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Abstract

 

Tissue microarray technology and immunohistochemical techniques have become a routine and indispensable tool
for current anatomical pathology diagnosis. However, manual quantification by eye is relatively slow and subjective,
and the use of digital image analysis software to extract information of immunostained specimens is an area of
ongoing research, especially when the immunohistochemical signals have different localization in the cells (nuclear,
membrane, cytoplasm). To minimize critical aspects of manual quantitative data acquisition, we generated semi-
automated image-processing steps for the quantification of individual stained cells with immunohistochemical
staining of different subcellular location. The precision of these macros was evaluated in 196 digital colour images
of different Hodgkin lymphoma biopsies stained for different nuclear (Ki67, p53), cytoplasmic (TIA-1, CD68) and
membrane markers (CD4, CD8, CD56, HLA-Dr). Semi-automated counts were compared to those obtained manually
by three separate observers. Paired 

 

t

 

-tests demonstrated significant differences between intra- and inter-observer
measurements, with more substantial variability when the cellular density of the digital images was > 100 positive
cells/image. Overall, variability was more pronounced for intra-observer than for inter-observer comparisons,
especially for cytoplasmic and membrane staining patterns (

 

P

 

 < 0.0001 and 

 

P

 

 = 0.050). The comparison between
the semi-automated and manual microscopic measurement methods indicates significantly lower variability in the
results yielded by the former method. Our semi-automated computerized method eliminates the major causes of
observer variability and may be considered a valid alternative to manual microscopic quantification for diagnostic,
prognostic and therapeutic purposes.
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Introduction

 

Due to the low cost and the small amounts of tissue
required, the integrated use of tissue microarray technology
(TMA) and immunohistochemical (IHC) techniques for the
detection of specific cellular antigens has replaced bio-
chemical and molecular methods of analysis. Their results
correlate closely with those of the old methods (Aasmund-
stad et al. 1992; Podhajsky et al. 1997; Bhatnagar et al. 1999;
Simone et al. 2000). TMA has become a routine and indis-
pensable tool for current anatomical pathology diagnosis

that has enabled immunohistochemical studies to be made
of multiple markers under homogeneous conditions that
are inexpensive to carry out. The results obtained with this
TMA have been validated for diagnostic, prognostic and
therapeutic purposes in different epithelial carcinomas
(Rosen et al. 2004; Cao et al. 2007; Li et al. 2007; Sandlund
et al. 2007; Tubbs et al. 2007) but also in haematological
malignancies, including follicular lymphoma (Alvaro et al.
2006a,b; Lee et al. 2006), diffuse large B-cell lymphoma
(Zettl et al. 2003; Zu et al. 2005; de Jong et al. 2007), and
Hodgkin’s lymphoma (Hedvat et al. 2001; Alvaro et al. 2005;
Alvaro-Naranjo et al. 2005; Bosch Princep et al. 2005).

In the evaluation and quantification of positively immuno-
stained cells, the most prevalent method is the manual
counting performed by the pathologist using a conven-
tional microscope. However, the time necessary to quantify
larger samples, the interpretation of immunostains, and
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the reproducibility among observers is not always optimal
(Taylor, 2000; Seidal et al. 2001; Rhodes et al. 2002; Leong
& Leong, 2004). This is basically due to a number of variables
that influence antigen staining in paraffin-embedded
tissues. The principal extrinsic factors of variability are
related to the specimen and include the clone, the dilution
of the antibody, the detection system and chromogen,
the antigen retrieval method, and the external/internal
reference standards (Taylor, 2006). All these extrinsic
factors can be modified and controlled as part of the
technique, unlike the intrinsic factors related to the tissue
sample, which are extremely difficult to standardize between
laboratories, or even within the same laboratory (Leong,
2004). These intrinsic factors include the type of fixative,
fixation time, tissue processing, and the level of antigen
expression and preservation. Quantification methods
range from simple counting of stained cells to more com-
plex grading of their intensity on an arbitrary scale. Under
these conditions, the specific and precise quantification of
stained cells is subject to evaluation by the human eye,
which has difficulties in distinguishing subtle differences
in staining intensity, especially at the extremes of the con-
tinuous colour scale.

