive deficits. One of the major metabolic effects of chronic increases
in glucocorticoids levels is insulin resistance (see above) and our recent studies suggest that
these effects of glucocorticoid administration extend to the CNS in that insulin receptor
signaling and GLUT4 translocation is decreased in the hippocampus of corticosterone-treated
rats (Piroli et al, 2007a). In view of the proposed role of insulin in cognition, it is interesting
to speculate that glucocorticoid mediated deficits in insulin receptor signaling contribute to
memory impairments in Cushing’s syndrome patients (Starkman et al, 1992) Common
endocrine profiles are present in diabetic subjects and following chronic exposure to stress
levels of glucocorticoids, including hyperglycemia, deficits in insulin receptor signaling, and
HPA axis dysfunction, in particular hypercorticosteronemia. As a result, while insulin receptor
signaling deficits occur via different mechanisms, the similar endocrine profiles in diabetic
subjects and chronic stress paradigms make it difficult to assess the pathophysiological etiology
of the morphological, electrophysiological and cellular deficits observed in these paradigms.

2.7. Molecular approaches to examine insulin receptor activity in the CNS
Another important consideration regarding insulin CNS signaling deficits in diabetes and stress
paradigms is that insulin may mediates its effects through the insulin receptor or the insulin-
like growth factor receptor family (Adamo et al., 1989). In the absence of receptor-specific
ligands, recent studies have utilized molecular approaches to more selectively examine the
functional activities of central insulin receptors. For example, disruption of insulin receptor
throughout the brain results in increased body adiposity and plasma insulin levels (Bruning et
al., 2000). More selective knockdown of insulin receptor expression in the hypothalamus using
antisense oligodeoxynucleotides leads to greater adiposity specifically in the subcutaneous
depot (Obici et al., 2002). Nevertheless, there are several caveats and limitations associated
with these molecular approaches that have examined insulin receptor function in the CNS. For
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example, one potential complication associated with the use of knock-out mice is that
compensatory changes may occur during development due to elimination of the gene of
interest. As described above, this may be particularly relevant to insulin receptor expression
in the CNS since insulin also exhibits high affinity for insulin-like growth factor I (IGF-I)
receptor and IGF-I receptors are expressed in the hypothalamus (Kar et al, 1993).
Administration of antisense oligonucleotides avoids this potential limitation associated with
knock-out mice, but requires constant infusion of antisense sequences that may produce short-
lived effects.

An emerging technology that provides an alternative to these approaches is virus-mediated
gene transfer (Wilson and Yeomans, 2002). Virus-mediated gene transfer induces long lasting
changes in gene expression in targeted brain regions in adult animals, thereby allowing for
examination of the role of a particular gene in neuronal function from the cellular to the
behavioral levels. In view of the advantages of this approach, we developed a lentivirus vector
packaged with an antisense sequence selective for the insulin receptor (LV-IRAS) and injected
this construct into the third ventricle to target insulin receptors expressed in the hypothalamus
(Grillo et al., 2007). Insulin receptor expression and insulin-stimulated translocation of GLUT4
to the plasma membrane was decreased in the hypothalamus of rats treated with the LV-IRAS
construct, decreases not observed in the hippocampus. LV-IRAS-treated rats also exhibited
the expected increases in body weight gain, subcutaneous fat and plasma leptin levels. As such,
the LV-IRAS construct is an experimental tool that will allow for the more selective
examination of insulin receptor activities in the CNS, including the potential role of insulin as
a neurotrophic factor in regions like the hippocampus. Indeed, our recent studies suggest that
downregulation of insulin receptor expression and signaling adversely affects hippocampal
synaptic plasticity (Grillo et al, unpublished observations). Such experimental approaches may
identify common mechanisms and pathologies that provide etiological links between co-
morbidities like diabetes and depressive illness.

3. Consequences of stress and diabetes: clinical correlates to animal studies
The cumulative neurological consequences of stress paradigms and experimental models of
diabetes ultimately contribute to behavioral deficits. As such, one of the most critical questions
that remains to be determined is whether these pre-clinical data translate to the clinical setting.
There is strong evidence to suggest that the data provided by animal models of stress may
accurately reflect and predict some of the structural and functional deficits observed in stress-
related disorders such as depressive illness, PTSD and anxiety disorders, as well as in normal
aging and in Cushing’s syndrome. Interestingly, as seen in experimental models (Luine et al.,
1994; Conrad et al., 1999), the structural and functional changes observed in the hippocampus
of Cushing’s syndrome patients are at least partially reversible (Starkman et al., 1999). These
data suggest that pharmacological interventions that restore hippocampal and amygdalar
synaptic plasticity in pre-clinical studies may produce similar beneficial effects in patients with
mood-related disorders.

