Leukotriene E4 Activates Peroxisome Proliferator-activated Receptor γ and Induces Prostaglandin D₂ Generation by **Human Mast Cells***

Received for publication, July 16, 2007, and in revised form, April 9, 2008 Published, JBC Papers in Press, April 14, 2008, DOI 10.1074/jbc.M705822200

Sailaja Paruchuri‡§**, Yongfeng Jiang**‡§**, Chunli Feng**§ **, Sanjeev A. Francis**‡¶**, Jorge Plutzky**‡¶**, and Joshua A. Boyce**‡§¹ *From the Departments of* ‡ *Medicine and Pediatrics, Harvard Medical School, and the Divisions of* § *Rheumatology, Immunology, and Allergy and* ¶ *Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115*

Cysteinyl leukotrienes (cys-LTs) are potent inflammatory lipid mediators, of which leukotriene (LT) E_4 is the most stable **and abundant** *in vivo***. Although only a weak agonist of established G protein-coupled receptors (GPCRs) for cys-LTs, LTE4 potentiates airway hyper-responsiveness (AHR) by a cyclooxygenase (COX)-dependent mechanism and induces bronchial eosinophilia.** We now report that LTE₄ activates human mast **cells (MCs) by a pathway involving cooperation between an MK571-sensitive GPCR and peroxisome proliferator-activated receptor (PPAR), a nuclear receptor for dietary lipids.** Although LTD₄ is more potent than LTE₄ for inducing calcium flux by the human MC sarcoma line LAD2, LTE₄ is more potent **for inducing proliferation and chemokine generation, and is at least as potent for upregulating COX-2 expression and causing** prostaglandin D_2 (PGD₂) generation. LTE₄ caused phosphoryl**ation of extracellular signal-regulated kinase (ERK), p90RSK, and cyclic AMP-regulated-binding protein (CREB). ERK activa**tion in response to LTE₄, but not to LTD₄, was resistant to inhibitors of phosphoinositol 3-kinase. LTE₄-mediated COX-2 induction, PGD₂ generation, and ERK phosphorylation were all **sensitive to interference by the PPAR antagonist GW9662 and** to targeted knockdown of PPARγ. Although LTE₄-mediated **PGD2 production was also sensitive to MK571, an antagonist for** the type 1 receptor for cys-LTs $(CysLT₁R)$, it was resistant to knockdown of this receptor. This LTE₄-selective receptor-me**diated pathway may explain the unique physiologic responses of** human airways to LTE₄ in vivo.

Cysteinyl leukotrienes (cys-LTs)² (LTC₄, LTD₄, LTE₄) are potent inflammatory mediators derived from arachidonic acid

and generated by mast cells (MCs), eosinophils, basophils, and macrophages (reviewed in Ref. 1). Arachidonic acid is liberated from nuclear membrane phospholipids by a cytosolic phospholipase A_2 (2) and converted by 5-lipoxygenase (5-LO) and its molecular partner, 5-LO-activating protein (FLAP), to the unstable intermediate $LTA₄$ at the nuclear envelope (3, 4). $LTA₄$ is then conjugated to reduced glutathione by an integral nuclear membrane protein, leukotriene C_4 synthase (LTC₄S) $(5, 6)$, forming LTC₄. After transport to the extracellular space by multidrug resistance protein-1 (7), LTC_4 is converted extracellularly to LTD_4 by a γ -glutamyl leukotrienase (8), and then to the terminal product LTE_4 by a dipeptidase (9). This rapid conversion ensures that LTC_4 and LTD_4 are very short-lived *in* $vivo$. In contrast, LTE_4 is stable, being the only cys-LT detected in biologic fluids and excreted in the urine without further modification (10). Cys-LTs are the most potent known bronchoconstrictors (11, 12), and they also potentiate airway hyperresponsiveness (AHR) to histamine when they are administered by inhalation to human subjects (13). Bronchoalveolar lavage (BAL) fluids collected from allergen-challenged atopic asthmatic individuals contain high levels of cys-LTs (14), and levels of $LTE₄$ are elevated in urine samples from patients during spontaneous asthmatic exacerbations (10). Drugs that block the type 1 receptor for cys-LTs $(CysLT_1R)$ (15, 16) or that interfere with cys-LT synthesis (17) are clinically efficacious in asthma. Studies with mice lacking $LTC₄S$ and/or cys-LT receptors suggest additional prominent functions for these mediators in adaptive immunity and fibrosis (18–20). Thus, mechanisms that control cys-LT-dependent biologic responses are of considerable pathobiologic and clinical interest in both allergic and nonallergic disease.

 $CysLT_1R$ and $CysLT_2R$ are the two known G protein-coupled receptors (GPCRs) selective for cys-LTs (21, 22). CysLT₁R is expressed prominently by smooth muscle and leukocytes (22, 23), while CysLT₂R is expressed by cardiac Purkinje cells, endo-

^{*} This work was supported, in whole or in part, by National Institutes of Health Grants AI-48802, AI-52353, AI-31599, HL-36110, and EB-00768. This work was also supported by grants from the Charles Dana Foundation, and the Vinik Family Fundfor Research in Allergic Diseases. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance

 1 To whom correspondence should be addressed: Brigham and Women's Hospital, One Jimmy Fund Way, Smith Bldg. Rm. 626, Boston, MA 02115. Tel.: 617-525-1261; Fax: 617-525-1260; E-mail: jboyce@rics.bwh.

harvard.edu.
² The abbreviations used are: cys-LT, cysteinyl leukotriene; Ab, antibody; 5-LO, 5 lipoxygenase; AERD, aspirin-exacerbated respiratory disease; AHR, airway hyper-responsiveness; BAL, bronchoalveolar lavage; COX, cyclooxygenase; CREB, cyclic AMP-regulated-binding protein; CysLT₁R, type 1 receptor for cys-LTs; CysLT₂R, type 2 receptor for cys-LTs; ERK, extracellular signal-regulated kinase; FACS, fluorescence-activated cell sorting;

FceRI, high-affinity Fc receptor for IgE; FLAP, 5-lipoxygenase activating protein; GPCR, G protein-coupled receptor; hMC, cord blood-derived human MC; IL, interleukin; LBD, ligand binding domain; LC-MS, liquid chromatography-mass spectroscopy; LT, leukotriene; LTC₄S, leukotriene C₄ synthase; MC, mast cell; MEK, mitogen-activated protein kinase kinase; MIP-1 β , macrophage inflammatory protein 1 β ; MOX, methoxylamine; p90RSK, 90-kDa ribosomal S6 kinase; PGD₂, prostaglandin D₂; PGDS, PGD₂ synthase; PI3K, phosphatidylinositol 3-kinase; PLA₂, phospholipase A₂; PPAR, peroxisome proliferator-activated receptor; PTX, pertussis toxin; RT, reverse transcriptase; SCF, stem cell factor; shRNA, short hairpin RNA; siRNA, small interfering RNA; TNF- α , tumor necrosis factor- α .

LTE₄ Induces PGD₂ Generation

thelium, brain, and leukocytes (21). A third receptor, GPR17, recognizes both $LTD₄$ and uracil nucleotides and is expressed primarily in the brain (24). CysLT₁R binds LTD₄ with higher affinity than LTC₄ (EC₅₀ values for binding of 10^{-9} M and 10^{-8} M, respectively) (22), whereas CysLT₂R has equal affinity for LTD₄ and LTC₄ (EC₅₀ of 10⁻⁸ M for each) (21). LTE₄ is a weak, partial agonist for CysLT₁R and CysLT₂R, binding each with 1–2-log fold lower affinity than do LTC_4 and LTD_4 (21, 23). Although it is a modest bronchoconstrictor relative to LTD_4 (25) , LTE₄ nonetheless elicits biologic responses than are distinct from those induced by its precursors. After inhalation by human subjects, LTE_{4} (but not LTD_{4}) causes significant increases in the numbers of eosinophils, basophils, and MCs in sputum over several hours (25, 26). Humans with aspirin-exacerbated respiratory disease (AERD), a variant of asthma characterized by markedly elevated baseline generation of cys-LTs, exhibit bronchoconstrictor responses to inhaled $LTE₄$ that are disproportionate relative to their responses to histamine (27), LTC_4 , or LTD_4 (28). Prior inhalation of LTE_4 by humans with asthma potentiates AHR to histamine; this response can be blocked by pretreatment of the subjects with the cyclooxygenase (COX) inhibitor indomethacin (29). Likewise, $LTE₄$ (but not $LTC₄$ or $LTD₄$) potentiates contraction of guinea pig tracheal rings to histamine in an indomethacin-sensitive fashion (30). Thus, LTE₄-induced pulmonary responses *in vivo* are dissimilar to those caused by LTC_4 and LTD_4 , are not explained by the pharmacology of the established GPCRs for cys-LTs, and may be mediated by induced prostanoids.