As a means of avoiding subjectivity, a number of auto-
mated image analysis programs suitable for use in histo-
pathology have recently become commercially available. Used
in conjunction with a microscope and a digital camera,
these programs can detect, quantify and classify immuno-
stained cells in digital images based on colour, size, and
shape of these cells (Gil & Wu, 2003). These systems of
processing images are based on a method of segmenta-
tion that divides images according to areas of interest and
evaluates every pixel of the image to determine whether
it belongs to these areas. Although these systems have
improved the levels of sensitivity, precision, reproducibility
and standardization of these kinds of measurements, they
generally require user interaction for adequate object
selection, modification of object boundaries, and selection
of thresholds. On the other hand, various semi-automated
processes have been developed to identify individual
stained cells (the stain being taken up mainly by the nuclei)
in different tissue samples and to quantify them using
cellular shape descriptors. Routines (macros) written for
commercially available image analysis software have been
used to perform semi-automated image analysis of these
nuclei (Veltri et al. 2000; Mofidi et al. 2003; Nabi et al. 2004;
Singh et al. 2005). However, markers used for anatomical
pathologic diagnosis are not confined to the nuclei alone
but can also be located in the membrane or disseminated
throughout the cytoplasm in granules. These various immuno-
staining patterns are a critical aspect of the acquisition
of reproducible quantitative data, but no reliable fully
automated method has yet been described that is applicable
to these subcellular locations of proteins (Camp et al. 2002;
Leong & Leong, 2004).

I

 

MAGE

 

-P

 

RO

 

® P

 

LUS

 

 (Media Cybernetics, Silver Springs, MD,
USA) is a commercially available digital image software
used for quantification in several immunohistochemical
studies (Media Cybernetics, 2002). However, to our know-
ledge, no study has verified the convenience of this
software to detect and to quantify different subcellular
localization of immunohistochemical signals at the same
time. This software runs within I

 

MAGE

 

 T

 

OOL

 

® (University of
Texas, Health Sciences centre, San Antonio, TX, USA) and
provides tools that make it possible to acquire, display, edit,
analyse, process, compress, save and print grey scale and
colour images. One of the most important features of this
software is the built-in scripting capabilities that allow the
user to record repetitive tasks and playback saved scripts
to automate image analysis (macro).

Using the version 5.0 of the I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

 software, we
have developed several specific macros based on the
automation of colour-specific thresholds (for hue, satura-
tion and intensity) and morphological features in such a
way that the algorithms segment and quantify immuno-
histochemically marked infiltrated cells inside the reactive
background of tissue sections of Hodgkin’s lymphoma (HL)
patients. The set of macros allows the quantification of the
three patterns (membrane, cytoplasm, nuclear) of staining
independently of the type of antibodies used. The final
purpose of this study is to validate a semi-automated
method, designed and developed in our laboratory for
digital microscopic images, and to compare it with the
measurements of independent observers using a manual
quantification method in immunohistochemistry.

 

Materials and methods

 

TMA construction and immunohistochemistry

 

The present study has been carried out on samples of classical
Hodgkin’s lymphoma randomly selected and identified from the
Spanish Hodgkin’s Lymphoma Study group between 1994 and
1998. TMAs were constructed from different cHL cases selected on
the basis of the availability of suitable formalin-fixed and paraffin-
embedded tissue. All samples were fixed and processed using the
conventional histological techniques of the different centres, with
inclusion in paraffin. The selected tissue sections represent the
richest areas of Hodgkin and Reed Sternberg (H/RS) cells marked
in the paraffin blocks. Cylinders of 1 mm diameter from different
areas were included in each case. Tissue sections were prepared as
previously described (Garcia et al. 2003). Briefly, TMA blocks were
sectioned at a thickness of 3 

 

μ

 

m, dried for 16 h at 56 

 

°

 

C before being
dewaxed in xylene and rehydrated through a graded ethanol
series, washed in water and finally in phosphate-buffered saline
(PBS). Antigen was retrieved by heat treatment in a pressure cooker
or by pronase digestion (Dako, Carpinteria, CA, USA), as necessary.
Automatic immunostaining was done with Horizon TechMate, as
previously described (Alvaro-Naranjo et al. 2005). Briefly, TMAs
were incubated with the appropriate dilution of the primary
antibodies: CD4 (clone 1F6, Dako), CD8 (clone 1A5, Novocastra,
Newcastle upon Tyne, UK), CD56 (clone 1B6, Novocastra), HLA-Dr
(clone TAL1B5, Dako), CD68 (clone KP1, Dako), TIA-1 (clone 2G9,
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Master Diagnostica, Granada, Spain), Ki67 (clone MIB-1, Dako)
and p53 (clone DO-7, Novocastra). After washing, TMAs were
incubated with the secondary antibody, conjugated to peroxidase
(Dako EnVision+™, Dako Corporation). Reagents in the DAKO
EnVision™ system include peroxidase block, labelled polymer,
and buffered substrate/DAB + chromogen. Upon oxidation, DAB
chromogen forms a brown end-product at the site of the target
antigen. Finally, tissue arrays were counterstained with haematoxylin,
dehydrated, and mounted.

