
Validity of Models for Predicting BRCA1 and BRCA2 Mutations

Giovanni Parmigiani, PhD, Sining Chen, PhD, Edwin S. Iversen Jr, PhD, Tara M. Friebel,
MPH, Dianne M. Finkelstein, PhD, Hoda Anton-Culver, PhD, Argyrios Ziogas, PhD, Barbara
L. Weber, MD, Andrea Eisen, MD, Kathleen E. Malone, PhD, Janet R. Daling, PhD, Li Hsu,
PhD, Elaine A. Ostrander, PhD, Leif E. Peterson, PhD, Joellen M. Schildkraut, PhD, Claudine
Isaacs, MD, Camille Corio, MA, Leoni Leondaridis, MS, Gail Tomlinson, MD, Christopher I.
Amos, PhD, Louise C. Strong, MD, Donald A. Berry, PhD, Jeffrey N. Weitzel, MD, Sharon Sand,
CCRP, Debra Dutson, MA, Rich Kerber, PhD, Beth N. Peshkin, MS, CGC, and David M. Euhus,
MD

Requests for Single Reprints: Giovanni Parmigiani, PhD, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
University, 550 North Broadway, Suite 1103, Baltimore, MD 21205-2011; e-mail, gp@jhu.edu.
Current Author Addresses: Dr. Parmigiani: The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, 550
North Broadway, Suite 1103, Baltimore, MD 21205-2011.
Dr. Chen: Department of Environmental Health Sciences, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore,
MD 21205.
Dr. Iversen: Department of Statistical Sciences, Duke University, Box 90251, Durham, NC 27708.
Ms. Friebel: Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, 909 Blockley Hall, 423
Guardian Drive, Philadelphia, PA 19104-6021.
Dr. Finkelstein: Biostatistics Center, Massachusetts General Hospital, 50 Staniford Street, Suite 560, Boston, MA 02114.
Drs. Anton-Culver and Ziogas: University of California, 224 IH, Mail Code 7550, Irvine, CA 92697-7550.
Dr. Weber: GlaxoSmithKline, 2301 Renaissance Boulevard, Building 510, Mailcode RN0510, King of Prussia, PA 19406-2772.
Dr. Eisen: Department of Medicine, University of Toronto, Suite RFE 3-805, 190 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada.
Drs. Malone, Daling, and Hsu: Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024.
Dr. Ostrander: Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Drive, MSC
8000, Building 50, Room 5351, Bethesda, MD 20892-8000.
Dr. Peterson: The Methodist Hospital, 6550 Fannin Street, SM-1299, Houston, TX 77030.
Dr. Schildkraut: Duke University Medical Center, Box 2949, Durham, NC 27510.
Dr. Isaacs, Ms. Corio, Ms. Leondaridis, and Ms. Peshkin: Georgetown University, 2233 Wisconsin Avenue NW, Suite 317, Washington,
DC 20007.
Drs. Tomlinson and Euhus: University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX
75390-9155.
Drs. Amos, Strong, and Berry: M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 189, Houston, TX 77030.
Dr. Weitzel and Ms. Sand: City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91001.
Ms. Dutson and Dr. Kerber: Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112-5550.
Author Contributions: Conception and design: G. Parmigiani, D.M. Finkelstein, H. Anton-Culver, B.L. Weber, G. Tomlinson, D.M.
Euhus.
Analysis and interpretation of the data: G. Parmigiani, S. Chen, E.S. Iversen Jr., A. Ziogas, B.L. Weber, L.E. Peterson, R. Kerber, B.N.
Peshkin, D.M. Euhus.
Drafting of the article: G. Parmigiani, H. Anton-Culver, L.E. Peterson.
Critical revision of the article for important intellectual content: S. Chen, E.S. Iversen Jr., K.E. Malone, J.R. Daling, L. Hsu, E.A.
Ostrander, C. Isaacs, C.I. Amos, D.A. Berry, J.N. Weitzel, B.N. Peshkin, D.M. Euhus.
Final approval of the article: G. Parmigiani, S. Chen, E.S. Iversen Jr., D.M. Finkelstein, B.L. Weber, A. Eisen, K.E. Malone, J.R. Daling,
E.A. Ostrander, J.M. Schildkraut, C. Isaacs, C. Corio, G. Tomlinson, J.N. Weitzel, B.N. Peshkin.
Provision of study materials or patients: D.M. Finkelstein, B.L. Weber, A. Eisen, K.E. Malone, J.R. Daling, J.M. Schildkraut, C. Isaacs,
C. Corio, G. Tomlinson, C.I. Amos, L.C. Strong, J.N. Weitzel, D. Dutson, B.N. Peshkin, D.M. Euhus.
Statistical expertise: G. Parmigiani, S. Chen, E.S. Iversen Jr., A. Ziogas, L. Hsu, L. Leondaridis, C.I. Amos, S. Sand, R. Kerber.
Obtaining of funding: G. Parmigiani, H. Anton-Culver, B.L. Weber, J.R. Daling, E.A. Ostrander, J.M. Schildkraut, L.C. Strong.
Administrative, technical, or logistic support: G. Parmigiani, T.M. Friebel, D.M. Finkelstein, A. Ziogas, B.L. Weber, J.R. Daling, D.A.
Berry, J.N. Weitzel, D. Dutson, D.M. Euhus.
Collection and assembly of data: T.M. Friebel, D.M. Finkelstein, H. Anton-Culver, B.L. Weber, K.E. Malone, J.R. Daling, E.A. Ostrander,
J.M. Schildkraut, C. Isaacs, C. Corio, L. Leondaridis, G. Tomlinson, L.C. Strong, D.M. Euhus.
Potential Financial Conflicts of Interest: Employment: B.L. Weber (GlaxoSmithKline). Stock ownership or options (other than mutual
funds): B.L. Weber (GlaxoSmithKline).
Current author addresses and author contributions are available at www.annals.org.

NIH Public Access
Author Manuscript
Ann Intern Med. Author manuscript; available in PMC 2008 October 2.

Published in final edited form as:
Ann Intern Med. 2007 October 2; 147(7): 441–450.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.annals.org


From Johns Hopkins University, Baltimore, Maryland; Center for Clinical Epidemiology and
Biostatistics and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania;
Duke University, Durham, North Carolina; Massachusetts General Hospital, Boston,
Massachusetts; University of California, Irvine, Irvine, California; University of Toronto, Toronto,
Ontario, Canada; Fred Hutchinson Cancer Research Center, Seattle, Washington; Baylor College
of Medicine and University of Texas M.D. Anderson Cancer Center, Houston, Texas; Lombardi
Cancer Center, Georgetown University; University of Texas Southwestern Medical Center, Dallas,
Texas; Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; and National Human
Genome Research Institute, National Institutes of Health, Bethesda, Maryland.