MCs are stem cell factor (SCF)-dependent hematopoietic cells that are ubiquitously distributed at interfaces with the external environment (reviewed in Ref. 31, 32) and abound in human airways. MCs trigger exacerbations of asthma through the elaboration of soluble mediators. Among these are especially large quantities of prostaglandin $D_2(PGD_2)$, a COX product that is a bronchoconstrictor and chemoattractant for eosinophils, basophils, and Th2 cells. MCs express both $CysLT_1R$ and CysLT₂R (33, 34), which form heteromeric complexes on these cells (35). Stimulation of primary human MCs derived *in vitro* from cord blood progenitors (hMCs) with $LTD₄$ potently induces calcium flux (32), extracellular signal-regulated kinase (ERK) phosphorylation, and cytokine generation (36). Based on RNA interference and/or pharmacologic antagonism with MK571, a drug that blocks CysLT₁R but not CysLT₂R, each of these responses requires $CysLT₁R$. In a model of allergen-induced pulmonary inflammation, $LTC_4S^{-/-}$ mice showed a striking deficit in the number of MCs in the tracheal epithelium (20). In a separate study, exogenous $LTD₄$ induced the proliferation of hMCs by causing transactivation of c-Kit, the receptor for SCF, through CysLT₁R (37), while CysLT₂R counter-regulates these responses (35). Unexpectedly, despite its weak activity at CysLT₁R and CysLT₂R, LTE₄ increased the numbers of MCs arising from liquid culture of cord blood mononuclear cells more potently than LTC_4 or LTD_4 (37). We now report that LTE₄ signals though a distinct, MK571-sensitive pathway independent of CysLT_1R and CysLT_2R , thereby linking extracellular LTE₄ to peroxisome proliferator-activated receptor γ $(PPAR_{\gamma})$ -dependent ERK activation, inducible expression of COX-2, and generation of $PGD₂$. These findings support the

possible existence of a LTE_4 -activated GPCR that accounts for the distinct effects of LTE₄ in vivo.

EXPERIMENTAL PROCEDURES

Reagents—LTD₄, LTE₄, PGJ₂, GW9662, NS398, MK571, and anti-COX-2 and PPAR γ Abs were purchased from Cayman Chemical. Fura-2 AM was from Molecular Probes, and all primers were from SuperArray. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and all phosphospecific Abs were from Cell Signaling. A second $PPAR\gamma$ Ab was from UBI. The siRNA for PPAR γ was from Dharmacon, pertussis toxin (PTX) was from Sigma, and PD98059 was from Chemicon.

Cell Culture—The LAD2 line (38) isolated from the bone marrow of a patient with MC leukemia was a kind gift of Dr. Arnold Kirshenbaum (NIH). These cells were cultured in Stempro 34^{TM} (Invitrogen) supplemented with 2 mM L-glutamine (Invitrogen), Pen-strep (100 international units/ml) (Invitrogen), and SCF (Endogen) (100 ng/ml). Cell culture medium was hemi-depleted every week with fresh medium and 100 ng/ml SCF. Primary hMCs were derived from cord blood mononuclear cells cultured for 6–9 weeks in RPMI supplemented with SCF, interleukin IL-6, and IL-10 (39).

Calcium Flux—LAD2 cells $(0.5-1 \times 10^6/\text{sample})$ were washed and labeled with fura 2-AM for 30 min at 37 °C. Cells were stimulated with the indicated concentrations of LTC_4 , LTD_4 , and LTE_4 , and changes in intracellular calcium concentration were measured using excitation at 340 and 380 nm in a fluorescence spectrophotometer (Hitachi F-4500) (34). The relative ratios of fluorescence emitted at 510 nm were recorded and displayed as a reflection of intracellular calcium concentration. In some experiments, cells were preincubated with the $CysLT_1R$ antagonist MK571 (1 μ M) for 5 min before the stimulation.

Flow Cytometry—The expressions of Kit, CysLT₁R, CysLT₂R, GPR17, and PPAR γ in LAD2 cells were determined by flow cytometry. Briefly, LAD2 cells (2×10^5) were washed in fluorescence-activated cell sorting (FACS) buffer (1% bovine serum albumin, 0.2 mm EDTA in phosphate-buffered saline), fixed with 4% paraformaldehyde, and incubated with mouse anti-human IgG1 against Kit (BIOSOURCE International) or with custom-generated Abs against extracellular domains of the human CysLT₁R (RB34) (35) and CysLT₂R (RB19) (Orbigen). In some experiments, polyclonal Abs against the C termini of human CysLT₁R and CysLT₂R (Cayman) were used. For experiments with the latter Abs, as well as those used to detect intracellular $PPAR_{\gamma}$, the cells were permeabilized with 0.5% saponin before staining, followed by a fluorescein isothiocyanate-conjugated secondary Ab for another 30 min. Staining for GPR17 was done using a polyclonal Ab raised against the extracellular N terminus (Novus) with and without permeabilization. Nonspecific rabbit IgG and mouse IgG₁ (BioSource International) were used as respective negative controls. Cells were washed with FACS buffer three times, and flow cytometric analyses were performed with a Becton-Dickinson FACScan flow cytometer.

Real-time Quantitative PCR—The expressions of CysLT₁R, CysLT₂R, macrophage inflammatory protein-1 β (MIP-1 β), MCP-1, IL-5, IL-8, COX-1, COX-2, phospholipase A_2 (PLA₂) (groups IIA, IVA, V, and X), hematopoietic $PGD₂$ synthase

(PGDS), and tumor necrosis factor α (TNF- α) mRNAs were determined with real-time PCR performed on an ABI PRISM 7700 Sequence detection system (Applied Biosystems). LAD2 cells were growth factor-starved overnight and stimulated with LTD₄ or LTE₄ (100 nm) or with medium alone for 2 h at 37 °C. RNA was isolated with an RNAeasy minikit (Qiagen) and was treated with RNase-free DNase (Invitrogen) according to the manufacturer's protocol. cDNA was synthesized from 1μ g of RNA with Superscript II RNase H-RT (Invitrogen). Reverse transcription (RT) was performed using TaqMan RT reagents. All primers and FAM-labeled PCR mix were purchased from Superarray.

Short Hairpin RNA (shRNA) and Small Interfering RNA (siRNA) Knockdowns—shRNA constructs targeting human $CysLT_1R$ and $CysLT_2R$ were purchased from Open Biosystems. The constructs were cloned into a lentiviral vector (pLKo1, Open Biosystems) and used to generate infectious particles with a lentiviral packaging mix (Virapower, Invitrogen) according to the manufacturer's protocol. The transfections were carried out as described previously (35). FACs analysis was used to confirm the knockdowns. $siRNA$ against $PPAR\gamma$ and scrambled double-stranded RNA controls were purchased from Dharmacon in the form of a *SMART* pool. Cells were transfected with 50 nm PPAR γ and scrambled siRNAs using Lipofectamine according to the manufacturer's instructions. At 48 h, knockdowns were confirmed by Western blotting, and the cells were used for the indicated assays.