 

Image capture

 

Using a Zeiss Axioskop 2 plus standard light microscope (Carl Zeiss,
Goettingen, Germany), representative areas of TMAs spots were
selected with a 10–20

 

×

 

 objective with reference to the presence of
H/RS cells with an appropriate inflammatory background. These
selected areas were captured through the 40

 

×

 

 objective (Achroplan
40X/0.65 

 

∞

 

/0.17) with a Coolsnap digital camera (Coolsnap, RS
Photometrics, Tucson, AZ) coupled to the microscope. Digitized
images have a resolution of 1392 

 

×

 

 1040 pixels with RGB 24 True
Colour format and were saved in uncompressed TIFF format.
Different levels of illumination can cause significant differences in
the measurements of images. Thus, the same range of illumination
values was used to ensure the greatest reproducibility. The present
study considers a total of 196 images: 100 images of the membrane
staining pattern for each CD4 (

 

n

 

 = 30), CD8 (

 

n

 

 = 32), CD56 (

 

n

 

 = 19),
and HLA-Dr (

 

n

 

 = 19), 66 images of the cytoplasmic staining
pattern for CD68 (

 

n

 

 = 28), and TIA-1 (

 

n

 

 = 38), and 30 images of the
nuclear staining pattern for Ki-67 (

 

n

 

 = 15), and p53 (

 

n

 

 = 15).

 

Processing for manual microscopic quantification

 

For the manual microscopic quantification, the different images
were opened with the I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

 5.0 program and positive cells
were quantified using the ‘manual tagging’ command available in
the software. The cells of the infiltrate that stained positive for
CD4, CD8, CD56, HLA-Dr, CD68, TIA-1, Ki-67 and p53 were counted
directly on the screen by placing markers on the image with the
mouse. The numbers of positive cells was displayed in the Manual
Tag View Menu, which was updated automatically. According to
a consensus of positivity defined previously in our laboratory,
three different observers (a biologist and two pathologists) have
quantified each image manually on two occasions, separated by
an interval of 1 month. Finally, the results were exported to E

 

XCEL

 

2002 files.

 

Processing for semi-automated quantification

 

The number of positive cells and the total stained area were quan-
tified semi-quantitatively with the I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

 5.0 software. This
was initially programmed for different routines (multistep
macros) that enable the evaluation of the different immunohisto-
chemical staining patterns (membrane, nuclear, and cytoplasmic
DAB, all of which are brown in colour). To design the different
macros, the parameters were determined by the ‘split-sample
technique’, which takes 10 images of each staining pattern as a
training set and all other images as a test set. The ‘ground truth’
data of the colour and the morphological parameters, which were
incorporated in the different macros, were acquired from images
of the training set. The accuracy of the method was evaluated by
applying the macro on images of the test set. The automated

procedure starts after the manual acquisition of the image and
finish after the automatic transfer of the data to a Microsoft
E

 

XCEL

 

 2002 worksheet (semi-automated). The subsequent stages
of the image analysis algorithms are illustrated in Fig. 1. All the
parameters included during the process were adapted individually
to analyse the different staining patterns of the photographed
images.