Abstract
Background—Deleterious mutations of the BRCA1 and BRCA2 genes confer susceptibility to
breast and ovarian cancer. At least 7 models for estimating the probabilities of having a mutation are
used widely in clinical and scientific activities; however, the merits and limitations of these models
are not fully understood.

Objective—To systematically quantify the accuracy of the following publicly available models to
predict mutation carrier status: BRCAPRO, family history assessment tool, Finnish, Myriad, National
Cancer Institute, University of Pennsylvania, and Yale University.

Design—Cross-sectional validation study, using model predictions and BRCA1 or BRCA2 mutation
status of patients different from those used to develop the models.

Setting—Multicenter study across Cancer Genetics Network participating centers.

Patients—3 population-based samples of participants in research studies and 8 samples from
genetic counseling clinics.

Measurements—Discrimination between individuals testing positive for a mutation in BRCA1 or
BRCA2 from those testing negative, as measured by the c-statistic, and sensitivity and specificity of
model predictions.

Results—The 7 models differ in their predictions. The better-performing models have a c-statistic
around 80%. BRCAPRO has the largest c-statistic overall and in all but 2 patient subgroups, although
the margin over other models is narrow in many strata. Outside of high-risk populations, all models
have high false-negative and false-positive rates across a range of probability thresholds used to refer
for mutation testing.

Limitation—Three recently published models were not included.

Conclusions—All models identify women who probably carry a deleterious mutation of BRCA1
or BRCA2 with adequate discrimination to support individualized genetic counseling, although
discrimination varies across models and populations.

Deleterious mutations of BRCA1 (MIM 113705) and BRCA2 (MIM 600185) increase the risk
for breast and ovarian cancer (1–3). Whereas deleterious variants are relatively rare in the
general population, they are common among families with multiple occurrences of breast or
ovarian cancer (4–6). When counseling a woman facing decisions about genotyping for
BRCA1 and BRCA2, it is important to accurately evaluate the probability that she carries a
deleterious mutation (pretest mutation probability) and the probability that a mutation will be
found if she is genotyped (which depends on the accuracy of mutation testing). Reliable,
evidence-based, individualized counseling strategies can enhance informed decision making,
both about whether to pursue BRCA1/BRCA2 testing and what to do with the results (7–9).

The demand for assessment of complex family histories of cancer has led to widespread use
of statistical models to estimate mutation probabilities (2,10–18). Model-based predictions are
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currently used in counseling about genetic testing, are included in materials distributed to
women considering genetic testing (18–21), are used for determining eligibility for screening
and prevention studies (22), and are factored into coverage decisions by insurers (23). More
than a dozen models exist. They use different statistical methods and source populations,
pedigree features, and predicted outcomes. In clinical practice, different models applied to the
same person can give a wide range of probabilities that a BRCA1/BRCA2 mutation is present.
This degree of variability raises concerns about whether some models are more accurate than
others and calls for a careful independent comparative evaluation of the predictive performance
of existing models.

We assessed the validity of commonly used models for estimating mutation probabilities of
BRCA1 and BRCA2 in individuals identified through the Cancer Genetics Network. We
assembled a large set of families with history of breast cancer, ovarian cancer, or both. We
used standardized computational methods across contributing institutions to evaluate 7 models.
Our main goal was to measure how well these models discriminated between mutation carriers
and noncarriers.

METHODS
Study Overview

We conducted a cross-sectional, multicenter analysis. For each family in the study, we
identified an individual (the counselee) for whom we collected genetic test results for
BRCA1, BRCA2, or both; genotyping methods; pretest estimations of mutation probability
using each model; and additional information about family history of cancer. We used genetic
test results as the gold standard for judging the sensitivity and specificity of the various models.
We evaluated all models on every counselee, except where noted.

Data Collection
Table 1 summarizes the salient data (24–32). Sources include 3 population-based studies and
8 data sets of individuals seen in clinics for women at high risk for a BRCA mutation. In the
population-based studies, the participants reflected the demographic characteristics of a
defined subpopulation (for example, all breast cancer cases in Orange County in the University
of California, Irvine [UCI], study [31]). In contrast, patients from high-risk clinics had been
referred because of a family history of cancer or were self-referred because of an interest in
genetic testing (inclusion criteria varied across clinics).

Each center calculated all of the model probabilities for its own families. We designated the
first genotyped person in each family as the counselee and computed predictions by using the
genetic counseling software CaGene (University of Texas Southwestern Medical Center,
Dallas, Texas) (24). The software version was customized and distributed to participating sites
to ensure uniform procedures across all sites. Data entry and computation of model predictions
were performed at the sites. This decentralized approach for data entry and probability
calculations allowed site investigators to use pedigree information that models required but
that centers could not export to a central site because of privacy concerns. In addition to model
predictions, a subset of centers also exported the data required for the models to the National
Cancer Institute’s (NCI) Cancer Genetics Network Data Coordinating Center. The study
population includes 3342 families.

The institutional review boards at each participating institution approved the study protocol.
All included counselees gave consent for using their data for research according to local
institutional review board requirements. The Cancer Genetics Network steering committee
reviewed the study design.
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Genetic Testing
Appendix Table 1 (available at www.annals.org) summarizes genotyping methods by center
and provides a brief description of each method. Determining whether a person carries a
deleterious mutation of BRCA1 or BRCA2 is technically demanding because of the large size
of these genes, the wide spectrum of mutations, and the presence of mutations whose clinical
significance is unknown (33–35). Commercial testing uses sequencing to search for unknown
mutations or to probe for mutations that are commonly found among Ashkenazi Jewish persons.
Research settings, particularly in the time in which the study was conducted, have used less
expensive and less sensitive techniques (Appendix Table 1, available at www.annals.org).
Although sequencing is the most sensitive of the techniques used in our study, recent evidence
highlights how it can miss certain mutations, such as large deletions or intronic mutations (3,
36). Therefore, the set of individuals carrying a mutation (the carriers) is not the same as the
set of individuals who test positive for a mutation (the positive cases). Thus, Table 1
underestimates the true number of carriers; the size of the error varies according to the method
of genotyping.