Cell Activation—LAD2 cells and primary hMCs either were stimulated with the indicated concentrations of LTD_4 or LTE_4 or were passively sensitized with human myeloma IgE $(2 \mu g/ml;$ Chemicon) overnight and stimulated with rabbit anti-human anti-IgE (Chemicon, 1 μ g/ml), SCF (100 ng/ml), PGJ₂ (20 μ g/ml), or rosiglitazone (10 μ m), a PPAR γ agonist. To determine the contribution of various signaling events in agonistmediated responses, cells were stimulated after preincubation with PTX (100 ng/ml) for 18 h; with the PPAR γ antagonist GW9662 (10 μ m) for 1 h; or with MK571 (1 μ m), the mitogenactivated protein kinase kinase (MEK) inhibitor PD98058 (50 μ M), the PI3K inhibitor LY294002 (10 μ M), the cytosolic PLA₂ (cPLA₂) inhibitor Shinogi 1 (5 μ M), or the COX-2 inhibitor NS398 (10 μ M) for 30 min. Cells were stimulated with the agonists for 15 min for ERK phosphorylation, 2 h for PCR analysis, 6 h for the measurement of cytokine and $PGD₂$ generation, and 18 h for the PPAR γ ligand-binding domain (LBD) assay (40). The concentration of MIP-1 β was measured by an ELISA (Endogen). $PGD₂$ was detected using a $PGD₂$ -methoxylamine hydrochloride (PGD₂-MOX) assay (Cayman). The PGD₂ values detected with this assay were similar to those identified in the supernatants of cys-LT-stimulated primary hMCs and LAD2 cells by metabolite separation and analysis by reversed-phase HPLC and electrospray ionization-mass spectrometry (LC-MS) (40).

Cell Lysates and Western Blotting—After stimulation with the respective agonists, LAD2 cells and primary hMCs (0.5 \times 10⁶) were lysed with lysis buffer (BD Bioscience) supplemented with protease inhibitor mixture (Roche Applied Science) and sodium vanadate (1 mm) . Lysates were subjected to $4-12\%$ SDS-PAGE and transferred to polyvinylidene difluoride membranes. The membranes were incubated with Abs against phospho- and total ERK, MEK, 90 kDa ribosomal s6 kinase (p90RSK), and cyclic AMP-regulated-binding protein (CREB) (Cell Signaling Technologies) in $1\times$ phosphate-buffered saline, 5% dry milk, 0.1% Tween-20 (1:1000) overnight at 4 °C on shaker, and then with secondary Ab (peroxidase-conjugated anti-rabbit or anti-mouse). Bands were visualized using enhanced chemiluminescence (Pierce).

PPAR LBD Assay—Bovine aortic endothelial cells, and CHO cells stably transfected with human CysLT₁R or CysLT₂R were plated in 24-well plates and transiently transfected in 1% delipidated plasma (DLP)/DMEM per the manufacturer's instructions (Fugene HD, Roche Applied Science). Briefly, cells were co-transfected with constructs for the human PPAR γ -LBD GAL4 fusion, the GAL4-responsive luciferase reporter $pUASX4TK-luc$, and β -galactosidase. Cells were stimulated with the indicated reagents for $18-24$ h before the PPAR γ LBD-GAL4 assays were performed. Luciferase counts, normalized to β -galactosidase activity, were obtained using luciferase substrates (BD Pharmingen); chlorophenol red- β -D-galactopyranoside was used for β -galactosidase activity assays (Roche Diagnostics) (41).

Cell Proliferation—Mitogenic assays were performed in triplicate on cells suspended in fresh medium at a concentration of $0.5\times 10^6/\mathrm{ml}$ with or without LTD_4 and LTE_4 $(0.01\mathrm{-}0.1~\mu\mathrm{m})$ in the absence of SCF. In some experiments, MK571 (1 μ M) or GW9662 (10 μ m) was added at the same time as the mitogens. At 48 h, the cells were pulsed overnight with [³H]thymidine (Amersham Biosciences), and counts were analyzed by β -counting. The radioactivity incorporated was measured in triplicate, and the results are expressed as mean \pm S.D.

Statistics—Data are expressed as mean \pm S.D. from at least three experiments except where otherwise indicated. Data were converted to a percentage of control for each experiment where indicated. The significance was determined with the Student's*t* test.

RESULTS

Rank Order of cys-LTs for Inducing Calcium Flux in LAD2 $Cells$ —To determine the potency of LTE_4 for calcium flux relative to the other cys-LTs, we stimulated Fura-2-loaded LAD2 cells with various doses of each cys-LT and performed crossdesensitizations. LTD_4 was the most potent agonist among the cys-LTs for eliciting calcium flux and completely desensitized the LAD2 cells to the calcium fluxes induced by both LTC_4 and LTE_{4} (Fig. 1*A*). LTE₄ caused calcium flux at doses as low as 1 nm that was not attenuated by prior stimulation of the cells with an equal amount of LTC_4 . LTC_4 did not induce a calcium flux at concentrations below 100 nm. LTE_4 partly desensitized LAD2 cells to $LTD₄$ and completely desensitized these cells to $LTC₄$ (Fig. 1*B*). Regardless of the cys-LT used to stimulate the LAD2 cells, the calcium responses were totally blocked by pretreatment of the cells with MK571 (Fig. 1*B*), which competitively antagonizes CysLT₁R but not CysLT₂R. Thus, although LAD2 cells express CysLT₂R mRNA (Fig. 1*C*) and protein (Fig. 1*D*), all cys-LT-induced calcium flux in these cells is mediated by MK571-sensitive receptors. GPR17 was detected intracellularly but not on the surfaces of the LAD2 cells.

FIGURE 1. cys-LT receptor expression and calcium signaling by LTD₄ and LTE₄ in LAD2 cells. A, dose-dependent effects of LTC₄, LTD₄, and LTE₄ on the accumulation of intracellular calcium in LAD2 cells. LAD2 cells were loaded with Fura-2-AM and stimulated with the indicated concentrations of LTs in various orders. *B*, effect of treatment with MK571 (1 μ*M*, 5 min) on calcium flux by Fura-2-AM-loaded LAD2 cells stimulated with the indicated LTs (500 nM each). C, real-time PCR analysis of CysLT, R, CysLT₂R, and GPR17 transcripts expressed by LAD2 cells. *D*, flow cytometry analysis of CysLT₁R, CysLT₂R, and GPR17 proteins. CysLT₁R and CysLT₂R were detected after permeabilization of LAD2 cells and staining with anti-C terminus Abs. GPR17 staining was performed with an anti-N terminus Ab both with (*perm*) and without (*perm*) permeabilization. Shaded curves are staining with nonspecific rabbit IgG. Results depicted are from single experiments, representative of at least three performed for each assay.

FIGURE 2. **Effect of cys-LTs on proliferation and Kit internalization in LAD2 cells.** *A*, dose-dependent effect of LTD₄ and LTE₄ on thymidine incorporation by LAD2 cells stimulated for 48 h in the absence of SCF. B, effect of MK571 added 30 min before the addition of the cys-LTs on cell proliferation. Results are expressed as the mean \pm S.D. of triplicate samplesina single experiment representative of the threeperformed.*C*,flowcytometricanalysis of surface Kit expression by LAD2 cells stimulated with SCF (as a positive control for internalization), LTD₄, or LTE₄ for 1 h before staining with an Ab specificfor Kit receptor or an isotype-matched control.*MFI*, meanfluorescence intensity; *Iso ctl.*, isotype control (mouse IgG1). *D*, effect of cys-LTs on Kit surface staining expressed as net MFI. Data represent mean \pm S.D. from the three experiments performed. * indicates p < 0.05, relative to the control, and ** reflects p < 0.01 compared with the $LTD₄$ -treated samples at the same doses.

cys-LT-mediated Proliferation and Kit Internalization—We compared the effects of $LTD₄$ with those of $LTE₄$ for inducing proliferation of LAD2 cells. Unlike primary hMCs, LAD2 cells do not depend on exogenous SCF for their survival (38), and they exhibit constitutive phosphorylation of Kit (not shown). We therefore tested the ability of each cys-LT to stimulate thymidine incorporation in the absence of SCF. As anticipated, both $LTD₄$ and $LTE₄$ caused dose-dependent increments in thymidine incorporation when provided to LAD2 cells. The proliferation caused by $LTE₄$ was greater than that induced by $LTD₄$ at both 10 and 100 nM (Fig. 2*A*). Whereas $\mbox{LTD}_4\mbox{-}\mbox{mediated}\,$ proliferation was slightly potentiated by MK571, LTE_{a} -mediated cell proliferation was blocked (Fig. 2*B*). Neither basal nor cys-LT-mediated proliferation of LAD2 cells was sensitive to treatment with the Kit inhibitor STI571 (not shown). Nonetheless, LTE₄ caused the internalization of Kit, a signature event of receptor tyrosine kinase transactivation (42) to a greater extent than did $LTD₄$ (Fig. 2, *C* and *D*).