After manual loading onto the screen of the I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

program (Fig. 1A), images were calibrated in size to standardize
the measurement scale. The real area of each analysed field was
19.690 

 

μ

 

m

 

2

 

. In a second step (Fig. 1B), the ‘contrast enhancement’
command was applied with predetermined values of brightness
(illumination on the images), contrast (degree of difference
between the lightest and darkest areas on the image), and gamma
(distribution of the brightness across the intensity spectrum of the
image) in the white luminance channel (achromatic channel).
These different values, previously determined with the training
set images, were applied for each pixel and were generally sufficient
to eliminate the contribution of background staining, to exclude
cellular debris, and to highlight the colour of the positive staining.
Nevertheless, for cytoplasmic stained markers, a special adaptation
of the images was necessary to unify the different positive granules
in the cytoplasm in an object alone. The ‘spatial filtering’ command
(Fig. 1C) used in our macros applied predetermined values for the
morphological filters erosion, dilation, and opening. These filters
are used to reduce bright areas and enlarge the contours of dark
ones (i.e. erosion) or its complement, to reduce the dilation (i.e.
reduce dark zones and enlarge the brightness ones). The opening
is used to extract the bright regions; the final result is the reunification
of all these dispersed stained points. The resulting ranges of the
‘Contrast Enhancement’ and ‘Spatial Filtering’ thresholds imple-
mented in the respective macros allow optimization of the
appearance of the image (Fig. 1D) without altering the true
immunoreactivity of the cases (data not shown).

In a third step, the colour, size and shape of the stained infil-
trate cells were identified. Under the circumstances of HL stained
tissue section, the ‘ground truth’ data should refer to data that
have been validated using biological knowledge or tests. The
‘ground truth’ pixels range values of DAB deposits of the positive
stained cells are provided by the observers from images of the
training set using the HSI Histogram-based model (Hue-Saturation-
Intensity) of the ‘Segmentation’ command (Fig. 1E). The collection
of these ‘ground truth’ data enables us to calibrate the different
thresholds of the segmentation data (for the different subcellular
localizations), and helps in the creation of the algorithms and the
analysis of all the other images of the test set. The thresholds
pertaining to these commands allow simultaneous colour and
morphological segmentation of positive elements. Subsequently,
the area ranges of the separate cells were selected to exclude
smaller and larger artefacts (Fig. 1F). The thresholds pertaining to
these commands were also included in the respective macros and,
using the ‘Count/size’ command, were applied individually on
photographed images. This process automatically calculated the
number and area of the positive stained elements such as individual
cells and clusters (Fig. 1G). All the macros were used individually
to analyse the different staining patterns of the photographed
images. The global data obtained from these macros (Fig. 1H and I)
were transferred automatically to a Microsoft E

 

XCEL

 

 2002 work-
sheet. The calculation time of each macro amounted to 5–6 s per
photographed image. The global number of positive elements
includes isolated cells but also aggregation of positive cells (clusters).
To identify the number of elements that constitute these clusters,
various cut-offs were previously established. For this purpose, the
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mean areas of individual positive cells were calculated for each
marker on the basis of a large number of digital images. Positive
elements greater than this mean were considered to be clustered
infiltrates and were separated as individual cells by dividing their
areas by the mean area obtained for individual cells (Fig. 1J). The
results were then added to those obtained for the individual
positive cells.

 

Statistical analysis

 

The intra-observer reproducibility (concordance of the measurements
of the same image by a single observer), inter-observer repro-
ducibility (concordance between two or more observers in the measure-
ments of the same image), and the agreement between the
manual and the semi-automatic methods were evaluated using
the SPSS Statistical program (v. 11.1, SPSS Inc., Chicago, IL, USA).

To assess the level of agreement between the results from
paired combinations of observers and the semi-automatic method,
statistics for linear regression, Spearman’s correlation coefficient,

paired 

 

t

 

-tests, intra-class correlation coefficient (ICC), and the
Bland-Altman analysis were calculated. The ICC was derived from
a random-effects two-way analysis of variance with an index of
agreement ranging from 0 (no agreement) to 1 (perfect agreement).
The Bland-Altman analysis assumes that neither system is a ‘gold
standard’ and represents only a comparison of the two methods.
In this analysis, the corresponding graphs present the difference
between the paired measurements plotted against the average of
the two values. If two determinations agree, then the difference
between every pair determination should vary randomly around
zero.

The conditional probabilities of observing a difference between
paired measurements obtained by the manual and semi-automated
methods were estimated using the Kaplan-Meier procedure. A
cut-off value representing a difference of 10 cells/image was
considered acceptable for our immunohistochemical quantification.
This value was obtained from a consideration of the means of the
differences between each pair of observers and each paired method
when digital images contained fewer than 100 cells/image (range
of difference from 1 to 12 cells).