Models
We studied 7 models: BRCAPRO, the family history assessment tool (FHAT), Finnish,
Myriad, NCI, University of Pennsylvania (Penn), and Yale University (Yale). Appendix Table
2 (available at www.annals.org) summarizes the characteristics, input variables, and output of
the models. Three broad categories of models have been proposed: empirical (Finnish, Myriad,
NCI, and Penn), mendelian (BRCAPRO and Yale), and expert-based (FHAT). The first step
in developing an empirical model is to summarize the salient aspects of a family history in
some predictor variables. The second step is to apply statistical learning techniques, such as
logistic regression, to describe the relationship between these variables and the genotyping
results (the dependent variable). Mendelian models represent the known modes of inheritance
of deleterious genetic variants by established mathematical relationships between phenotypes
(in this case, cancer status of family members) and genotypes (14, 37–41). The mendelian
model inputs include cancer incidence curves (penetrance) for both carriers and noncarriers
and the prevalence of deleterious variants. Expert-based models calculate scores that
summarize degree of risk, using algorithms constructed on the basis of clinical judgment. For
example, FHAT (16) uses a 17-question interview to produce a quantitative score (score range,
0 to 45) representing the severity of family history.

Empirical models calculate the probability of a positive test result for a mutation in the
counselee (that is, the result of genetic testing), whereas mendelian models directly estimate
the probability of carrying a mutation (the true mutation status of the counselee) (37). The 2
types of predictions are therefore not directly comparable, a fact often overlooked in counseling
practice. Because genotyping methods are highly specific for the BRCA1 and BRCA2 genes
(that is, they have a very low false-positive rate), multiplying the genotype probability by the
genotyping sensitivity gives the probability of finding a mutation. Therefore, to compare an
empirical model probability of a BRCA mutation with a mendelian model probability, one must
know the sensitivity of the genotyping method of the study used to develop the empirical model.
Expert-based scores do not have a direct probabilistic interpretation. In our analyses, we
rescaled the FHAT score by dividing by its maximum value of 45.

The Penn model (11) estimates the probability of a positive BRCA1 test result in any family
member. We adapted it to provide the probability of a positive test in the counselee. We
assigned affected counselees the same mutation probability as the family. We assigned
unaffected counselees one half the family probability if the closest affected relative of the
counselee is a first-degree relative and one quarter of the family probability if the closest
relative is a second-degree relative.
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We used a version of the BRCAPRO (13,14) model based on the genetic variables described
by Iversen and colleagues (42).

We defined the Yale model by postulating a single gene as reflecting all highly penetrant
autosomal dominant breast cancer genes and used genetic variables from a segregation analysis
of the Cancer and Steroid Hormone Study (10,43,44).

We did not include several models. The LAMBDA model (45) and the Spanish model (46) are
empirical models developed on families from Australia and Spain. The Manchester (47) model
is an expert-based scoring system. These 3 models became available after the Cancer Genetics
Network data collection occurred. We also did not include 2 BRCA1 prediction–only models
that are precursors of models considered here (12,13) and 2 recent mendelian models, the Breast
and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA)
and International Breast Cancer Intervention (IBIS) Breast Cancer Risk Evaluation Tool, for
which software implementations were not readily available at the time of data collection (48,
49). This omission is a limitation of our study, although a recent study (32) concluded that the
BOADICEA, BRCAPRO, and Myriad models performed similarly.

Statistical Analysis
We combined data from all centers to create a matrix in which the rows are individual
counselees and the columns include estimated probability of a BRCA1 or BRCA2 mutation
using each model; stratification variables, such as age, Ashkenazi ethnicity, and cancer status
of the counselee, genetic test results; and genotyping methods. We defined “positive cases” as
individuals who test positive for either BRCA1 or BRCA2 and “negative cases” as individuals
who had negative results on both tests. We excluded counselees who tested negative for 1 gene
and were not tested for the other, which limited our analysis data set to 2240 individuals. Our
analytic strategy is to compare predicted testing results for each model with actual testing
results for all counselees and within specific counselee strata (for example, age, Ashkenazi
ethnicity, or cancer status of the counselee).

Our measurement of discrimination is the c-statistic, which is equal to the area under the
receiver-operating characteristic curve. It is also the probability that a randomly chosen test-
positive counselee will have a higher probability (or prediction score) of a BRCA mutation than
a randomly chosen test-negative counselee (50,51), which implies a correct rank ordering of
the 2 predictions. We computed the c-statistic by using all possible pairs of counselees, one of
whom is positive and the other negative. The smallest possible value of the c-statistic is 0.0,
wherein all predictions are incorrectly ordered, and the largest is 1.0, wherein all predictions
are correctly ordered. A c-statistic of 0.5 means that the model would correctly order half of
the pairs and would incorrectly order the other half. This method is equally applicable to
empirical, mendelian, and expert-based approaches.

We evaluated all models in each center. Because the NCI model is intended for use in the
Ashkenazi population, we evaluated it on Ashkenazi persons only. The applicability of some
models is subject to minor restrictions, such that we had to exclude some families for each
model (52). We did not evaluate a model on a counselee from a family that we knew had been
used to develop the model. We could not follow this rule with the Myriad model because this
information was not available. As a result, we may have overestimated the performance of
Myriad. However, this overlap is probably limited to individuals genotyped by gene
sequencing, who make up less than 25% of all study patients.

To assess the significance of trends observed when comparing all models as a group across
strata, we used a Wilcoxon rank-sum test and a 2-sided alternative.
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A potential limitation of our analysis plan arises from the imperfect and differing sensitivity
of genotyping methods used. Whereas the genotypes of positive counselees are accurate
because the false-positive rate of genotyping is negligible (33,35), those of negative counselees
are uncertain because of possible false-negative genotyping results. This discrepancy may
result in a bias in favor of empirical models, which estimate the probability of a positive
mutation test, and against mendelian models, which estimate the probability of a mutation. In
parallel to the analysis presented here, we developed a customized approach that allows one
to evaluate the c-statistic and other measurements by comparing predictions with imputed
genotypes, therefore adjusting for heterogeneous test sensitivities. Results suggest that the
findings reported here penalize mendelian models. Data are not shown, but the details are
available from the authors on request. Finally, a limitation of the analysis is that normalized
FHAT scores do not provide probabilities, and thus the 10% threshold does not have the same
interpretation for this model as it does for the others.

Role of the Funding Sources
The Cancer Genetics Network funded part of the study and is responsible for good research
practices and for data storage. The Cancer Genetics Network and the other funding sources,
listed under “Grant Support,” had no other role in the design, conduct, and reporting of the
study.

