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Abstract
Background: The chitin biosynthesis pathway starts with trehalose in insects and the main
functions of trehalases are hydrolysis of trehalose to glucose. Although insects possess two types,
soluble trehalase (Tre-1) and membrane-bound trehalase (Tre-2), very little is known about Tre-2
and the difference in function between Tre-1 and Tre-2.

Results: To gain an insight into trehalase functions in insects, we investigated a putative
membrane-bound trehalase from Spodoptera exigua (SeTre-2) cloned from the fat body. The
deduced amino acid sequence of SeTre-2 contains 645 residues and has a predicted molecular
weight of ~74 kDa and pI of 6.01. Alignment of SeTre-2 with other insect trehalases showed that
it contains two trehalase signature motifs and a putative transmembrane domain, which is an
important characteristic of Tre-2. Comparison of the genomic DNA and cDNA sequences
demonstrated that SeTre-2 comprises 13 exons and 12 introns. Southern blot analysis revealed that
S. exigua has two trehalase genes and that SeTre-2 is a single-copy gene. Northern blot analyses
showed that the SeTre-2 transcript is expressed not only in the midgut, as previously reported for
Bombyx mori, but also in the fat body and Malpighian tubules, although expression patterns differed
between the midgut and fat body. SeTre-2 transcripts were detected in the midgut of feeding stage
larvae, but not in pupae, whereas SeTre-2 mRNA was detected in the fat body of fifth instar larvae
and pupae.

Conclusion: These findings provide new data on the tissue distribution, expression patterns and
potential function of membrane-bound trehalase. The results suggest that the SeTre-2 gene may
have different functions in the midgut and fat body.

Background
The disaccharide trehalose consists of two α-glycosidically
linked glucose units. It is a non-reducing sugar found in
many organisms as diverse as bacteria, yeast, fungi, nem-

atodes, plants, insects and some other invertebrates, but is
absent in mammals [1-4]. Trehalose may serve as a carbo-
hydrate store and as an agent for protecting proteins and
cellular membranes from a variety of environmental stress
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conditions, including desiccation, dehydration, heat,
freezing and oxidation [5,6]. In plants, trehalose not only
has an impact on some metabolic processes and affects
plant development as a signaling molecule, but also serves
as an anti-stress substance to protect plants from drought,
high salt and low temperature [2,7]. In insects, unlike in
mammals, trehalose is the main blood sugar and is
present in the hemolymph of larvae, pupae and adults
[1,8-11]. It is the main reserve sugar in the hemolymph of
flying insects and is also indispensable for thermotoler-
ance in larvae.

Trehalose is synthesized mainly in the insect fat body and
is rapidly released into the hemolymph and other tissues.
To utilize blood trehalose, insect tissues contain trehalases
(EC 3.2.1.28) that catalyze the hydrolysis of one mole of
trehalose to two moles of glucose. Thus, for uptake or uti-
lization of trehalose in the blood, trehalases are essential
enzymes in insects and are thought to be located on the
cell membrane or within cells [8,12-15]. The first insect
trehalase, a soluble trehalase, was reported in 1992 [16].
Although insects are believed to have two types, soluble
trehalase (Tre-1) and membrane-bound trehalase (Tre-2)
[16-22], the Tre-2 gene was not reported until 2005 [21].
In Bombyx mori, the Tre-2 gene is expressed in the midgut;
immunoblotting and immunohistochemical analyses
showed that Tre-1 is present mainly in goblet cell cavities
and Tre-2 penetrates the cell membrane and is predomi-
nantly evident on visceral muscle surrounding the midgut
[21]. Although two trehalase genes have been cloned from
B. mori,Apis mellifera [22] and Spodoptera exigua, the differ-
ent functions of these two trehalases in chitin biosynthesis
in insects are not clear. In addition, very little is known
about the structure, tissue distribution and expression pat-
tern of Tre-2.