Fig. 1 Schematic representation of computer 
algorithms considered for the detection and 
quantification of positively immunostained cells 
in paraffin-embedded tissues. (A) Manual 
loading of image onto the screen. 
(B) Application of ‘contrast enhancement’ 
algorithms. (C) Application of ‘spatial filtering’ 
algorithms if needed. (D) Obtaining of the 
optimized image. (E) Application of the 
‘segmentation’ algorithms. (F) Application of 
the measurement parameters. 
(G) Determination of the positive objects. 
(H,I) Transfer of global data on EXCEL worksheet. 
(J) Determination of final number of positive 
stained individual cells with special algorithms 
implemented in the worksheet. The final 
algorithm models may be used to evaluate 
nuclear-, cytoplasmic-, and membrane-stained 
structures.
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Results

 

Intra-observer analysis of manual quantification

 

Spearman’s correlation test revealed high and positive
correlations between each pair of determinations for the
three observers (

 

r

 

 = 0.966 for the two readings of observer
1, 

 

r

 

 = 0.960 for the two readings of observer 2 and 

 

r

 

 = 0.930
for the two readings of observer 3, 

 

P

 

 < 0.0001). Nevertheless,
the graphical representation of the Bland-Altman analysis

(Fig. 2A) shows that the differences are not homogeneous
and that there is variability between the two readings of
observers 1 and 2. It is also important to mention that the
dispersion of the data was greater when the digital image
had more than the arbitrary value of 100 positive cells/image.

Paired 

 

t

 

-tests were carried out to establish by how much
the second determination was likely to differ from the first
and therefore whether the two determinations were
interchangeable (Table 1). The results indicate that, overall,
the mean difference between the two determinations was

Fig. 2 Bland-Altman representations of intra-observer measurements (A: first reading vs. second reading for each observer) and inter-observer 
measurements (B: mean of two readings of one observer vs. mean of two readings of other observer).

Table 1 Analysis of intra-observer manual measurements

Pair readings/patterns Mean difference SD 95% CI of difference P-value*

Observer 1: reading 1 vs. reading 2
Total –22.20 27.461 –26.07 to –18.33 < 0.0001
Membrane –30.18 31.352 –36.40 to –23.96 < 0.0001
Cytoplasm –16.15 18.390 –20.67 to–11.63 < 0.0001
Nuclear –8.90 21.710 –17.01 to –0.79  0.033

Observer 2: reading 1 vs. reading 2
Total –9.25 18.094 –11.80 to –6.70 < 0.0001
Membrane –10.54 23.561 –15.21 to –5.87 < 0.0001
Cytoplasm –11.05 9.691 –13.43 to –8.66 < 0.0001
Nuclear –1.00 3.543 –2.32 to 0.32  0.133

Observer 3: reading 1 vs. reading 2
Total 3.46 28.000 –0.49 to 7.40  0.085
Membrane 0.97 32.966 –5.57 to 7.51  0.769
Cytoplasm 8.79 25.411  2.54 to 15.03  0.007
Nuclear 0.03 4.064 –1.48 to 1.55  0.964

*Paired t-test. CI, confidence interval.
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significantly different (

 

P

 

 < 0.0001) for observers 1 and 2,
who both tended to score more positive cells in the second
determination than in the first. The mean difference
for observer 3 was not significantly different (

 

P

 

 = 0.085),
although this observer scored fewer positive cells during
the second determination. The mean differences for the
three staining patterns were statistically different for
observers 1 and 2. Except for the cytoplasmic pattern, the
mean differences of the membrane and nuclear patterns
of observer 3 were not statistically different.

Although the intra-class correlation coefficients present
an excellent degree of agreement, these results were not
statistically applicable because the conditions of equality
of variances were not satisfied.

In summary, these results indicated intra-observer dif-
ferences in measurements for the three staining patterns,
from small differences between the two determinations
of nuclear staining to major differences between the two
determinations of cytoplasmic and membrane staining.

 

Inter-observer analysis of manual quantification

 

Regression of the mean of paired determinations of one
observer on the mean of paired determinations of other
observer also reveals high and positive correlations (

 

r

 

 = 0.964
for observer 1 vs. observer 2, 

 

r

 

 = 0.0972 for observer 1 vs.
observer 3 and 

 

r

 

 = 0.0942 for observer 2 vs. observer 3,

 

P

 

 < 0.0001). The Bland-Altman analysis, illustrated in Fig. 2B,
shows the dispersion of the data around the mean difference
between the different observers. Again, the variability
between measurements was greater when the digital
image contained more than 100 positive cells/image.