Induction of Chemokines and Cytokines by cys-LTs—LTC4 and $LTD₄$ both induce the production of proinflammatory cytokines and chemokines by primary hMCs. We sought to

FIGURE 3. Cytokine mRNA induction and MIP-1 β generation by LAD2 cells stimulated with cys-LTs. *A*, real-time PCR showing relative levels of MIP-1 β , MCP-1, IL-5, IL-8, and TNF α transcript expression by LAD2 cells stimulated with 100 nm LTD₄ or LTE₄ for 2 h. Data are mean \pm S.E. from three experiments. *B*, dose-dependent effect of LTE₄ on MIP-1 β secretion by LAD2 cells stimulated for 6 h with the indicated concentrations of cys-LTs. Results are mean \pm S.E. from three experiments. *C*, MIP-1 β concentrations were measured in supernatants collected from cells after 6 h of stimulation with LTD₄ (100 nm), LTE₄ (100 nm), or anti-IgE (1 μ g/ml) as a positive control. *D*, effect of pretreatment with MK571 (1 μ M) on MIP-1 β generation by cells stimulated with LTD₄ (100 nm), or LTE₄ (100 nm) for 6 h. Results are expressed as the mean \pm S.D. from the three experiments performed. * and ** indicate $p < 0.05$ and < 0.01 , respectively, relative to the control in *B* and *C* and relative to the samples without MK571 in *D*.

determine whether $LTE₄$ also induced cytokine generation by LAD2 cells, and if so, whether it was equivalent in potency to LTD₄. Real-time PCR analysis showed that cys-LT stimulation of LAD2 cells induced the expression of MIP-1 β , IL-5, IL-8, TNF- α , and CCL-2 (MCP-1) mRNA transcripts (Fig. 3A). LTE₄ tended to be more potent than $LTD₄$ for inducing the expression of each transcript with the exception of IL-5. Consistent with the mRNA data, LTE_4 induced MIP-1 β generation in a dose-dependent manner (Fig. 3*B*). The quantity of MIP-1 β generated by LAD2 cells stimulated with LTE₄ exceeded the amount produced in response to cross-linkage of the high affinity Fc receptor for IgE (Fc-RI) (Fig. 3*C*).

LTE₄ Induces PGD₂ Generation

 LTE_4 -mediated MIP-1 β production was totally blocked by pretreatment of the cells with MK571 (Fig. 3*D*).

LTE₄-induced Changes in Phospho*rylation of Signaling Intermediates*— LTD_4 -mediated proliferation and cytokine generation by primary hMCs both require the phosphorylation of ERK (36, 37). Because $LTE₄$ potently induced cytokine generation and proliferation, we analyzed the ability of $LTD₄$ and $LTE₄$ to induce phosphorylation of various signaling intermediates in the ERK pathway. Stimulation of LAD2 cells with LTD_4 or LTE_4 for 15 min led to the phosphorylation of MEK, ERK, p90RSK, and CREB. LTE_4 was the most potent stimulus for phosphorylation of each of these proteins (Fig. 4*A*). Neither JNK nor p38 MAPKs were phosphorylated in response to either cys-LT (data not shown). $LTD₄$ -induced ERK phosphorylation was attenuated by pretreatment of the LAD2 cells with LY294002, a PI3K inhibitor. In contrast, LTE_4 -enhanced ERK activation was insensitive to PI3K inhibition (Fig. 4*B*).

Involvement of PPARγ in LTE₄mediated ERK Activation—PPAR is a member of the nuclear hormone receptor family involved in the transcriptional regulation of adipogenesis, insulin sensitivity, lipid metabolism, and inflammation (43, 44). PPAR γ is activated by certain lipid mediators, including intracellular activators formed in response to transmembrane stimuli (45). In some cell types, exogenous PPAR activators stimulate MEK and ERK phosphorylation $(46-48)$, which can be dependent (46) or independ-

ent (47–49) of PPAR γ itself. Both the thiazolidinedione PPAR γ agonist rosiglitazone and lysophosphatidic acid, a natural $PPAR_{\gamma}$ activator, potentiated the proliferation of primary hMCs (50). We thus tested whether LTE_4 -mediated ERK activation involved PPAR γ . LAD2 cells expressed PPAR γ protein (Fig. 5A). GW9662, an antagonist of PPAR_y, modestly attenuated LTD₄-mediated ERK phosphorylation (as shown for one experiment, Fig. 5*B*) but consistently blocked LTE₄-mediated ERK phosphorylation (Fig. 5, *B–D*). GW9662 did not alter SCF-induced ERK phosphorylation. Treatment of LAD2 cells with a PPAR γ -specific siRNA for 48 h substantially knocked down the expression of the protein (Fig. 5*E*)

LTE₄ Induces PGD₂ Generation

FIGURE 4. **Phosphorylation of signaling intermediates by LAD2 cells in response to cys-LTs.** *A*, SDS-PAGE immunoblotting was performed on cell lysates obtained after 15 min of cell stimulation with LTD₄ (100 nm) and LTE4 (100 nM), using Abs specific for total and phosphorylated (phospho) ERK, MEK, p90RSK, and CREB (*top*). Representative blots are from a single experiment of three performed. The *bottom panel* indicates the quantitative densitometry where phosphorylation is the measure of phosphorylated protein compared with the total protein and is expressed as fold change compared with control, where the control is set to 1. Data are expressed as mean \pm S.D. from three experiments. *B*, effect of treatment of the cells with the PI3K inhibitor LY294002 (10 μ M) (LY) for 30 min on ERK phosphorylation in response to stimulation with 100 nm cys-LTs. The *bottom panel* represents quantitative densitometry of ERK phosphorylation compared with total ERK from three separate experiments. * indicates $p < 0.05$ relative to the LTD₄-stimulated sample not treated with LY294002.

and interfered with LTE_{4} -induced ERK phosphorylation (Fig. 5*F*). The natural PPAR γ activator, 15-deoxy-PGJ₂ (15d-PGJ₂), also stimulated ERK phosphorylation in LAD2 cells (Fig. 5*C*), but rosiglitazone neither induced ERK activation nor potentiated the ERK activation or $PGD₂$ in response to LTC_4 or LTD_4 ($n = 2$, data not shown). ERK activation was not attenuated by pretreating the cells with the $cPLA_2$ inhibitor Shinogi 1 ($n = 2$, not shown). GW9662 strongly interfered with MIP-1 generation by LAD2 cells (Fig. 5*G*) and by primary hMCs (not shown).

Induction of COX-2 Expression and PPAR-dependent PGD₂ Production by LTE₄-LTE₄-mediated potentiation of AHR depends on secondary generation of prostanoids, based on its sensitivity to blockade by the COX inhibitor indomethacin (28, 29). The major prostanoid generated by MCs is $PGD₂$ a strong potentiator of hyperresponsiveness to methacholine and histamine (51). To determine whether LTE_4 caused LAD2 cells to generate PGD₂, we stimulated the cells with cys-LTs for various intervals of time. LTE₄ induced the generation of PGD_2 ; the effect was significant at 10 nm LTE_4 and marked at 500 nm (Fig. $6A$). This response was time-dependent and peaked at 6 h (Fig. 6B). LTE₄ was equivalent in potency to LTD_4 for this response. The production of PGD₂ induced by LTE_4 was associated with increased expression of COX-2 mRNA (which peaked at 2 h) (Fig. 6*C*) and protein (which peaked at 4 h) (Fig. 6D). LTE₄ exceeded the potency of LTD_4 for these responses. Neither LTD_4 nor LTE_4 up-regulated the expression of groups IIA, IV, V, or X PLA₂, COX-1, or PGDS ($n = 3$, not shown). LTE₄-mediated $PGD₂$ generation (not shown) and COX-2 induction (Fig. 6*E*) were blocked by treatment of the cells with GW9662. MK571 and PTX (not shown) also blocked LTE_4 -mediated

 $PGD₂$ generation. In agreement with the pharmacological inhibition data, knockdown of PPAR also attenuated LTE₄-mediated production of $PGD₂$ in two separate experiments (54 and 67% inhibition of $PGD₂$ production compared with cells treated with a control siRNA, data not shown) without altering the baseline. Treatment of the LAD2 cells with NS-398, a COX-2 selective inhibitor; PD98058, an inhibitor of MEK-ERK signaling; or Shinogi-1 abrogated the production of PGD₂ occurring in response to LTE_4 and also abrogated basal PGD₂ secretion (not shown). Primary hMCs, in which $LTE₄$ also caused GW9662-sensitive ERK activation (Fig. 7*A*) also exhibited dosedependent $PGD₂$ generation in response to LTE_{4} (Fig. 7*B*) that was both GW9662- and MK571-sensitive (Fig. 7*C*); a similar trend was observed for MIP-1 β production $(n = 2, \text{ data not shown})$. LTD₄ and

 $LTE₄$ were equipotent for eliciting these responses from primary hMCs.