RESULTS
Range of Predictions across Models

The models differ widely in their predictions for a given counselee. The largest range of
predictions across models was 99 percentage points, reached in families with male breast
cancer. On average, the range of predictions was 27 percentage points. Among all possible
pairwise comparisons between the predictions of a mendelian and an empirical model for the
same counselee, 12% disagreed by 50 percentage points or more.

Model Discrimination
We used the c-statistic to summarize the models’ ability to distinguish individuals testing
positive for either gene from those testing negative to both genes. Table 2 presents overall
results, as well as results stratified by study type, ethnicity, and counselee cancer status. The
Figure presents discrimination for each model, stratified by age. As seen in Table 2, in 82% of
the possible comparisons between a positive and a negative counselee, BRCAPRO assigns a
higher probability to the positive counselee. By comparison, the c-statistic for the Myriad
model is 77%; the 95% CIs for the 2 c-statistics do not overlap.

Results shown in Table 2 and the Figure identify areas of strength and weakness of individual
models in specific clinical scenarios. Results differ somewhat depending on the stratum, and
the 95% CIs often overlap. However, the following general trends emerge. As expected, models
perform less well in individuals without breast or ovarian cancer and in younger counselees.
Discrimination is generally better in the population-based studies. BRCAPRO has the largest
c-statistic in all but 2 strata, although the range of c-statistics across all models is too narrow
to choose a clearly superior model.

The methods used to detect mutations in BRCA1 or BRCA2 differed among the study sites,
which introduces the possibility that differences among model performances reflect differences
in mutation detection. In Appendix Table 3 (available at www.annals.org), we also considered
separately 512 cases in which mutation screening was performed by gene sequencing. This
analysis addresses the concern about confounding between centers’ characteristics and
mutation testing methods, because within the gene sequencing stratum, all centers used the
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same method for gene sequencing and all 512 cases are from high-risk samples. The model
prediction results are consistent with those obtained on all high-risk individuals across the
various mutation testing methods used in different centers, suggesting that such confounding
is not affecting our conclusions.

Sensitivity, Specificity, and Likelihood Ratios
To calculate sensitivity and specificity, we first specified the probability that defines the
threshold between a positive model result and a negative model result. We divided the study
population depending on whether each model’s prediction (probability or normalized score)
exceeds a threshold of 10%. In the analysis, a mutation probability greater than 10% would be
considered a positive model result. To illustrate the consequences of a referral threshold of
10%, we report the sensitivity, specificity, and likelihood ratios for the BRCAPRO model in
Table 3 and for all models in Appendix Table 4 (available at www.annals.org). Comparisons
across populations indicate a decrease in specificity and an increase in sensitivity as we move
from population-based to high-risk studies. The ratio of the proportion of individuals above
10% among positive cases to the same proportion among negative cases is the positive
likelihood ratio—the amount by which the odds of a positive test increases when a person’s
estimated probability exceeds 10%.

The negative likelihood ratio is the analogous ratio for proportions below or equal to the 10%
threshold. According to the Bayes’ theorem, models with higher positive likelihood ratios and
lower negative likelihood ratios increase the odds of testing positive more substantially when
the probability exceeds 10% and decrease the odds more when the probability is below 10%,
respectively. Table 3 and Appendix Table 4 (available at www.annals.org) show how these
ratios vary with the model and study population. Exceeding the 10% threshold is stronger
evidence for testing positive among unselected breast cancer cases (such as the UCI study [31])
than in a high-risk setting, in which more negative counselees will exceed the threshold as a
result of patient selection.

Positive and Negative Predictive Values
The predictive value of a test is the probability of the target condition being present or absent
corresponding to a positive or negative test result, respectively. It depends on the prevalence
of the target condition in the population and the sensitivity and specificity of the test. In Table
3 and Appendix Table 5 (available at www.annals.org), we compute the proportion of test-
positive individuals among those exceeding the 10% threshold (positive predictive value) and
the proportion of test-negative individuals among those not exceeding the 10% threshold
(negative predictive value). We perform this analysis separately for 3 subsets of the study
populations, chosen because the prevalences of BRCA1 and BRCA2 mutations within 1 subset
differ from those in the other 2 subsets: the UCI study, the Fred Hutchinson Cancer Research
Center study (28), and all high-risk data combined. The UCI data (31) include all breast cancer
cases (female and male) diagnosed in Orange County, California, during the year beginning 1
March 1994 and is therefore representative of patients with breast cancer presenting to a general
oncology practice. The proportion of positive BRCA mutation tests is 1.74%. Table 4 and
Appendix Table 6 (available at www.annals.org) show the consequences of referring patients
with breast cancer for genetic testing and counseling if their risk exceeds 10%. For example,
using the FHAT model, 4.7% of individuals with a score of 10% or greater will be positive
and 99.5% of individuals with a score less than 10% will be negative. Because the predictive
value of a test varies with the prevalence of the target condition, when the same referral
threshold probability is applied to populations with higher prevalence, the number of test-
positive cases missed by using a 10% referral threshold increases. In the high-risk population,
where the proportion of positive mutation tests is 27.9%, 32% of those that exceed a 10%
threshold on the FHAT score will be test-positive but only 86% of the individuals below the
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10% threshold will be test-negative. A similar trend is present with the other models in
Appendix Table 5 (available at www.annals.org). The Fred Hutchinson Cancer Research
Center population (28) presents an intermediate case: The data are from a case–control study
with a mutation prevalence of 8.85%. The cases had either early onset (age <35 years) or a
first-degree family history of breast cancer and thus present an intermediate scenario between
the low-risk UCI population and the high-risk population. In this population, 11.9% of those
with FHAT scores that exceed a 10% threshold will be positive, and 98.2% of the individuals
below the 10% threshold will be negative.

Effect of Changes in the Threshold
Table 4 illustrates the effect of increasing the threshold to 20% and lowering the threshold to
5% on the classification of patients by the BRCAPRO model. The same information for other
models appears in Appendix Table 6 (available at www.annals.org). For example, in the UCI
study, a threshold of 5% on the BRCAPRO model predictions leads to referral of half of the
test-positive individuals in the population, while still referring less than 10% of the total number
of individuals. In general, lowering the threshold will capture a larger proportion of test-
positive individuals at the cost of increasing the number of referrals.