The mean inter-observer difference was generally lower
than found in the intra-observer evaluation (Table 2).
Observer 3 tended to score more positive cells than did

observers 1 and 2. The mean differences between observers
1 and 2 and between observers 2 and 3 were statistically
significant (

 

P

 

 = 0.003 and 

 

P

 

 = 0.002, respectively). No
significant difference was observed between observers 1
and 3 (

 

P

 

 = 0.473).
The intra-class correlation coefficients showed excellent

agreement but the condition of equality of variances was
not satisfied. In summary, the inter-observer comparisons
demonstrated constancy in the differences noted for the
nuclear pattern, but the differences for the cytoplasmic
and membrane patterns were markedly lower than those
found in the intra-observer comparison.

 

Comparison with semi-automated quantification 
with 

 

I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

With our semi-automatic process, the same macro applied
to the same image always gave the same results, even
when it was run by different users. Plotting the global
mean of the manual microscopic scores against the results
obtained with the image analysis program illustrates a
very high and positive correlation coefficient (

 

r

 

 = 0.980,

 

P

 

 < 0.001). The Bland-Altman analysis, as illustrated in
Fig. 3A and Fig. 4A (in black), indicates that the differences
between the semi-automated and the manual methods
appear closer to zero than the manual microscopic differences
alone (Fig. 4A, in red). Nevertheless, the discordance between
the manual and semi-automated methods persisted for
images containing more than 100 positive cells/image.

Considering the different patterns of staining, the
conditional probability of observing differences between
the semi-automated and the manual methods was evalu-
ated using the Kaplan-Meier method (Fig. 3B). The curves
indicated a difference greater than 10 cells/image in 30%
of cases for the nuclear and cytoplasmic patterns, and in

Table 2 Analysis of inter-observer manual measurements

Pair observers/patterns Mean difference SD 95% CI of difference P-value*

Observer 1 vs. Observer 2
Total 4.85 22.605 1.67 to 8.04  0.003
Membrane 12.94 28.581 7.27 to 18.61 < 0.0001
Cytoplasm –4.90 7.707 –6.80 to –3.01  0.000
Nuclear –0.65 6.382 –3.03 to 1.73  0.581

Observer 1 vs. Observer 3
Total –0.91 17.731 –3.41 to 1.59  0.473
Membrane 1.68 20.729 –2.44 to 5.79  0.421
Cytoplasm –3.30 15.463 –7.10 to 0.50  0.087
Nuclear –4.27 7.967 –7.24 to –1.29  0.006

Observer 2 vs. Observer 3
Total –5.76 25.854 –9.40 to –2.12  0.002
Membrane –11.27 33.377 –17.89 to –4.64  0.001
Cytoplasm 1.60 13.902 –1.82 to 5.02  0.354
Nuclear –3.62 5.104 –5.52 to –1.71  0.001

*Paired t-test. CI, confidence interval.
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47% of cases for the membrane pattern. Nevertheless,
superimposing the graphs comparing the manual micro-
scopic and semi-automated methods with manual microscopic
method alone shows that the differences between the
semi-automated and the manual methods appear closer to
zero than the differences between manual microscopic
evaluations alone. This is especially true for membrane
(Fig. 4B) and cytoplasmic patterns (Fig. 4C). Although the
information about the nuclear pattern is visibly limited
(Fig. 4D), the previous results of our group confirm the
concordance between the automated and the manual
methods for this kind of staining pattern (Lopez et al. 2008).

 

Discussion

 

The manual microscopic quantification of immunostained
cells is the most frequently used method, and is the main

source of discrepancies in immunohistochemical inter-
pretations that lead to contradictory reports. This study aimed
to compare and optimize the manual microscopic and
semi-automated methods for quantifying the frequency
of positive DAB-immunostained cells in HL TMA in func-
tion of the subcellular distribution of the staining.

The most important disadvantage associated with the
manual evaluation and interpretation of immunostains on
tissue samples is the variability of the cell counts obtained,
which arises from the large number of variables that influ-
ence the cell count, such as antigen staining, heterogeneity
of stain intensities, variation in cell size, shape, and distri-
bution (clusters). The findings underline the necessity of
developing a more reproducible method of quantification
that eliminates the major causes of this variability. Different
investigations have addressed different aspects of the
problem of reproducibility in immunohistochemical

Fig. 3 Comparison of manual microscopic 
(mean of all observers) and semi-automated 
methods by Bland-Altman graph (A) and 
Kaplan-Meier curves (B). Nuclear-staining 
pattern (in blue), cytoplasm-staining pattern 
(in green), membrane-staining pattern (in red).