Independence of LTE4 Effects from Direct PPAR Activation–To determine whether LTE₄ directly activated $PPAR_{\gamma}$, we stimulated bovine endothelial cells expressing a PPAR γ LBD-driven luciferase reporter construct (41) with LTD_4 , LTE_4 , or rosiglitazone as a positive control. In this assay, luciferase activity measured as a colorimetric readout indicates PPAR γ activation. Neither LTD₄ nor LTE₄ activated the luciferase promoter in this cell type, whereas rosiglitazone did activate PPAR γ (Fig. 8A). Neither LTD₄ nor LTE_4 potentiated rosiglitazone-induced PPAR γ activation (not shown). To determine if LTE_4 -mediated PPAR γ activation (as evidenced by the LBD assay and GW9662-sensiitve ERK activation) depended on expression of known cys-LT-specific GPCRs, we compared cys-LT-induced ERK activation in CHO cells (which lack endogenous cys-LT receptors) with and without stable expression of $CysLT_1R$ or $CysLT_2R$. Cys-LTs failed to elicit ERK phosphorylation in mock-transfected CHO cells. Heterologous expression of either $CysLT_1R$ or $CysLT_2R$ conferred ERK phosphorylation to both ligands, but LTD_4 was far more potent than LTE_4 at both receptors. MK571 blocked the strong LTD_4 -mediated activation of ERK in the Cys LT_1R transfectants, but not in the CysLT₂R transfectants. GW9662 treatment attenuated the weak LTE_4 -induced activation of ERK in the CysLT₁R transfectants, but did not alter LTD_4 -mediated ERK activation ($n = 3$, as shown for one experiment, Fig. 8*B*). Both LTD_4 and LTE_4 weakly induced activation of the PPAR γ LBD luciferase construct when the cells expressed either CysLT₁R or CysLT₂R (Fig. 8*C*). Attempts to transfect LAD2 cells with the PPAR γ LBD construct were unsuccessful.

FIGURE 5. Involvement of PPAR_Y in cys-LT-induced responses in LAD2 cells. A, flow cytometric analysis on permeabilized LAD2 cells using an Ab specific for PPAR_Y or an isotype-matched control (shaded curve). Data in a second experiment were identical. *B* and *C*, ERK phosphorylation by LAD2 cells in response to stimulation with LTD₄ (100 nM), LTE₄ (100 nM), PGJ₂ (20 μ g/ml), or SCF (100 ng/ml) for 15 min. The samples were preincubated in the presence or absence of GW9662 (10 μ_M) (GW) for 1 h before stimulation with the indicated agonists. Representative blots from the three experiments are shown. D, densitometric analysis (mean \pm S.D. of three separate experiments) showing the effects of GW9662. E, siRNA-mediated knockdown of PPAR_Y. Immunoblotting was performed using two different Abs from the indicated sources. F, effect of the PPAR_Y knockdown or treatment with scrambled siRNA control assessed by phosphorylation of ERK in response to the indicated agonists for 15 min. Data are from a single experiment representative of three. *G*, MIP-1*β* concentrations .
were measured in supernatants collected after cells were stimulated for 6 h with LTD₄ (100 nM) or LTE₄ (100 nM). Some of the cells were pretreated with GW9662 (10 μ M) for 1 h. Data are the mean \pm S.D. of three independent experiments. * and ** indicate p < 0.05 and < 0.01, respectively.

Effect of CysLT₁R and CysLT₂R Knockdowns on Activation of LAD2 Cells by LTE₄—To determine whether LTE₄-induced signaling depended on the conventional cys-LT responsive GPCRs, we knocked down the expression of $CysLT_1R$ and $CysLT₂R$ on LAD2 cells using sequence-specific shRNA. As reported previously (35), the knockdowns were highly efficacious and selective (Fig. 9A). Knockdown of CysLT₁R abrogated MIP-1 β generation (Fig. 9*B*) and PGD₂ production (Fig. 9*C*) in response to LTD_4 , whereas $CysLT_2R$ knockdown tended to potentiate these responses. Strikingly, although LTE_4 -mediated MIP-1 β generation was attenuated by CysLT₁R knockdown (Fig. 9B), PGD₂ generation was unaltered (Fig. 9C), and $CysLT₂R$ knockdown had no effect on either response. Lentiviral transfection markedly attenuated proliferation in all groups (not shown).

DISCUSSION

This study establishes that LTE_4 , the weakest agonist of the known cys-LT receptors, is unexpectedly potent for inducing proliferative signaling and transcriptional responses from MCs. The potency of LTE_4 reflects apparent

cooperation between an MK571-sensitive GPCR (potentially other than $CysLT_1R$) and PPAR γ -dependent ERK signaling and up-regulation of COX-2. These events result in induction of $PGD₂$ synthesis and chemokine generation. These findings may explain the unique LTE_4 -mediated biologic responses previously described in human (29) and guinea pig airways (30) that depend on the secondary generation of COX products. The findings also likely explain our previous observation that LTE_4 exceeded the potency of LTC_4 and LTD₄ for augmenting the development of cord blood-derived hMCs *in vitro* (37).

LAD2 cells, a well-differentiated human MC sarcoma line (38), express both CysLT₁R and CysLT₂R (35) (Fig. 1, *C* and *D*) and thus provided a convenient system for studying integrated cys-LT-mediated signaling. LTD_4 far exceeded the potency of $LTC₄$ for calcium flux in LAD2 cells, as anticipated for a CysLT₁R-dependent event (Fig. 1A). Unexpectedly, however, LTE_4 ranked between LTD_4 and LTC_4 for inducing calcium flux, a profile differing from any known single cys-LT receptor response. CHO cells expressing CysLT₁R or CysLT₂R flux calcium strongly in response to LTC_4 and LTD_4 , but negligibly in

LTE₄ Induces PGD₂ Generation

FIGURE 6. **PGD2 production and up-regulation of COX-2 expression by LAD2 cells in response to cys-LTs** and the involvement of PPAR γ in mediating these effects. A, dose response of cys-LT-mediated PGD₂ generation in LAD2 cells stimulated with the indicated concentrations of cys-LTs for 6 h. *B*, time course of PGD₂ generation by LAD2 cells stimulated for the indicated intervals with LTD₄ (500 nm) or LTE₄ (500 nm). *C*, real-time PCR showing relative levels of COX-2 transcript expression by LAD2 cells stimulated with 100 nm LTD₄ or LTE₄ for 2 h. Data in *A–D* are the mean \pm S.E. from three experiments each. *D*, time course of COX-2 protein induction in cells stimulated with LTD₄ (100 nm) and LTE₄ (100 nm) for the indicated periods of time. Data are from a single experiment representative of the three performed. *E*, effect of GW9662 (10 μ m, 1 h) on COX-2 protein up-regulation in response to $LTD₄$ and $LTE₄$ (100 nm for 4 h each,). Data are from a single experiment representative of three performed. *F*, effect of pretreatment with GW9662 (10 μ m, 1h), PD98059 (50 μ m, 30 min), and NS398 (10 μ m, 30 min) on LTE₄-induced generation of PGD₂ (measured 6 h after stimulation) by LAD2 cells. Data depicted are the mean \pm S.D. of three independent experiments. PGD₂ was quantitated with a PGD₂-MOX assay.

