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Abstract
Carbohydrate chip technology has a great potential for the high-throughput evaluation of
carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides
possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-
coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by
surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently
synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were
then easily immobilized on gold-coated chips using previously reported methods. The effectiveness
of this analytical method was confirmed in binding experiments between the chips and heparin
binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-
A1), where specific partial structures of heparin or heparan sulfate responsible for binding were
identified.
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Carbohydrate chips and related array technologies1–3 have attracted a great deal of attention
as a powerful tool for glycomics. Like DNA4 and protein chips5, they can rapidly and simply
evaluate carbohydrate–protein interactions in parallel, with a minimum amount of sample. Our
ongoing research involves this functional analysis of sulfated polysaccharides such as heparin
(HP) and heparan sulfate (HS).3a HP and HS are highly sulfated polysaccharides and belong
to the glycosaminoglycan (GAG) superfamily. They are among the most complex of
carbohydrates, and play a significant role in biological processes through their binding
interactions with numerous proteins,6 such as growth factors, cytokines, viral proteins, and
coagulation factors, among others. HP/HS have a basic structure composed of a repeating α or
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β(1,4)-linked disaccharide moiety which is derived from uronic acid (either glucuronic acid or
iduronic acid) and N-acetyl-glucosamine residues. In general, HP/HS chains are very
heterogeneous and contain innumerable substitution patterns due in part to some randomness
in the multiple enzymatic modifications in their biosynthesis. This heterogeneity makes it
difficult to elucidate the structure-function relationships of HP/HS at the molecular level.
Therefore, structurally defined HP/HS sequences are necessary for the precise elucidation of
the mode of HP/HS actions on their target molecules. So far, many synthetic efforts have been
dedicated to the synthesis of HP/HS fragments.3b–d,7,8

Previously, we have reported that a specific disaccharide unit in HP, O-(2-deoxy-2-
sulfamido-6-O -sulfo-α-D-glucopyranosyl)-(1–4)-2-O-sulfo-α-L-idopyran osyluronic acid
(abbreviated as GlcNS6S-IdoA2S), is a key unit for binding to human platelets9 and von
Willebrand factor (vWf),10 and that the clustering of these disaccharides significantly
enhanced the interaction.11,12 To systematically investigate heparin’s binding properties, we
have developed a method3a for the immobilization the sulfated oligosaccharide onto a gold-
coated chip, and have devised an analytical system using surface plasmon resonance (SPR)
technology, which permits their real-time study without further labeling. These systems can
be applied to the investigation of the binding interactions of a variety of structurally defined
oligosaccharides.

To better understand the HP/HS disaccharide structures involved in specific protein
interactions, we designed three kinds of sulfated trisaccharide ligand conjugates 2–4 containing
the disaccharide units as shown in Figure 1; GlcNS-IdoA2S (2): O-(2-deoxy-2-sulfamido-α-
D-glucopyranosyl)-(1–4)-2-O-sulfo-α-L-idopyranosyluronic acid, GlcNS6S-GlcA (3): O-(2-
deoxy-2-sulfamido-6-O-sulfo-α-D-glucopyranosyl)-(1–4)-α-D-glucopyranosyluron ic acid,
GlcNS-GlcA (4): O-(2-deoxy-2-sulfamido-α-D-glucopyranosyl)-(1–4)-α-D-
glucopranosyluronic acid. The disaccharide units contained in ligand conjugates 1–4 of Figure
1 are frequently found in HP/HS disaccharide unit.

For efficient synthesis, four monomeric building blocks were prepared. 2-Azido glucose
derivative 5, idose derivative 6, and 4,6-benzylidene glucose derivative 17 were used for
glucosamine, iduronic acid, and glucuronic acid moieties, respectively. Selective sulfation onto
glucosamine and iduronic acid or glucuronic acid moieties can be carried out by an appropriate
functionalization. The 6-OH glucose derivative 7 was used as the reducing end for the
conjugation to linker molecule 16 after deprotection on the glucose, which works not only as
a reducing end donor for reductive amination but also as the hydrophilic moiety in the molecule
to minimize any non-specific hydrophobic interactions between the linker and target proteins
or cells.