Here, we report our findings regarding the gene (SeTre-2)
coding for a putative membrane-bound trehalase isolated
from the fat body of S. exigua (GenBank EU106080). We
observed that it is expressed not only in the midgut, but
also in the fat body and Malpighian tubules. Furthermore,
its expression patterns differed between the midgut and
fat body.

Results
Cloning of full-length SeTre-2 cDNA

sequences of trehalases from B. mori (BmTre-1, BmTre-2),
Tenebrio molitor (TmTre-1) and Pimpla hypochondriaca
(PhTre-1), we designed three degenerate primers, SeTre-
F1, SeTre-F2 and SeTre-R, for PCR reactions. A fragment of
690 bp was first obtained from pupal fat body cDNA by a
second PCR using SeTre-F2 and SeTre-R. The deduced
amino acid sequence exhibited high similarity to insect
trehalase sequences. We then performed 5' and 3' rapid

amplification of cDNA ends (RACE) using several specific
primers based on the sequence of the fragment and uni-
versal primers (Clontech). PCR products of 1200 and 600
bp were amplified by 5' and 3' RACE, respectively. Assem-
bly of the overlapping fragments revealed a full-length
cDNA of 2195 bp. The trehalase contained an open read-
ing frame of 1938 bp, encoding a protein of 645 amino
acids (Figure 1) with a predicted molecular weight of
approximately 74 kDa and pI of 6.01.

The deduced amino acid sequence of trehalase from S. exi-
gua was aligned with the corresponding sequences of
other insect trehalases (Figure 2). SeTre-2 is most similar
to lepidopteran trehalase-2 from B. mori (BmTre-2; 77%
identity) and Ostrinia furnacalis (OfTre-2; 76%). It is also
similar to SeTre-1 (40%), SfTre-1 (41%), BmTre-1 (44%),
OfTre-1 (43%), PhTre-1 (44%), AmTre-2 (54%), AmTre-1
(44%), TcTre-2 (54%), NvTre-2 (50%), AgTre-2 (50%),
AaTre-2 (47%), DmTre-2 (45%), DsTre-2 (45%), TmTre-
1 (44%), TcTre-1 (46%), RnTre (44%), MmTre (44%) and
HsTre (45%). The insect Tre-2 gene is highly conserved,
particularly in the middle of the putative catalytic domain
(Figures 2 and 3).

SeTre-2 cDNA and protein sequence analysis
The deduced amino acid sequence of SeTre-2 contains two
trehalase signature motifs, PGGRFREFYYWDSY (residues
165–178) and QWDYPNAWPP (466–475) (Figures 1 and
2) and five other conserved motifs: DSKTFVDMK (resi-
dues 50–58), IPNGGRIYY (210–218), RSQPPLL (221–
227), GPRPESYKEDV (284–294) and ELKAAAESGWDF-
SSRWFI (312–329). Residues 1–18 are a signal peptide
leader and residues 530–536 correspond to a glycine-rich
region (Figure 1). Residues 585–607 were found to com-
prise a putative transmembrane domain. N-terminal to
this domain, residues 573–575 (Ser-Gly-Ala) are identical
to amino acids 570–572 (Ser-Gly-Ala) in BmTre-2. How-
ever, this is not identified as an omega site by the big-PI
predictor used to predict glycosylphosphatidyl inositol
modification sites [21,23]. Five potential N-glycosylation
sites (amino acids 48, 63, 260, 330 and 336) are present
in BmTre-2, but six potential N-glycosylation sites were
found in SeTre-2, five sites (amino acids 49, 64, 261, 331
and 337) homologous to those in BmTre-2 and an addi-
tional site at amino acid 419.