DISCUSSION
We provide a comprehensive view of the predictive performance of 7 commonly used, publicly
available mutation carrier prediction models for the BRCA1 and BRCA2 genes, across a range
of clinically relevant strata. As shown in Table 2, the c-statistic for the better-performing
models clusters closely around 80%. Clinicians and counselors can use these results to identify
the model that performs best in the strata most relevant to their activities and to weigh the
differences in discrimination against practical implementation issues that are specific to their
practice. BRCAPRO has the largest c-statistic overall and in all but 2 clinical strata, although
the range of c-statistics across all models is too narrow to identify a clearly superior model. If
used for referral outside of high-risk groups, all models have high rates of false-negative and
false-positive results across a range of thresholds to refer for testing (Appendix Table 6,
available at www.annals.org).

A strength of our study is the inclusion of both high-risk and population-based centers. The
high-risk samples reflect genetic counseling clinics, and the population-based samples reflect
the broader spectrum of patients seen in general oncology practice. The c-statistics reported
for the high-risk population are similar to those of previous studies performed in similar settings
(53–57). The c-statistic of models is generally greater in the population-based samples than in
the high-risk samples (P = 0.036) (Table 2), which suggests that the models can be applied to
more broadly representative settings than high-risk clinics. In high-risk populations, a referral
threshold of 10% results in relatively high sensitivity with very low specificity. In population-
based cohorts, the specificity is higher but the sensitivity is lower, and the 10% threshold misses
a large proportion of test-positive cases. Likelihood ratios resulting from the 10% threshold
also vary markedly across populations.

Genetic counselors used mutation probability thresholds for referral in the past, and they are
still sometimes used for insurance coverage purposes (23). However, guidelines no longer
recommend this practice (7). We used a threshold probability to calculate model sensitivity
and specificity, which permitted us to illustrate the consequences of using the models to decide
on referral for mutation testing. Results in Appendix Table 4 (available at www.annals.org)
imply that using a 10% threshold for the pooled high-risk populations will, depending on the
model used, exclude 10% to 20% of test-positive individuals from genetic testing. The
analogous figure for unselected breast cancer cases is 1% to 8% excluded. Conversely, Table
3 and Table 4 and Appendix Table 5 (available at www.annals.org) show that the models would
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refer many women who do not carry mutations for testing. The low positive predictive values
that we found are consistent with earlier reports (24) comparing BRCAPRO with genetic
counselors’ assessments of the same family history. When models are used on unselected breast
cancer cases to determine whether to refer a patient to a counseling clinic, using a 10% threshold
would still miss women who would test positive, a circumstance more serious than an
unnecessary referral. The estimated positive and negative predicted values (Table 3 and
Appendix Table 5 [available at www.annals.org]) do not apply to healthy individuals from the
general population.

We found that the estimated probability of testing positive differed widely when different
models were applied to the same counselee. Genetic counselors may consider using several
predictive models, as well as qualitative pedigree analysis (23), because the variation among
model predictions may provide an indication of their reliability.

Limitations of our study concern the mutation testing methods used and the lack of
representation of minorities. Mutation testing techniques varied across centers generally and
across high-risk and population-based studies more specifically. All cases tested using gene
sequencing were in high-risk centers, whereas studies of low-risk populations used less
sensitive mutation testing methods. However, this potential confounding probably leads to an
underestimate of the c-statistics in population-based studies; our conclusion about
generalizability is therefore unlikely to be affected. Also, minority populations may be
underrepresented in the populations used to develop the models, and existing models do not
explicitly take into account the possibility that minority groups, such as African Americans,
have a higher probability of carrying genetic variants of uncertain clinical significance, which
would be missed by genetic testing. However, independent evidence suggests that BRCAPRO
discriminated between carriers and noncarriers in African American (58) and Hispanic (59)
families as well as it did in white families.

Genotyping for BRCA1 and BRCA2 is now widespread. Myriad Genetics Laboratories, Salt
Lake City, Utah, alone tested more than 100 000 individuals by 2005 (60). Many more women
are being counseled about whether to be genotyped. Model-based mutation probabilities have
been a critical component of individualized counseling. Our comprehensive evaluation
indicates that, overall, the concordance observed between predictions and test results is high.
However, relying on model probabilities to decide about referral can cause many false-positive
and false-negative referral decisions (Table 4). Decision making about genetic testing and
prevention should reflect a broader range of factors, of which carrier probabilities are but one
(7,8). Other factors include the effectiveness and cost of genotyping; the available means and
efficacy of measures for early detection and risk reduction; the counselee’s willingness to
undergo enhanced surveillance or risk-reducing interventions; and the possible psychological,
social, and ethical effects of testing. Physicians should rely on health care professionals who
are experienced in cancer genetics to determine the appropriateness of genetic testing. Their
evaluation may discover additional reasons for caution because of small family size, few female
family members, limited or unconfirmed family history, or family histories that suggest rarer
syndromes. In primary care settings for referral to further genetic counseling, setting a referral
threshold probability may be a practical approach; however, we do not recommend using a
strict 10% threshold, because it may miss a large proportion of clinically appropriate cases.
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Appendix Tables
Appendix Table 1

Number of Counselees, by Genotyping Method for Each Gene and Center *

Genotyping
Method

Duke
Univ.

Penn George-
town
Univ.

JHU FHCRC BCM MDACC UTSW HCI UCI COH

BRCA1
   SSCP 1 61 170 0 583 0 0 1 0 9 0
   Seq 72 127 28 68 0 0 105 105 61 0 33
   ASO 0 0 0 1 0 0 0 0 0 688 0
   Targeted
mut
screening

37 0 0 0 0 0 0 0 0 0 0

   Seq for
185delAG
and
5382insC

41 91 4 33 0 0 11 15 0 0 25

   Seq for
185delAG
only

0 0 0 0 0 282 0 0 0 106 0

   CSGE 3 310 41 1 0 0 1 0 0 0 0
   SSCP +
ASO

0 0 18 0 0 0 0 0 0 0 0

   Targeted
mut
screening +
Seq

60 0 0 0 0 0 0 0 0 0 0

   Targeted
mut
screening +
CSGE

23 0 0 0 0 0 0 0 0 0 0

   Other† 4 42 14 2 0 0 0 0 0 0 19
   None‡ 1 45 0 0 0 0 0 0 0 0 0
BRCA2
   SSCP 0 0 171 0 384 0 0 0 0 0 0
   Seq 64 242 28 66 0 0 104 101 61 0 32
   CSGE 5 199 40 1 0 0 0 0 0 0 0
   ASO 55 0 0 1 0 0 0 0 0 0 0
   Seq for
6174delT

47 0 6 33 0 0 11 14 0 688 25

   SSCP +
ASO

0 0 17 0 0 0 0 0 0 0 0

   Seq + ASO 24 0 0 0 0 0 0 0 0 0 0
   ASO + Seq 36 0 0 0 0 0 0 0 0 0 0
   Other† 0 76 13 1 0 0 0 0 0 115 19
   None‡ 11 159 0 3 199 282 2 6 0 0 1