The synthesis of ligand conjugate 2 containing GlcNS-IdoA2S unit was carried out as shown
in Scheme 1. Trisaccharide 8, which was prepared according to the method reported previously,
12 was selectively protected by t-butyldimethylsilyl (TBDMS) group. The methyl ester of
trisaccharide 9 was hydrolyzed and the remaining 2′-hydroxy group was sulfated using sulfur
trioxide-pyridine complex at room temperature. After removing the TBDMS group with
HF•pyridine complex, the azido group was reduced using a catalytic amount of Pd-C under
hydrogen atmosphere and the resulting amino group was N-sulfated. All benzyl protecting
groups were removed by hydrogenolysis using catalytic Pd-C to give the desired trisaccharide
15. Finally, the reductive amination of trisaccharide 15 with linker compound 16 was
performed using NaBH3CN to afford the desired ligand conjugate 2 in good yield. Compound
2 was purified by gel-filtration chromatography with Sephadex G-25 fine and confirmed
by 1H NMR and ESI-TOF/MS analyses.13
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The syntheses of ligand conjugates 3 and 4 were carried out in the same fashion as the syntheses
of 1 and 2 (Scheme 2). Glycosylation of 6-OH glucose 7 and imidate 17 with trimethylsilyl
trifluoromethanesulfonate (TMSOTf) as a promoter and treatment of the resultant with NaOMe
gave disaccharide 18 in a good yield. The resulting hydroxy groups of 18 were then protected
with a benzyl group. After removal of the benzylidene group, the primary 6′-OH group was
selectively oxidized to carboxylic acid using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO).
14 The resulting carboxyl group was esterified with (trimethylsilyl)diazomethane to afford the
disaccharide 20. The 2-azido imidate 5 was condensed with disaccharide 20 using TBDMSOTf
at −20 °C to give selectively an α-linked trisaccharide 21.11,15 Hydrolysis of the acetyl group
and methyl ester was then carried out using aqueous NaOH to give the common intermediate
22 for trisaccharides 23 and 24. The sulfated trisaccharide 23 was obtained by O-sulfation of
the 6″-hydoxyl group and reduction and N-sulfation of 2′-azido group was followed by
hydrogenolysis. Conversely, the sulfated trisaccharide 24 was prepared by the same method
as the synthesis of trisaccharide 23, omitting the O-sulfation. The ligand-conjugates 316 and
417 were synthesized in satisfactory yields as similar to the described procedure for compound
2.

Binding interactions were investigated by use of the SPR imaging sensor.18 When fibronectin
was tested (Figure 2), specific binding interactions were clearly observed with compounds 1
(GlcNS6S-IdoA2S, KD = 5.5 nM) and 3 (GlcNS6S-GlcA, KD = 6.5 nM), but not with
compounds 2 (GlcNS-IdoA2S, KD = 30 nM) and 4 (GlcNS-GlcA, KD = 33 nM). These results
indicate that the N-sulfation and 6-O-sulfation of glucosamine in HP/HS are important for
fibronectin binding, while 2-O-sulfation of iduronic acid is less important. Recently,
Couchman and coworkers showed that N-sulfation of glucosamine was essential for fibronectin
binding and 2-O-sulfation of iduonic acid or 6-O-sulfation of glucosamine has marginal effects.
19 Additionally, N-sulfation and 6-O-sulfation of glucosamine were important for focal
adhesion formation through syndecan-4, heparan sulfate proteoglycan. Our results are in
agreement with those data.

In contrast, when recombinant human vWf A1 domain (rh-vWf-A1)20 was injected over the
chips, a different pattern of oligosaccharide binding preference was noted (Figure 3). A strong
interaction was observed with compounds 1 (GlcNS6S-IdoA2S, KD = 1.0 μM) and 2 (GlcNS-
IdoA2S, KD = 0.9 μM). Weaker interaction was seen with compound 3 (GlcNS6S-GlcA, KD
= 1.4 μM), while distinctly low binding was observed with compound 4 (GlcNS-GlcA, KD =
4.3 μM). Although the GlcNS6S-IdoA2S (1) disaccharide structure was considered a key
binding domain of vWf10, the exact disaccharide structure responsible for vWf binding is still
unclear. We found previously that clustered compounds containing three units of GlcNS6S-
IdoA2S12 possessed higher competitive binding activity compared to compounds containing
less than two units of GlcNS6S-IdoA2S (unpublished data). Together with those data, the
current results indicate that the tri-sulfated disaccharide binds vWf best, that loss of either the
6-sulfate of GlcN or the 2-sulfate of Ido reduces vWf binding significantly, and that the N-
sulfate of GlcN alone is not sufficient for binding vWf.