Structure of SeTre-2
We amplified the SeTre-2 genomic DNA sequence, which
is approximately 26 kb long. The exon/intron composi-
tion of the gene was determined by comparing the
genomic sequence with the SeTre-2 cDNA sequence. The
SeTre-2 gene consists of 13 exons separated by 12 introns
of different lengths and exon-intron splice junctions fol-
lowing the GT-AG rule (Figure 4). The first intron is the
longest, at 5.5 kb. Exons 1–13 correspond to nucleotides
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Nucleotide and amino acid sequences of Tre-2 from the beet armyworm S. exiguaFigure 1
Nucleotide and amino acid sequences of Tre-2 from the beet armyworm S. exigua. Underlined amino acid residues 
(1–18) and the arrowhead represent the signal peptide and putative cleavage site, respectively. Trehalase signature motifs 
(amino acid residues 165–178 and 466–475) are double underlined. The highly conserved glycine-rich region is shaded. The 
putative transmembrane region (residues 585–607) is shaded and boxed. Potential N-glycosylation sites (amino acid residues 
49, 64, 261, 331, 337 and 419) are boxed. The nucleotide sequence reported in this paper has been submitted to GenBank 
under accession number EU106080.
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Alignment of deduced amino acid sequences coded by the Tre-2 gene in insectsFigure 2
Alignment of deduced amino acid sequences coded by the Tre-2 gene in insects. Alignment of deduced amino acid 
sequences coded by Ag-2 (GenBank accession no. XP_320471), Aa-2 (EAT38444), Se-2 (EU106080), Bm-2 (ABH06695), Nv-2 
(XP_001602179), Of-2 (EF426723), Am-2 (XP_394271), Tc-2 (XP_972610), Ds-2 (ABH06710) and Dm-2 (ABH06695) using Vec-
tor NTI 9.0 multiple sequence alignment software. Highly conserved regions are highlighted in yellow and blue.

Se-2   (30) SNIYCHGPLLDTVQMAG--LYNDSKTFVDMKLKLSANITMDHFHEMMART

 Bm-2   (29) SMIYCHGPLLNTVQMAG--LYNDSKTFVDMKIKMSPNITLEHFYDMMSRT

 Of-2   (26) SEIYCHGPLLDTVQMAA--LFNDSKTFVDMKIRYSPNITMEHFKQMMNRT

 Tc-2   (29) SDIYCYGPLLHTIQMER--IYEDSKTFVDMKMRFEPNITLIKFNEFMVIN

 Am-2   (55) SDVYCRGELLHTIQMAS--IYKDSKTFVDMKMKRPPDETLKSFREFMERH

 Nv-2   (44) SEVYCHGELLHTIQMAS--IYTDSKTFVDMKMRQPTEATLGLFREFMNRT

 Aa-2   (55) SEIYCHGKLLDTVQMAH--IYPDSKTFVDMKMKKTPNETLSAFNDFMEQK

 Dm-2   (53) CKIYCEGNLLHTIQTAVPKLFADSKTFVDMKLNNSPDKTLEDFNAMMEAK

 Ds-2   (53) CKIYCEGNLLHTIQTAVPKLFADSKTFVDMKLNYSPDKTLEDFNAMMETK

 Ag-2    (1) --------------MSE--IYPDSKTFVDMKMRKSPNETLDSFHEFMVAQ

                                                             

 Se-2   (78) GSHPTKADIQEFVNQNFDPEGSEFEDWRPTDWKDNPAFLQNIKDPLLHEW

 Bm-2   (77) DSNPTKADIQEFVNQNFDPEGSEFEDWRPSDWKHNPGFLAKIKDPLLHKW

 Of-2   (74) DSRPTKAEIMEFVQNNFDPEGSEFEEWVPTDWKEQPKFLKDIKDPLLNKW

 Tc-2   (77) NNKPSKNATRAFVNENFEPAGQEFEEWDPEDWVKHPKYIDGIQDDEFKQW

 Am-2   (103) EQMPTRYQIERFVNDTFDPEGSEFEDWDPDDWTFRPKFLSRILDDDLRNF

 Nv-2   (92) AGAPTRSQIEKFVNETFEPAGSEFTDFDPKDWVAQPKFLRKVLDPELRKF

 Aa-2   (103) KEAPTTAELKAWVESMFEKPGAEFEEWIPDDWIDSPRFLNNIKDLDLRGF

 Dm-2   (103) NQTPSSEDLKQFVDKYFSAPGTELEKWTPTDWKENPSFLDLISDPDLKQW

 Ds-2   (103) NQTPSSEDLKQFVDKYFSAPGTELEKWTPTDWKENPSFLDLISDPDLKQW

 Ag-2   (35) DNSPSKAKLKEWVELNFEKPGAEFENWTPDDWTASPKFLARIKDEDLRGF

                                                             