The clinical literature that has described structural and functional changes in diabetic patients
is somewhat more equivocal in that the magnitude and significance of cognitive deficits in
diabetic patients is a subject of debate. The complexity of the pathophysiological causes and
consequences of diabetes may contribute to the dissimilar findings in clinical studies. For
example, a variety of factors have been proposed to negatively influence the structural and
functional integrity of the brain in diabetes patients, including the degree of glycemic control,
the number and severity of hypoglycemic episodes, the age of onset and the duration of diabetes
[For reviews, see (Ryan, 2006; Ryan, 1999)]. A consequence of these metabolic deficits is
impairments in HPA axis function, which may further exacerbate the neurological
complications of diabetes (Bruehl et al., 2007). Neuroanatomical abnormalities have been
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reported in type 1 and type 2 patients [For review see (Reagan, 2002)] and the advent of imaging
technologies has confirmed and extended these previous observations. For example, while MRI
techniques have not identified cerebral or hippocampal atrophy in type 1 patients (Lobnig et
al., 2006; Ferguson et al., 2003), voxel-based morphometry (VBM) revealed decreases in grey
matter density in type 1 patients (Musen et al., 2006). Imaging studies in type 2 patients have
yielded more consistent findings suggestive of cerebral atrophy, in that MRI analyses have
identified structural atrophy (Manschot et al., 2006), particularly in the limbic structures such
as the hippocampus and amygdala (den Heijer et al., 2003). Decreases in hippocampal
formation volume in type 2 patients have also been identified using a combined MRI/VBM
approach (Gold et al., 2007). Importantly, these structural changes are often associated with
neuropsychological deficits in type 2 pateints (Gold et al, 2007; Manschot et al, 2006)

Some investigators suggest that CNS structural and functional deficits in diabetic patients are
subtle and do not represent a significant cognitive burden in diabetic individuals compared to
the general population. Irrespective of the ‘significance’ of cognitive impairments identified
in diabetes, the life-long complications of hyperglycemia may make diabetic patients more
vulnerable to develop co-morbidities such as recurrent depressive illness, dementia and
Alzheimer’s disease (Ott et al., 1996; Ott et al., 1999; Brown et al., 2004; McEwen et al.,
2002b). Therefore, while the magnitude of cognitive deficits observed in diabetic subjects may
remain a subject of debate, the significance of the underlying molecular, cellular,
neurophysiological and neuroanatomical changes that may ultimately produce cognitive
deficits and co-morbidities in diabetes subjects should not be overlooked or marginalized.
Indeed, the long-term consequences of diabetes upon the CNS will become an important health
care issue over the next decade in view of the growing diabetes patient population. As a result,
diabetic encephalopathy could surpass renal failure, heart disease and retinopathy as the major
complication of diabetes.
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Figure 1.
DHEA administration attenuates diabetes/stress mediated increases in oxidative stress.
Streptozotocin diabetic rats subjected to chronic (i.e. 21 day) stress were provided access to
normal chow or chow supplemented with 0.4% DHEA. Panel A. Radioimmunocytochemistry
determined that diabetic rats subjected to stress provided normal chow exhibited the expected
increases in HNE radioimmunolabeling the Ammon’s Horn of the hippocampus, increases that
were significantly reduced in diabetic/stress rats provided the DHEA supplemented diet. Panel
B. Similarly, the DHEA supplemented diet significantly reduced MDA radioimmunoreactive
levels in Ammon’s Horn in diabetic rats subjected to chronic stress. See text for details. [a =
P < 0.05]
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Figure 2.
Glial glutamate transporter expression is increased in the hippocampus of diabetic rats
subjected to acute stress. Radioimmunocytochemistry revealed that diabetic rats subjected to
acute (i.e. 7 day) stress exhibit region-specific increases in GLT-1 protein expression in the
CA3 region of the hippocampus. Since chronic stress increases GLT-1 expression in the CA3
region of the rat hippocampus that are associated with increases in basal glutamatergic tone,
these results suggest that basal glutamatergic tone may also be elevated in diabetic rats
subjected to stress. See text for details. [a = P < 0.05]
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Table 1
Plasma endocrine analysis following DHEA administration

Plasma endocrine measure Control STZ + Chow STZ + DHEA

Glucose (mg/dl) 124.2 ± 3.2 489.3 ± 20.6a 444.3 ± 21.7a
Insulin (ng/ml) 0.437 ± 0.16 0.034 ± 0.018a 0.037 ± 0.03a
DHEA-SO4 (ug/dl) 0.00 0.00 75.8 ± 19.5a/b
Corticosterone (ug/dl) 3.39 ± 0.43 2.19 ± 0.42 3.89 ± 0.63

Rats were provided standard chow (control and STZ + Chow) or standard chow supplemented with 0.4% DHEA (STZ + DHEA). Fasting glucose levels
were measured by glucose-trinder assay; insulin, DHEA-SO4 and corticosterone were measured by radioimmunoassay.

a
= significantly different from control;

b
= significantly different from STZ + Chow.

*
/# = p = 0.001.
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