*
ASO = allele-specific oligonucleotide hybridization assay (33,61); BCM = Baylor College of Medicine; COH = City of Hope; CSGE = confirmation-

sensitive gel electrophoresis (33); FHCRC = Fred Hutchinson Cancer Research Center; HCI = Huntsman Cancer Institute; JHU = Johns Hopkins University;
MDACC = M.D. Anderson Cancer Center; Penn = University of Pennsylvania; Seq = full sequencing of the coding regions of the gene, as implemented
by Myriad Genetics Laboratories at the time of testing (18,61,62); Seq for 185delAG = sequencing for Ashkenazi founder mutation 185delAG in BRCA1
(1,63); Seq for 185delAG and 5382insC = sequencing for Ashkenazi founder mutations 185delAG and 5382insC in BRCA1 (1,63); Seq for 6174delT =
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sequencing for Ashkenazi founder mutation 6174delT in BRCA1 (1,63); SSCP = single-strand conformation polymorphism (62); targeted mut screening
= sequencing for a panel of 8 known deleterious mutation in BRCA1 and 4 deleterious mutations in BRCA2 (64); UCI = University of California, Irvine
(Orange County); UTSW = University of Texas Southwestern.
†

”Other” includes all genotyping methods that were used in a sample that was too small to be worth reporting in detail, as well as some cases whose
genotyping method was missing.
‡
“None” indicates that individuals were tested for 1 gene and not the other, contributing to the main analysis only if they test positive. This occurs either

by design or because genes are tested sequentially and the second gene is not tested after a mutation is found in the first.

Appendix Table 2
Input Variables and Features of Each Model *

Variable BRCAPRO FHAT Finnish Myriad NCI† Penn Yale

Model characteristics
  Mendelian • •
  Empirical • • • •
  Expert-based •
  Requires a computer • • • • •
  Requires pedigree • •
  Available in the CaGene (67)
package‡ • • • • • • •

  Trained on high-risk data • • • • •
  Size of training sample (for
empirical models), n

148 238§ 5318 169

  Updated periodically • •
  References: development 13, 14, 65 16 17 18, 61, 66 15 11
  References: validation 24, 46, 58, 32,

53?57
16, 54 46, 55 46, 32, 53–

55, 57
46,
32,
54, 55

55

Model input∥
  Mendelian transmission • •
  Exact family structure • •
  Age of unaffected counselee • • •
  Age of unaffected relatives • •
  Ashkenazi Jewish ethnicity of
family

• • • • •

  Breast cancer status, counselee • • • • • •
  Breast cancer status, relatives • • • • • •
  Breast cancer age of onset,
counselee

• • • • • • •

  Breast cancer age of onset,
relatives

• • • • • •

  Ovarian cancer status, counselee • • • • • •
  Ovarian cancer status, relatives • • • • • •
  Ovarian cancer age of onset,
counselee

• • •

  Ovarian cancer age of onset,
relatives

• •

  Male breast cancer status,
counselee

• • • •

  Male breast cancer status,
relatives

• • • •

  Both breast and ovarian cancer in
counselee

• • • •

  Both breast and ovarian cancer in
a single relative

• • •

  Bilateral breast cancer status,
counselee

• • •

  Bilateral breast cancer status,
relatives

• • •

  Bilateral breast cancer, both ages
of onset, counselee

• •

  Bilateral breast cancer, both ages
of onset, relatives

• •

  Prostate cancer in relatives •
  Colon cancer in relatives •
Model output
  Predictions for BRCA1 and
BRCA2 separately

•

  Predictions for BRCA1 and
BRCA2 together

• • • •

  Predictions for BRCA1 only •
  Probability of carrying a mutation • •
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Variable BRCAPRO FHAT Finnish Myriad NCI† Penn Yale

  Probability of finding a mutation
if tested

• • • •

  Nonprobabilistic score •

*
FHAT = family history assessment tool; NCI = National Cancer Institute; Penn = University of Pennsylvania; Yale = Yale University.
†

Intended for use with Ashkenazi Jewish women only.
‡

CaGene manufactured by University of Texas Southwestern Medical Center, Dallas, Texas (accessed at
www4.utsouthwestern.edu/breasthealth/cagene on 1 August 2007).
§
Classes were originally selected by using 238 breast cancer cases. Subsequently, chances of finding a mutation in each risk class have been updated by

using empirical frequencies from additional genotyping at Myriad. We used the January 2002 version of BRCAPRO (accessed at
http://astor.som.jhmi.edu/BayesMendel/brcapro.html on 1 August 2007).
∥
Models encode and utilize these in different ways

Appendix Table 3
C-Statistics (95% CIs) of the Models, by Cancer Status of the Counselee, Study Type, Ashkenazi Ethnicity, and
Overall, for Persons Tested by Gene Sequencing *

Model All
Persons

Not
Ashkenazi
Jewish

Ashkenazi
Jewish

No
Cancer

Breast
Cancer
Only

Ovarian
Cancer
Only

Both
Breast
and
Ovarian
Cancer

BRCAPRO 0.74 (0.69–
0.79)

0.75 (0.7–
0.81)

0.66 (0.49–
0.83)

0.61 (0.49–
0.72)

0.76 (0.71–
0.81)

0.91 (0.8–
1.0)

0.81 (0.63–
0.99)

Yale 0.64 (0.58–
0.69)

0.65 (0.59–
0.71)

0.61 (0.46–
0.77)

0.57 (0.46–
0.67)

0.67 (0.61–
0.74)

0.82 (0.68–
0.95)

0.71 (0.46–
0.96)

Myriad 0.67 (0.62–
0.72)

0.68 (0.62–
0.73)

0.66 (0.49–
0.82)

0.61 (0.49–
0.73)

0.65 (0.58–
0.72)

0.87 (0.74–
0.99)

0.67 (0.43–
0.91)

NCI† – – 0.6 (0.45–
0.75)

– – – –

Penn‐ 0.69 (0.63–
0.75)

0.69 (0.63–
0.74)

0.76 (0.61–
0.92)

0.7 (0.57–
0.83)

0.64 (0.57–
0.71)

0.7 (0.45–
0.95)

0.62 (0.38–
0.86)

FHAT 0.68 (0.63–
0.73)

0.69 (0.64–
0.75)

0.66 (0.49–
0.82)

0.58 (0.45–
0.71)

0.66 (0.59–
0.73)

0.84 (0.7–
0.98)

0.72 (0.49–
0.94)

Finnish 0.71 (0.66–
0.77)

0.69 (0.64–
0.75)

0.78 (0.6–
0.95)

0.8 (0.69–
0.91)

0.63 (0.56–
0.69)

0.87 (0.69–
1)

0.69 (0.47–
0.91)

*
FHAT = family history assessment tool; NCI = National Cancer Institute; Penn = University of Pennsylvania; Yale = Yale University.
†

The NCI model was applied only to families of Ashkenazi ethnicity.
‡

The Penn model predicts BRCA1 mutations only. In the table, its performance in predicting mutations at either gene is evaluated to facilitate comparisons
with other models and to capture a common use of the model.