response to LTE₄ (not shown). Although MK571 does not block $CysLT₂R$ -mediated ligand binding or signaling, it does block other $CysLT_1R$ homologues, including several purinergic GPCRs (52) and the recently de-orphanized GPR17 (24). The calcium flux data support the possible presence of an MK571 sensitive LTE_4 -responsive GPCR that is not CysLT₁R, as we had also proposed in our previous study (37). This receptor is unlikely to be GPR17, which we did not detect on the LAD2 cell surface (Fig. $1D$), and which fails to respond to LTE_4 when expressed in CHO cells.³

Cys-LTs induce proliferation and chemokine production by primary hMCs. While $LTE₄$ exceeds the potencies of $LTC₄$ and $LTD₄$ as an accessory growth factor for primary cord blood-derived hMCs (37), we had not previously determined whether LTE_4 could induce chemokine generation. LTE₄ was \sim 2-fold as potent as $LTD₄$ for inducing thymidine incorporation by LAD2 cells (Fig. 2) and for inducing internalization of Kit (Fig. 2, *C* and *D*), a likely reflection of transactivation. The pattern for MIP- 1β generation and transcript induction was similar, with LTE_4 being more potent than $LTD₄$ for LAD2 cells (and equipotent for these responses in hMCs). Each response to LTE_4 was blocked by MK571, although, curiously, the weaker responses to $LTD₄$ were resistant in LAD2 cells (but not primary hMCs), again indicating a likely alternate target of MK571 in LAD2 cells. LTD_4 -mediated proliferation and chemokine generation require $CysLT_1R$ -dependent phosphorylation of ERK, which is negatively regulated by $CysLT₂R$ (35). Although both $LTD₄$ and $LTE₄$ caused ERK phosphorylation, the LTE_a -induced response differed strikingly from the LTD_4 -mediated response in that it was resistant to PI3K inhibition by LY294002. This difference prompted us to seek a mechanism for LTE_4 -induced ERK activation through a signaling pathway different from classical LTD_4 - $CysLT₁R-regulared responses, and$ to use a molecular approach to

 $PPAR_y$, a ligand-activated nuclear receptor, senses dietary lipids and endogenous lipid mediators

determine the GPCR(s) required.

(44, 53). Synthetic and natural PPAR γ activators can activate ERK and cause proliferation of neuronal stem cells (49), liver tumors (48, 50), and MCs (51). Based on inhibition by the PPAR γ antagonist, GW9662, PPAR γ was involved in LTE₄induced ERK activation and MIP-1 β generation by both LAD2 cells and in primary hMCs. The effect was stimulus-specific, as GW9662 failed to alter ERK activation in response to SCF. GW9662-mediated attenuation of ERK phosphorylation was not due to an off-target effect, because $PPAR\gamma$ knockdown also blocked LTE₄-mediated signaling. While the natural PPAR γ agonist 15- Δ -PGJ₂ mirrored the ability of LTE₄ to phosphorylate ERK, rosiglitazone did not. This discrepancy could reflect ³ Y. Kanaoka, unpublished data.

FIGURE 7. Effect of LTD₄ and LTE₄ on PPAR_Y-dependent ERK activation and PGD₂ generation by primary hMCs. A, cord blood-derived hMCs (6-week-old) were stimulated for 10 min with LTD₄ or LTE₄ (500 nm) in the absence or presence of GW9662 (10 μ m) or MK571 (1 μ m). Results are from a single experiment representative of three separate experiments performed. *B*, PGD₂ generation induced by stimulation of primary hMCs with LTD₄ or LTE₄ at the indicated concentrations. Results are the mean \pm 1/₂ range for two experiments. C, effects of GW9662 (10 μ m) or MK571 (1 μ m) on cys-LT-induced $PGD₂$ generation by primary hMCs. Cells were stimulated with 100 nm of the indicated cys-LT for 6 h. Results were measured with the PGD₂-MOX assay and are the mean \pm S.E. of three independent experiments. $\frac{1}{x}$ indicates $p < 0.05$.

that fact that thiazolidinedione drugs do not induce recruitment of the same co-activators to the PPAR γ signaling complex as do natural activators, which results in divergent functional events (54). As was the case for calcium flux, $LTE₄$ failed to stimulate ERK potently in CHO cells transfected with $CysLT_1R$ or CysLT₂R (Fig. 8) and did not stimulate the PPAR γ LBD in CHO or in bovine endothelial cells. Thus the PPAR γ -dependent effects of LTE₄ are cell type-specific and indirect, potentially reflecting the secondary generation of an intracellular activator. The putative activator is not an arachidonic acid metabolite liberated by cPLA₂ (as reported for PPAR γ -dependent responses of bronchial epithelial cells to EGF, Ref. 45) because Shinogi 1 failed to alter ERK activation. Other PLA_2s could be responsible for releasing arachidonic acid to generate an endogenous PPAR γ activator. Because we were unable to transfect LAD2 cells with the LBD construct, we could not directly assess whether LTE_4 activated PPAR γ in MCs.

FIGURE 8. Lack of direct stimulation of PPAR_{γ} by LTE₄ in heterologous cell systems. A, PPAR_Y-specific LBD assay in bovine endothelial cells in response to stimulation with rosiglitazone (rosi), LTD₄, or LTE₄. Results are expressed as relative light units corrected for per β -galactosidase activity (RLU/ β -gal). *B*, phosphorylation of ERK by CHO cells with or without transduced expression of CysLT, R or C ysLT₂R in response to the indicated cys-LTs, with or without MK571 or GW9662. *C*, activation of PPAR_Y specific LBD in CHO cells expressing CysLT₁R or CysLT₂R. Results in *A*, *B*, and *C* are each from single experiments repeated a minimum of twice. A includes triplicate samples. $*$ indicates $p < 0.05$ relative to control.

In addition to its role in ERK activation, $PPAR\gamma$ acts as a transcription factor for genes containing PPAR response elements in their promoters, including COX-2 (45, 55). LTE_{4 -}dependent potentiation of contractility of guinea pig tracheal rings and of AHR to histamine in humans with asthma can be blocked by indomethacin (13, 30), indicating that some of the biologic functions of LTE_4 in the airway may be due to induced secretion of COX products. $PGD₂$, the major COX product of MCs, is a direct bronchoconstrictor (56), a potentiator of AHR (51), and a selective chemoattractant for eosinophils, basophils, and Th2 cells (57). In our study, LTE_4 stimulated the production of $PGD₂$ by a COX-2-dependent mechanism, again requiring PPAR γ based on both pharmacologic and molecular evidence. The fact that this response could also be blocked by MK571 and by PTX reflected a GPCR requirement. It seems plausible that the induction of COX-2 expression and the subsequent generation of $PGD₂$ may account in part for the ability of $LTE₄$ to recruit eosinophils and basophils to the bronchial mucosa on direct instillation (25). It may also help to explain the fact that LTE_4 potentiates AHR in an indomethacin-sensitive fashion.

An unexpected finding in our study is the potency of LTE_4 as a ligand for signaling events in MCs given its negligible effects at

FIGURE 9. **Effect of shRNA-mediated knockdown of CysLT₁R and CysLT₂R on LTE₄-mediated PGD₂ generation by LAD2 cells. A, FACS analysis of non**permeabilized LAD2 cells showing the effect of the knockdowns after 48 h of treatment with lentivirus containing shRNA directed to the indicated receptors, or with empty virus (*Mock*). Results are from a single experiment representative of the three separate experiments performed. B , MIP-1 β generation by LAD2 cells stimulated for 6 h with the indicated concentrations of LTE₄ or LTD₄ after treatment with CysLT₁R- and CysLT₂R-specific shRNA constructs packaged in lentivirus, or with control vector. *C*, PGD₂ generation by LAD2 cells treated with the same lentiviral vectors. Results in *B* and *C* are expressed as the mean \pm S.E. of the same three experiments, including the one depicted in A . $*$ indicates $p < 0.05$.