In conclusion, we have designed new, precisely sulfated oligosaccharides of HP/HS partial
structures. These oligosaccharides were efficiently synthesized using appropriate
monosaccharide intermediates. Their application in an array type Sugar Chip, using SPR
imaging analysis has been shown to be an efficient and specific technology to elucidate the
interactions between a protein and multiple sulfated disaccharides, on a real time scale. These
techniques can be used for high-throughput screening of protein samples, as well as for solving
the structure-function relations of an individual protein-glycosaminoglycan interaction at the
molecular and nano-scale.
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Fig. 1.
Sulfated disaccharide partial structures of heparin/heparan sulfate.
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Fig. 2.
Binding study with fibronectin. a) SPR difference imaging on the chip immobilized with
compounds 1, 2, 3, 4, and Glc α(1–6)Glc-mono (Glc). Measurements were carried out with
analyte in the range between 0.98 nM and 125 nM. b) Bar graph profiles of different
concentrations of protein. The error bars represent +/− SEM.
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Fig. 3.
Binding study with rh-vWf-A1. a) SPR difference imaging on the chip immobilized with
compounds 1, 2, 3, 4, and Glc α(1–6)Glc-mono (Glc). Measurements were carried out with
analyte in the range between 0.23 μM and 1.80 μM. b) Bar graph profiles of different
concentrations. The error bars represent +/− SEM.
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Scheme 1.
Synthesis of ligand conjugate 2 containing GlcNS-IdoA2S. (a) TBDMSCl, imidazole, MS4AP
in CH2Cl2, 45%; (b) 1 M NaOH, MeOH/THF (1:1), 70%; (c) SO3•Pyr in Pyr; (d) HF•Pyr in
Pyr; (e) 10% Pd-C, H2 (1 kg/cm2) in THF/MeOH (2:1); (f) SO3•Pyr in H2O; (g) 10% Pd-C,
H2 (7 kg/cm2) in H2O/AcOH (5:1), 29% (5 steps); (h) NaBH3CN in DMAc/H2O/AcOH
(1:1:0.1), 82%.
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Scheme 2.
Synthesis of ligand conjugates 3 and 4 containing GlcNS6S-GlcA and GlcNS-GlcA,
respectively. (a) BF3•OEt2, MS4AP in CH2Cl2, −20°C; (b) 0.1 M NaOMe, 90% (2 steps); (c)
NaH, BnBr in DMF, 0°C→rt, 88%; (d)16% TFA, 8% MeOH in CH2Cl2, 0°Crt, 93%; (e)
TEMPO, KBr, NaClO in CH2Cl2; TMSCHN2, 83% (2 steps); (f) TBDMSOTf, MS4AP in
toluene, −20°C, 84%; (g) 5 M NaOH in MeOH/THF (1:1), 89%; (h) SO3•Pyr in Pyr; 10% Pd-
C, H2 (1 kg/cm2) in THF/H2O (2:1); SO3•Pyr in H2O (pH 9.5); 10% Pd-C, H2 (7 kg/cm2) in
H2O/AcOH (5:1), 28% (4 steps); (i) 10% Pd-C, H2 (1 kg/cm2) in THF/H2O (2:1); SO3•Pyr in
MeOH/H2O (3:2); 10% Pd-C, H2 (7 kg/cm2) in H2O/MeOH/AcOH (5:5:2), 39% (3 steps); (j)
NaBH3CN in DMAc/H2O/AcOH (1:1:0.1), 62%; (k) NaBH3CN in DMAc/H2O/AcOH
(1:1:0.1), 50%.
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