Appendix Table 4
Sensitivity, Specificity, and Likelihood Ratios of All Predictive Models *

Model UCI Sample FHCRC Sample High-Risk Sample

Sensitivity (95% PI)†
  BRCAPRO 0.429 (0.207–0.656) 0.706 (0.547–0.834) 0.824 (0.786–0.857)
  Yale 0.071 (0.010–0.260) 0.765 (0.627–0.866) 0.639 (0.592–0.677)
  Myriad 0.286 (0.126–0.540) 0.853 (0.734–0.936) 0.775 (0.732–0.813)
  NCI 0.400 (0.102–0.775) 1.000 (0.354–1.000) 0.625 (0.522–0.697)
  FHAT 0.786 (0.536–0.931) 0.941 (0.837–0.987) 0.885 (0.852–0.913)
  Finnish 0.273 (0.082–0.563) 0.853 (0.712–0.931) 0.728 (0.686–0.777)
Specificity (95% PI)†
  BRCAPRO 0.934 (0.913–0.950) 0.671 (0.6201–0.715) 0.526 (0.499–0.551)
  Yale 0.928 (0.910–0.943) 0.597 (0.5443–0.639) 0.574 (0.543–0.605)
  Myriad 0.864 (0.840–0.888) 0.683 (0.6390–0.730) 0.479 (0.449–0.512)
  NCI 0.766 (0.627–0.857) 0.125 (0.0193–0.486) 0.655 (0.600–0.711)
  FHAT 0.720 (0.694–0.749) 0.320 (0.2669–0.375) 0.271 (0.249–0.299)
  Finnish 0.879 (0.850–0.904) 0.447 (0.3954–0.505) 0.653 (0.628–0.682)
Positive LR (95% PI)†
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Model UCI Sample FHCRC Sample High-Risk Sample

  BRCAPRO 6.503 (2.925–10.24) 2.148 (1.682–2.71) 1.739 (1.63–1.87)
  Yale 0.989 (0.125–3.67) 1.898 (1.500–2.23) 1.501 (1.37–1.65)
  Myriad 2.107 (0.899–4.13) 2.689 (2.127–3.29) 1.487 (1.39–1.60)
  NCI 1.709 (0.445–3.84) 1.143 (0.429–1.68) 1.813 (1.42–2.20)
  FHAT 2.805 (1.981–3.45) 1.384 (1.210–1.55) 1.214 (1.16–1.27)
  Finnish 2.259 (0.679–4.46) 1.543 (1.282–1.80) 2.097 (1.89–2.34)
Negative LR (95% PI)†
  BRCAPRO 0.612 (0.3722–0.843) 0.438 (0.24249–0.669) 0.334 (0.269–0.408)
  Yale 1.001 (0.8018–1.075) 0.394 (0.22660–0.629) 0.628 (0.548–0.708)
  Myriad 0.826 (0.5284–1.018) 0.215 (0.09054–0.395) 0.47 (0.388–0.556)
  NCI 0.783 (0.3129–1.229) 0 (0–9.819) 0.572 (0.454–0.750)
  FHAT 0.298 (0.0957–0.632) 0.184 (0.03927–0.547) 0.424 (0.315–0.555)
  Finnish 0.827 (0.5017–1.045) 0.329 (0.14274–0.637) 0.416 (0.340–0.485)

*
For each model, we divided the study population into 2 groups depending on whether the model’s prediction for a positive for either gene is >10%;

crosstabulated this information with the genetic testing results; and computed the sensitivity, specificity, and LRs. The 95% PIs are 95% posterior
probability regions (obtained by using Jeffrey noninformative priors). The PIs are necessary to account for skewness and small sample sizes in some cells.
FHAT = family history assessment tool; FHCRC = Fred Hutchinson Cancer Research Center; LR = likelihood ratio; NCI = National Cancer Institute;
UCI = University of California, Irvine (Orange County); Yale = Yale University.
†

For a referral threshold probability of 10%.

Appendix Table 5
Predictive Performance of Models*

Model UCI Sample FHCRC Sample High-Risk Sample

Individuals testing positive
among those with probability
>10% [95% PI], n/n (%) †
  BRCAPRO 6/58 (10.34 [4.435–20.08]) 24/139 (17.3 [11.69–24.2]) 352/874 (40.3 [37.1–43.6])
  Yale 1/58 (1.72 [0.187–7.78]) 26/167 (15.6 [10.68–21.6]) 273/742 (36.8 [33.4–40.3])
  Myriad 4/111 (3.60 [1.228–8.34]) 29/140 (20.7 [14.64–28.0]) 331/905 (36.6 [33.5–39.8])
  NCI 2/13 (15.38 [3.341–40.90]) 2/9 (22.2 [4.93–54.4]) 75/176 (42.6 [35.5–50.0])
  FHAT 11/232 (4.74 [2.545–8.06]) 32/270 (11.9 [8.41–16.1]) 378/1181 (32.0 [29.4–34.7])
  Finnish 3/77 (3.90 [1.109–10.03]) 29/218 (13.3 [9.29–18.3]) 284/642 (44.2 [40.4–48.1])
Individuals testing negative
among those with probability
≤10% [95% PI], n/n (%) ‡
  BRCAPRO 737/745 (98.9 [98.0–99.5]) 235/245 (95.9 [92.9–97.9]) 579/654 (88.5 [85.9–90.8])
  Yale 732/745 (98.3 [97.1–99.0]) 209/217 (96.3 [93.2–98.2]) 632/786 (80.4 [77.5–83.1])
  Myriad 682/692 (98.6 [97.5–99.3]) 239/244 (98.0 [95.6–99.2]) 527/623 (84.6 [81.6–87.3])
  NCI 36/39 (92.3 [80.9–97.8]) 1/1 (100.0 [14.7–100.0]) 192/237 (81.0 [75.7–85.6])
  FHAT 568/571 (99.5 [98.6–99.9]) 112/114 (98.2 [94.5–99.6]) 298/347 (85.9 [81.9–89.2])
  Finnish 539/547 (98.5 [97.3–99.3]) 153/158 (96.8 [93.2–98.8]) 673/779 (86.4 [83.9–88.7])

*
For each model, we divided the study population into 2 groups depending on whether the model’s prediction for a positive result for either gene is >10%,

crosstabulated this information with the genetic testing results, and computed the positive and negative predictive values. The 95% PIs are 95% posterior
probability regions (obtained by using Jeffrey noninformative priors). The PIs are necessary to account for skewness and small sample sizes in some cells.
FHAT = family history assessment tool; FHCRC = Fred Hutchinson Cancer Research Center; UCI = University of California, Irvine (Orange County);
Yale = Yale University.
†

Positive predictive value.
‡

Negative predictive value.