 Se-2   (128) AADLNRLWLQLGRKMKPDVKENQDLYSIIYVDNPVIVPGGRFREFYYWDS

 Bm-2   (127) ASALNDLWLDLGRKMKEAVKESPDLYSIIYVEHPFIVPGGRFREFYYWDS

 Of-2   (124) ASELNKLWLQLGRKMKPDVRDNPDLYSIIYVDNPIIVPGGRFREFYYWDS

 Tc-2   (127) ALSLNLVWKDLGRKMKKEVELNQSLYSIIWVPHPVIVPGGRFREFYYWDS

 Am-2   (153) ASELNGIWKMLGRKMKDDVRVNEELYSIIYVPHPVIVPGGRFREFYYWDS

 Nv-2   (142) GQDLNHIWKLLGRKMKDDVRLNSELYSIIYVENPVIVPGGRFREFYYWDS

 Aa-2   (153) AKNLNAVWHQLGRKMIADVGINPEQYSIIHVDHPVIVPGGRFREFYYWDS

 Dm-2   (153) GVELNSIWKDLGRKMKDEVSKNPEYYSIIPVPNPVIVPGGRFIEFYYWDS

 Ds-2   (153) GVELNSIWRDLGRKMKDDVSKNPEYYSIIPVPNPVIVPGGRFIEFYYWDS

 Ag-2   (85) ASELNKIWHSLGRKMTSDVALNPDLYSIIHVDHPVIVPGGRFREFYYWDS

                                                            