CysLT₁R and CysLT₂R. Indeed, knockdown of CysLT₁R abrogated LTD₄-induced generation of both MIP-1 β and PGD₂, but only partly blocked LTE_4 -dependent MIP-1 β production and left LTE₄-mediated PGD₂ generation unaffected (Fig. 9, *B* and *C*). Moreover, LTE₄-induced responses were unaffected by $CysLT₂R$ knockdown, which potentiated the responses to LTD_4 . Thus while certain LTE_4 responses may involve its weak agonistic effect at $CysLT_1R$, they are distinct from the balanced positive and negative pathways induced by LTD₄ through the $CysLT_1R/CysLT_2R$ heterodimer (35). Interestingly, LTE_4 responses were almost completely MK571-sensitive even in the face of a 90% knockdown of CysLT₁R ($n = 2$, not shown). The remaining \sim 200 orphan GPCRs may include an MK571sensitive LTE_4 -selective receptor that induces the formation of an endogenous PPAR γ ligand, accounting for the

FIGURE 10. **Hypothetical mechanism(s) responsible for PPAR_Y-dependent ERK activation and PGD₂ generation by MCs.** LTE₄-mediated responses are MK571-sensitive and may involve both CysLT₁R and an unidentified GPCR, whereas $LTD₄$ responses are regulated by respectively positive and negative signals induced through the CysLT₁R/CysLT₂R heterodimer. *PPRE*, PPAR response element.

observed induction of both chemokines and COX-2 dependent $PGD₂$ (Fig. 10).

This study identifies a novel pathway that mediates LTE_{4} induced signaling in MCs distinct from conventional $CysLT_1R$ dependent responses to $LTD₄$, linking an MK571-sensitive GPCR to ERK and PPAR γ . The rapid successive conversion of cys-LTs to LTE₄ in vivo limits the duration of direct contractile signaling at the microvasculature and airway smooth muscle, but ensures a comparative abundance of LTE_4 in the extracellular space. LTE_4 -triggered signaling induces the expression of COX-2 and chemokine genes that are intimately associated with inflammatory responses. These findings potentially link several features of AERD, in which a marked abundance of LTE_{4} (58) is associated with tissue eosinophilia, MC hyperplasia (59), overexpression of both CysLT₁R (60), and LTC₄S (61), and selective AHR to LTE_{4} (27). COX-2 protein expression in the bronchial mucosa of patients with AERD is up-regulated in MCs (62) but not other resident cell types, which could reflect a "signature" of the response of MCs to LTE_4 and a cause of the elevated $PGD₂$ generation in this syndrome (58). There may be a hierarchical relationship between the two major classes of inflammatory eicosanoids in asthma, explaining previously observed functions unique to LTE_4 .

Acknowledgment—We thank Professor Robert C. Murphy (National Jewish Medical and Research Center, Denver, CO) for performing the mass spectrometry analysis.

REFERENCES

- 1. Kanaoka, Y., and Boyce, J. A. (2004) *J. Immunol.* **173,** 1503–1510
- 2. Clark, J. D., Lin, L. L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N., and Knopf, J. L. (1991) *Cell* **65,** 1043–1051
- 3. Dixon, R. A., Diehl, R. E., Opas, E., Rands, E., Vickers, P. J., Evans, J. F., Gillard, J. W., and Miller, D. K. (1990) *Nature* **343,** 282–284
- 4. Malaviya, R., Malaviya, R., and Jakschik, B. A. (1993) *J. Biol. Chem.* **268,** 4939–4944
- 5. Lam, B. K., Penrose, J. F., Freeman, G. J., and Austen, K. F. (1994) *Proc. Natl. Acad. Sci. U. S. A.* **91,** 7663–7667