Appendix Table 6
Number of Patients per 1000 Referred for Mutation Testing, with Different Threshold Probabilities for
Referral*

Variable Proportion
Positive

Threshold Mutation-
Negative
above
Threshold

Mutation-
Positive
above
Threshold

Mutation-
Positive
below
Threshold

Mutation-
Negative
below
Threshold

Total

Yale
  UCI sample 0.017 0.05 102.1 2.5 14.9 880.4 1000

0.1 71 1.2 16.2 911.6 1000
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Variable Proportion
Positive

Threshold Mutation-
Negative
above
Threshold

Mutation-
Positive
above
Threshold

Mutation-
Positive
below
Threshold

Mutation-
Negative
below
Threshold

Total

0.2 43.6 1.2 16.2 939 1000
  FHCRC sample 0.089 0.05 455.7 75.5 13 455.7 1000

0.1 367.2 67.7 20.8 544.3 1000
0.2 291.7 59.9 28.6 619.8 1000

  High-
risk sample

0.279 0.05 376.3 197 82.5 344.2 1000

0.1 306.9 178.7 100.8 413.6 1000
0.2 234.9 158.4 121.1 485.6 1000

Myriad
  UCI sample 0.017 0.05 459.5 11.2 6.2 523 1000

0.1 133.3 5 12.5 849.3 1000
0.2 64.8 3.7 13.7 917.8 1000

  FHCRC sample 0.089 0.05 750 88.5 0 161.5 1000
0.1 289.1 75.5 13 622.4 1000
0.2 80.7 36.5 52.1 830.7 1000

  High-
risk sample

0.279 0.05 549.1 255.2 24.2 171.5 1000

0.1 375.7 216.6 62.8 344.9 1000
0.2 138.7 138.7 140.7 581.8 1000

NCI
  UCI sample 0.096 0.05 211.5 38.5 57.7 692.3 1000

0.1 211.5 38.5 57.7 692.3 1000
0.2 76.9 0 96.2 826.9 1000

  FHCRC sample 0.2 0.05 700 200 0 100 1000
0.1 700 200 0 100 1000
0.2 500 100 100 300 1000

  High-
risk sample

0.291 0.05 247 181.6 109 462.5 1000

0.1 244.6 181.6 109 464.9 1000
0.2 104.1 82.3 208.2 605.3 1000

FHAT
  UCI sample 0.017 0.05 638.9 17.4 0 343.7 1000

0.1 275.2 13.7 3.7 707.3 1000
0.2 51.1 3.7 13.7 931.5 1000

  FHCRC sample 0.089 0.05 849 88.5 0 62.5 1000
0.1 619.8 83.3 5.2 291.7 1000
0.2 177.1 54.7 33.9 734.4 1000

  High-
risk sample

0.279 0.05 678 269 10.5 42.5 1000

0.1 525.5 247.4 32.1 195 1000
0.2 174.7 158.4 121.1 545.8 1000

Finnish
  UCI sample 0.018 0.05 216.3 9.6 8 766 1000

0.1 118.6 4.8 12.8 863.8 1000
0.2 60.9 4.8 12.8 921.5 1000

  FHCRC sample 0.09 0.05 656.9 87.8 2.7 252.7 1000
0.1 502.7 77.1 13.3 406.9 1000
0.2 170.2 39.9 50.0 739.4 1000

  High-
risk sample

0.274 0.05 373.7 233.6 40.8 351.9 1000

0.1 251.9 199.9 74.6 473.6 1000
0.2 145 145.7 128.8 580.6 1000

*
Continued from Table 4. FHAT = family history assessment tool; FHCRC = Fred Hutchinson Cancer Research Center; NCI = National Cancer Institute;

UCI = University of California, Irvine (Orange County); Yale = Yale University.
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Figure 1. C-statistic, by age of the counselee and model
Points within age groups are slightly spaced horizontally for readability. Vertical bars are 95%
CIs. A description of each model is given in Table 3. FHAT = family history assessment tool;
NCI = National Cancer Institute; Penn = University of Pennsylvania; Yale = Yale University.
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Table 3
Test Performance Characteristics and Posttest Probabilities for the BRCAPRO Model in 3 Populations*

Variable UCI Sample FHCRC Sample High-Risk Sample

Overall proportion of individuals testing
positive

0.017 0.089 0.279

Sensitivity (95% PI)† 0.429 (0.207–0.656) 0.706 (0.547–0.834) 0.824 (0.786–0.857)
Specificity (95% PI)† 0.934 (0.913–0.950) 0.671 (0.620–0.715) 0.526 (0.499–0.551)
Positive likelihood ratio (95% PI) 6.503 (2.925–10.24) 2.148 (1.682–2.71) 1.739 (1.63–1.87)
Negative likelihood ratio (95% PI) 0.612 (0.372–0.843) 0.438 (0.242–0.669) 0.334 (0.269–0.408)
Positive predictive value (95% PI), n/n
(%)‡

6/58 (10.34 [4.435–20.08]) 24/139 (17.3 [11.69–24.2]) 352/874 (40.3 [37.1–43.6])

Negative predictive value (95% PI), n/
n (%)§

737/745 (98.9 [98.0–99.5]) 235/245 (95.9 [92.9–97.9]) 579/654 (88.5 [85.9–90.8])

*
95% PI = 95% posterior probability regions (obtained by using Jeffrey noninformative priors); FHCRC = Fred Hutchinson Cancer Research Center; UCI

= University of California, Irvine (Orange County).

†
For a referral threshold probability of 10%.

‡
Proportion of individuals testing positive among those with probability or score >10%.

§
Proportion of individuals testing negative among those with probability or score ≤10%.
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