Fig. 4 Superimposed Bland-Altman graphs 
comparing manual microscopic and 
semi-automated methods (in black), and first 
and second manual microscopic readings 
(in red) (A). The differences between the 
semi-automated and the manual methods 
appear closer to zero than the differences 
between manual microscopic readings for 
membrane (B), cytoplasmic (C) and nuclear 
(D) patterns of staining.
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methods, focusing upon improved sample preparation
(fixation), more effective methods of antigen retrieval, and
the development of external standards and controls
(Taylor, 2006). Furthermore, the difficulties of distinguishing
subtle differences in the staining intensity by eye do not
permit a precise quantification of immunohistochemical
stained cells. This subjectivity makes it difficult to establish
criteria for cell positivity and has given rise to different
scoring definitions (Seidal et al. 2001; Rubin et al. 2004;
Taylor, 2006; Yaziji & Barry, 2006; de Jong et al. 2007).
More concretely, the subjectivity of the determination of
positivity arising from the interpretation of DAB intensity
appears clearly implicated as a cause of variable intra- and
inter-observer precision. Our results confirm the existence
of intra- and inter-observer variations observed for
manual microscopic digital image analysis. This issue has
already been addressed in other published studies but has
not produced a consensual conclusion, probably due to
the different methods of staining and analysis employed.
Whereas some authors have demonstrated that inter-
observer differences are greater than intra-observer
differences (McCarty et al. 1985; Johnsson et al. 1994;
Mosedale et al. 1996; Johansson et al. 2001), others have
published results indicating the opposite relationship, and
have observed no significant differences between the two
(Jagoe et al. 1991; Johnsson et al. 1994). The fact that the
variability of our results is less pronounced in inter-observer
than intra-observer comparisons suggests that it would be
preferable if this kind of quantification were done once by
several pathologists rather than repeatedly by the same
pathologist.

The special attention to the precise subcellular localiza-
tion of the immunohistochemical signals is essential for
properly interpreting immunostains and distinguishing
genuine positive staining (Cheuk & Chan, 2004). In this
study, the information concerning the nuclear markers is
more limited that for the two other patterns of staining.
This is because traditional biologic nuclear markers that
influence the outcome of HL are mainly limited to Ki67
and p53 and because the number of positive nuclei does
not exceed 100 nuclei/image. Nevertheless, we have
previously published a work that demonstrates that the
automated method represents an objective and accurate
quantification system for nuclear markers. The concord-
ance of these results with the manual method was appro-
ximately 90%, independently of the tissue specimen and
the degree of difficulty observed with the digital images
(Lopez et al. 2008). In the present study, our results
indicate that the quantification of immunostained cells by
different pathologists produces smaller differences in
estimates for markers located in the nucleus and cyto-
plasm. This could be explained by the ease of visualization
of DAB-staining in these two locations. Membrane stain-
ing may be more difficult to identify, especially when the
digital images contain groups of positive cells (clusters) or

positive granules in the cytoplasm of the cells. When the
results were considered positive or negative for the diag-
nosis, the intra- and inter-observer variability had little
effect on the results. In contrast, when the threshold levels
of positivity and cut-off values affected the diagnosis, the
prognosis or the treatment, the greater variability observed
in images with more than 100 positive cells/image had a
substantial impact on the result.

To eliminate subjectivity in the interpretation of posi-
tive staining, a number of automated methods of separa-
tion and quantification of immunohistochemical staining
have been investigated (Montironi et al. 1996; Lehr et al.
1997; Smejkal & Shainoff, 1997; Kohlberger et al. 1999; Ma
& Lozanoff, 1999; Vilaplana & Lavialle, 1999; Ruifrok &
Johnston, 2001; King et al. 2002; McGinley et al. 2002).
These studies have principally focused on the method for
differentiating positive DAB-nuclear staining from other
haematoxylin staining (i.e. nuclear and background
staining) (Goto et al. 1992; Huang et al. 1996; Ruifrok, 1997;
King et al. 2002; Brey et al. 2003). To our knowledge, the
development and standardization of the algorithms that
allow the detection and differentiation of this positive
staining independently of the location of the DAB deposit
in the cell have not been sufficiently investigated. The
software I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