- 6. Nicholson, D. W., Ali, A., Vaillancourt, J. P., Calaycay, J. R., Mumford, R. A., Zamboni, R. J., and Ford-Hutchinson, A. W. (1993) *Proc. Natl. Acad. Sci. U. S. A.* **90,** 2015–2019
- 7. Leier, I., Jedlitschky, G., Buchholz, U., Cole, S. P., Deeley, R. G., and Keppler, D. (1994) *J. Biol. Chem.* **269,** 27807–27810
- 8. Carter, B. Z., Shi, Z. Z., Barrios, R., and Lieberman, M. W. (1998) *J. Biol. Chem.* **273,** 28277–28285
- 9. Lee, C. W., Lewis, R. A., Corey, E. J., and Austen, K. F. (1983) *Immunology* **48,** 27–35
- 10. Drazen, J. M., O'Brien, J., Sparrow, D., Weiss, S. T., Martins, M. A., Israel, E., and Fanta, C. H. (1992) *Am. Rev. Respir. Dis.* **146,** 104–108
- 11. Davidson, A. B., Lee, T. H., Scanlon, P. D., Solway, J., McFadden, E. R., Jr., Ingram, R. H., Jr., Corey, E. J., Austen, K. F., and Drazen, J. M. (1987) *Am. Rev. Respir. Dis.* **135,** 333–337
- 12. Drazen, J. M., and Austen, K. F. (1987) *Am. Rev. Respir. Dis.* **136,** 985–998
- 13. Christie, P. E., Hawksworth, R., Spur, B. W., and Lee, T. H. (1992) *Am. Rev. Respir. Dis.* **146,** 1506–1510
- 14. Wenzel, S. E., Larsen, G. L., Johnston, K., Voelkel, N. F., and Westcott, J. Y. (1990) *Am. Rev. Respir. Dis.* **142,** 112–119
- 15. Altman, L. C., Munk, Z., Seltzer, J., Noonan, N., Shingo, S., Zhang, J., and Reiss, T. F. (1998) *J. Allergy Clin. Immunol.* **102,** 50–56
- 16. Hamilton, A., Faiferman, I., Stober, P., Watson, R. M., and O'Byrne, P. M. (1998) *J. Allergy Clin. Immunol.* **102,** 177–183
- 17. Israel, E., Cohn, J., Dube, L., and Drazen, J. M. (1996) *J. Am. Med. Assoc.* **275,** 931–936
- 18. Beller, T. C., Friend, D. S., Maekawa, A., Lam, B. K., Austen, K. F., and Kanaoka, Y. (2004) *Proc. Natl. Acad. Sci. U. S. A.* **101,** 3047–3052
- 19. Beller, T. C., Maekawa, A., Friend, D. S., Austen, K. F., and Kanaoka, Y. (2004) *J. Biol. Chem.* **279,** 46129–46134
- 20. Kim, D. C., Hsu, F. I., Barrett, N. A., Friend, D. S., Grenningloh, R., Ho, I. C., Al-Garawi, A., Lora, J. M., Lam, B. K., Austen, K. F., and Kanaoka, Y. (2006) *J. Immunol.* **176,** 4440–4448
- 21. Heise, C. E., O'Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., Williams, D. L., Jr., Zeng, Z., Liu, Q., Ma, L., Clements, M. K., Coulombe, N., Liu, Y., Austin, C. P., George, S. R., O'Neill, G. P., Metters, K. M., Lynch, K. R., and Evans, J. F. (2000) *J. Biol. Chem.* **275,** 30531–30536
- 22. Lynch, K. R., O'Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., Coulombe, N., Abramovitz, M., Figueroa, D. J., Zeng, Z., Connolly, B. M., Bai, C., Austin, C. P., Chateauneuf, A., Stocco, R., Greig, G. M., Kargman, S., Hooks, S. B., Hosfield, E., Williams, D. L., Jr., Ford-Hutchinson, A. W., Caskey, C. T., and Evans, J. F. (1999) *Nature* **399,** 789–793
- 23. Figueroa, D. J., Borish, L., Baramki, D., Philip, G., Austin, C. P., and Evans, J. F. (2003) *Clin. Exp. Allergy* **33,** 1380–1388
- 24. Ciana, P., Fumagalli, M., Trincavelli, M. L., Verderio, C., Rosa, P., Lecca, D., Ferrario, S., Parravicini, C., Capra, V., Gelosa, P., Guerrini, U., Belcredito, S., Cimino, M., Sironi, L., Tremoli, E., Rovati, G. E., Martini, C., and Abbracchio, M. P. (2006) *EMBO J.* **25,** 4615–4627
- 25. Gauvreau, G. M., Parameswaran, K. N., Watson, R. M., and O'Byrne, P. M. (2001) *Am. J. Respir. Crit. Care Med.* **164**(8 Pt 1), 1495–1500
- 26. Laitinen, L. A., Laitinen, A., Haahtela, T., Vilkka, V., Spur, B. W., and Lee, T. H. (1993) *Lancet* **341,** 989–990
- 27. Arm, J. P., O'Hickey, S. P., Hawksworth, R. J., Fong, C. Y., Crea, A. E., Spur, B. W., and Lee, T. H. (1990) *Am. Rev. Respir. Dis.* **142,** 1112–1118
- 28. Christie, P. E., Schmitz-Schumann, M., Spur, B. W., and Lee, T. H. (1993) *Eur. Respir. J.* **6,** 1468–1473
- 29. O'Hickey, S. P., Hawksworth, R. J., Fong, C. Y., Arm, J. P., Spur, B. W., and Lee, T. H. (1991) *Am. Rev. Respir. Dis.* **144,** 1053–1057
- 30. Lee, T. H., Austen, K. F., Corey, E. J., and Drazen, J. M. (1984) *Proc. Natl. Acad. Sci. U. S. A.* **81,** 4922–4925
- 31. Gurish, M. F., and Boyce, J. A. (2006) *J. Allergy Clin. Immunol.* **117,** 1285–1291
- 32. Wedemeyer, J., Tsai, M., and Galli, S. J. (2000) *Curr. Opin. Immunol.* **12,** 624–631
- 33. Mellor, E. A., Frank, N., Soler, D., Hodge, M. R., Lora, J. M., Austen, K. F., and Boyce, J. A. (2003) *Proc. Natl. Acad. Sci. U. S. A.* **100,** 11589–11593
- 34. Mellor, E. A., Maekawa, A., Austen, K. F., and Boyce, J. A. (2001) *Proc. Natl. Acad. Sci. U. S. A.* **98,** 7964–7969
- 35. Jiang, Y., Borrelli, L. A., Kanaoka, Y., Bacskai, B. J., and Boyce, J. A. (2007) *Blood* **110,** 3263–3270
- 36. Mellor, E. A., Austen, K. F., and Boyce, J. A. (2002) *J. Exp. Med.* **195,** 583–592
- 37. Jiang, Y., Kanaoka, Y., Feng, C., Nocka, K., Rao, S., and Boyce, J. A. (2006) *J. Immunol.* **177,** 2755–2759
- 38. Kirshenbaum, A. S., Akin, C.,Wu, Y., Rottem, M., Goff, J. P., Beaven, M. A., Rao, V. K., and Metcalfe, D. D. (2003) *Leuk. Res.* **27,** 677–682
- 39. Ochi, H., Hirani,W. M., Yuan, Q., Friend, D., Austen, K. F., and Boyce, J. A. (1999) *J. Exp. Med.* **190,** 267–280
- 40. Zarini, S., Gijon, M. A., Folco, G., and Murphy, R. C. (2006) *J. Biol. Chem.* **281,** 10134–10146
- 41. Ziouzenkova, O., Perrey, S., Asatryan, L., Hwang, J., MacNaul, K. L., Moller, D. E., Rader, D. J., Sevanian, A., Zechner, R., Hoefler, G., and Plutzky, J. (2003) *Proc. Natl. Acad. Sci. U. S. A.* **100,** 2730–2735
- 42. Olivares-Reyes, J. A., Shah, B. H., Hernandez-Aranda, J., Garcia-Caballero, A., Farshori, M. P., Garcia-Sainz, J. A., and Catt, K. J. (2005) *Mol. Pharmacol.* **68,** 356–36443
- 43. Brown, J. D., and Plutzky, J. (2007) *Circulation* **115,** 518–533
- 44. Kliewer, S. A., Lenhard, J. M., Willson, T. M., Patel, I., Morris, D. C., and Lehmann, J. M. (1995) *Cell* **83,** 813–819
- 45. Pawliczak, R., Logun, C., Madara, P., Lawrence, M., Woszczek, G., Ptasinska, A., Kowalski, M. L., Wu, T., and Shelhamer, J. H. (2004) *J. Biol. Chem.* **279,** 48550–48561
- 46. Kim, E. J., Park, K. S., Chung, S. Y., Sheen, Y. Y., Moon, D. C., Song, Y. S., Kim, K. S., Song, S., Yun, Y. P., Lee, M. K., Oh, K. W., Yoon, D. Y., and Hong, J. T. (2003) *J Pharmacol. Exp. Ther.* **307,** 505–517
- 47. Rokos, C. L., and Ledwith, B. J. (1997) *J. Biol. Chem.* **272,** 13452–13457
- 48. Wada, K., Nakajima, A., Katayama, K., Kudo, C., Shibuya, A., Kubota, N., Terauchi, Y., Tachibana, M., Miyoshi, H., Kamisaki, Y., Mayumi, T., Kadowaki, T., and Blumberg, R. S. (2006) *J. Biol. Chem.* **281,** 12673–12681
- 49. Gardner, O. S., Dewar, B. J., Earp, H. S., Samet, J. M., and Graves, L. M. (2003) *J. Biol. Chem.* **278,** 46261–46269
- 50. Bagga, S., Price, K. S., Lin, D., Friend, D. S., Austen, K. F., and Boyce, J. A. (2004) *Blood* **104,** 4080–4087
- 51. Fuller, R. W., Dixon, C. M., Dollery, C. T., and Barnes, P. J. (1986) *Am. Rev. Respir. Dis.* **133,** 252–254
- 52. Mamedova, L., Capra, V., Accomazzo, M. R., Gao, Z. G., Ferrario, S., Fumagalli, M., Abbracchio, M. P., Rovati, G. E., and Jacobson, K. A. (2005) *Biochem. Pharmacol.* **71,** 115–125
- 53. Kliewer, S. A., Forman, B. M., Blumberg, B., Ong, E. S., Borgmeyer, U., Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) *Proc. Natl. Acad. Sci. U. S. A.* **91,** 7355–735954
- 54. Kodera, Y., Takeyama, K., Murayama, A., Suzawa, M., Masuhiro, Y., and Kato, S. (2000) *J. Biol. Chem.* **275,** 33201–33204
- 55. Pontsler, A. V., St. Hilaire, A. V., Marathe, G. K., Zimmerman, G. A., and McIntyre, T. M. (2002) *J. Biol. Chem.* **277,** 13029–13036
- 56. Hardy, C. C., Robinson, C., Tattersfield, A. E., and Holgate, S. T. (1984) *N. Engl. J. Med.* **311,** 209–213
- 57. Hirai, H., Tanaka, K., Yoshie, O., Ogawa, K., Kenmotsu, K., Takamori, Y., Ichimasa, M., Sugamura, K., Nakamura, M., Takano, S., and Nagata, K. (2001) *J. Exp. Med.* **193,** 255–26160
- 58. Bochenek, G., Nagraba, K., Nizankowska, E., and Szczeklik, A. (2003) *J. Allergy Clin. Immunol.* **111,** 743–749
- 59. Adamjee, J., Suh, Y. J., Park, H. S., Choi, J. H., Penrose, J. F., Lam, B. K., Austen, K. F., Cazaly, A. M., Wilson, S. J., and Sampson, A. P. (2006) *J Pathol.* **209,** 392–399
- 60. Sousa, A. R., Parikh, A., Scadding, G., Corrigan, C. J., and Lee, T. H. (2002) *N. Engl. J. Med.* **347,** 1493–1499
- 61. Cowburn, A. S., Sladek, K., Soja, J., Adamek, L., Nizankowska, E., Szczeklik, A., Lam, B. K., Penrose, J. F., Austen, F. K., Holgate, S. T., and Sampson, A. P. (1998) *J. Clin. Investig.* **101,** 834–846
- 62. Sousa, A., Pfister, R., Christie, P. E., Lane, S. J., Nasser, S. M., Schmitz-Schumann, M., and Lee, T. H. (1997) *Thorax* **52,** 940–945