 incorporates the standard image
processing functions and multiple measurements follow-
ing calibration. The software allows digital images to be
segmented using the RGB (red, green, blue) or the HSI
(hue, saturation, intensity) Histogram-based models. Our
previous automated process that was developed to
quantify different nuclear markers in digital images with
various degree of complexity (Lopez et al. 2008) has been
implemented with parameters of segmentation determined
with the RGB Histogram-based model. In these precise
conditions, the RGB model enables us to avoid overlapping
in the ranges of positive and negative DAB colour values
of the different positive nuclear markers. However, when
the objective is to evaluate the DAB colour in membrane
or in cytoplasm, the RGB model is the least suitable option
to separate the DAB-stained pixels from the background.
Effectively, for these precise localizations, the selection of
brown deposits by setting a threshold on the different
three channels has been seen to be complicated by the
interference of the counterstaining (haematoxylin), mainly
in the blue channel (Kuyatt et al. 1993; Ruifrok, 1997; King
et al. 2002). Under these conditions, and as the HSI model
has been previously described to allow the separation of
DAB-stained areas from background staining with a low
level pixel misclassification (Brey et al. 2003), we have
developed our macros with this colour space. Concretely,
the standard modifications of the threshold have been
realized firstly on the blue channel values and the images
have then been segmented with the HSI colour space. The
various sub-cellular locations of DAB-staining required
special filtering to eliminate impulse noise (using mean



 

Automated subcellular immunohistochemical quantification, M. Lejeune et al.

© 2008 The Authors
Journal compilation © 2008 Anatomical Society of Great Britain and Ireland

 

876

 

and median enhancement filters) and different morpho-
logical filters to dilate and smooth the edges of the objects
to unify the positive pixels. The complete scripting lan-
guage and the capabilities of extension of the program,
without the need of additional language expertise,
permitted us to include the automation of the different
steps described in this paper in an algorithm referred as a
macro. Under these conditions, the problems associated
with subjectivity of scoring with the naked eye are clearly
avoided, and the same macro applied to the same image
always gives the same results.

The interest and the complexity of this new methodology
are demonstrated by the comparative study with the
manual evaluation of the same digital images. Currently,
there is controversy as to which is the better statistical
method for determining concordance between distinct
quantification methods. The plotting of differences of
the semi-automated vs. the manual system per observer
(Bland-Altman method) permits the interpretation of the
results as a function of the differences between the values
obtaining using the two quantification methods and
depends on the magnitude of the variables that are being
analysed (Bland & Altman, 1995). Our results indicate that
there was a better concordance between the semi-
automated and the manual methods than between
intra- and inter-observer evaluations alone. This indicates
that our semi-automated method is a reliable alternative
method for the quantitative analysis of immunostains,
especially for membrane and cytoplasmic patterns. Never-
theless, the differences observed remain important when
digital images contain more than 100 positive cells. If the
level of difference needs to be related to the total number
of positive cells in each image, in most cases featuring high
cellular density, the variability in the estimates is not
generally of clinical importance. However, the parameters
of segmentation need to be improved due to the fact that,
for some specific markers, the exact number may determine
the treatment that has to be applied.

The accuracy and precision of these macros for the
detection and quantification of the immunostained cells
have permitted the identification and evaluation of different
components of the reactive immune microenvironment
present in different haematological malignancies includ-
ing follicular lymphoma (Alvaro et al. 2006a,b) and
Hodgkin’s lymphoma (Alvaro et al. 2005; Bosch et al. 2005).
These results have been correlated with the clinical-biological
features of these patients and have been demonstrated
to have a significant impact on their outcome in the same
order as results obtained with a manual evaluation (Alvaro-
Naranjo et al. 2005).

In conclusion, the development of specific macros with
the commercial available software I

 

MAGE

 

-P

 

RO

 

 P

 

LUS

 

 is a valid
method for the manual microscopic quantification. Although
improvements related to the speed and overall assessment
of image complexities are warranted, the use of our

semi-automated method offers clear advantages over the
manual method in terms of improved precision, repeatability
and objective evaluation of HL immunostains. Further
improvements in the rapidity and avoidance of subjective
assessments of the different sub-cellular locations of the
staining appear to be required.
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