 Se-2   (178) YWIIKGLLLSEMRSTARGMVSNFMDIVERIGFIPNGGRIYYAMRSQPPLL

 Bm-2   (177) YWIIKGLLLSEMRTTAKGMVNNLLSIVDRYGFIPNGGRIYYLMRSQPPLL

 Of-2   (174) YWIIKGLLLSEMRDTARGMVSNFLNVVERIGFIPNGGRVYYAMRSQPPLL

 Tc-2   (177) YWIVQGLLLSEMYGTVKGMLENFLYIVDKYGHIPNGGRIYYMQRSQPPLM

 Am-2   (203) YWIVKGLLLSEMYTTVKGMLTNFVSLVDKIGFIPNGGRIYYTMRSQPPML

 Nv-2   (192) YWIVKGLLHSEMHATVRGMLSNFVSIVDRYGFIPNGGRIYYTMRSQPPML

 Aa-2   (203) YWIVQGLLLSEMNHTTRGMLENFLSIVQRYGFIPNGGRIYYSMRSQPPLL

 Dm-2   (203) YWIIRGLLYSQMFDTARGMIENFFSIVNRFGFIPNGGRVYYHGRSQPPLL

 Ds-2   (203) YWIIRGLLYSQMFDTARGMIENFFSIVNRFGFIPNGGRVYYHGRSQPPLL

 Ag-2   (135) YWIVKGLLLSEMYSTTKGMLENFLSIIQRYGFIPNGGRIYYSMRSQPPLL
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Phylogenetic analysis of insect trehalases based on amino acid sequencesFigure 3
Phylogenetic analysis of insect trehalases based on amino acid sequences. Full-length amino acid sequences were 
aligned using the Mega 3.1 program to generate a phylogenetic tree (1, class 1 gene of soluble trehalase; 2, class 2 gene of mem-
brane-bound trehalase). A bootstrap analysis was carried out, and the robustness of each cluster was verified in 1000 replica-
tions. The scale on the x-axis represents estimated branch lengths and numers indicate bootstrap values. Trehalases were from 
Aedes aegypti (Aa), Anopheles gambiae (Ag), Apis mellifera (Am), Bombyx mori (Bm), Drosophila melanogaster (Dm), Drosophila simu-
lans (Ds), Homo sapiens (Hs), Mus musculus (Mm), Nasonia vitripennis (Nv), Omphisa fuscidentalis(Of), Pimpla hypochondriaca (Ph), 
Rattus norvegicus (Rn), Spodoptera exigua (Se), Spodoptera frugiperda (Sf), Tribolium castaneum (Tc) and Tenebrio molitor (Tm). 
GenBank accession numbers (DNA) are as follows: Aa-2, EAT38444; Ag-2, XP_320471; Am-1, XM_393963; Am-2, XP_394271; 
Bm-1, BAA13042; Bm-2, AB162717; Dm-2, ABH06695; Ds-2, ABH06710; Hs, NM_007180; Mm, NM_021481; Nv-2, 
XP_001602179; Of-1, EF426742; Of-2, EF426723; Ph-1, Q8MMG9; Rn, CH473975; Se-1, EU427311; Se-2, EU106080; Sf-1, 
ABE27189; Tc-1, XP_973919; Tc-2, XP_972610; Tm-1, P32359.
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1–364, 5855–5995, 6306–6421, 7873–8032, 8668–
8864, 9592–9746, 11,029–11,222, 15,869–16,038,
17,074–17,250, 19,002–19,217, 20,226–20,336,
22,507–22,649, and 25,518–25,751 in the genomic
sequence, respectively. Compared to the seven exons and
six introns of the A. mellifera Tre-2 gene [22] and the nine
exons and eight introns of AmTre-1 (data from NCBI),
SeTre-2 has more exons and introns.

Southern blot analysis
Gene copy number can be determined by Southern blot
analysis. Genomic DNA was obtained from S. exigua
pupae and approximately 15 μg of DNA was digested with
HindIII, SalI and XhoI, electrophoresed and transferred to
a nylon membrane, and then probed with a SeTre-2 cDNA
fragment (~770 bp) generated using SeTreFP and SeTreRP
primers. The probe was designed to be specific for a highly
conserved region so that it would hybridize to both SeTre-
1 and SeTre-2. One strong and one faint band were
detected when genomic DNA was digested with SalI and
XhoI (Figure 5) whereas three strong and two faint bands
were observed for HindIII treatment. The latter is attrib-
uted to the presence of two HindIII sites in the SeTre-2
genomic sequence that correspond to the probe sequence.
A HindIII site may also be present in the SeTre-1 genomic
sequence corresponding to the SeTre-2 probe.

SeTre-2 tissue distribution
Tissue-specific expression SeTre-2 was determined by
Northern blotting. SeTre-2 cDNA was cloned from S. exi-
gua fat body, suggesting that SeTre-2 mRNA is expressed in
this tissue. This was confirmed by Northern blot analysis
(Figure 6A). In addition, SeTre-2 transcripts were also
detected in the midgut, but not in the brain or cuticle (Fig-
ure 6A). SeTre-2 mRNA may also be expressed in Mal-
pighian tubules, since a faint band was observed. To
determine the expression of SeTre-2 transcripts in Mal-

pighian tubules, RT-PCR was performed and a product of
the size predicted for the SeTre-2 transcript was observed

Trehalase gene in S. exiguaFigure 4
Trehalase gene in S. exigua. The SeTre-2 gene comprises 13 exons (boxes with numbers) and 12 introns. The positions of 
the start and termination codons located 276–278 of the first exon and 129–131 of the last exon in the nuclear acid sequence, 
respectively. The length of the 13 exons is 364, 141, 116, 160, 167, 155, 194, 171, 177, 216, 111, 143 and 237 bp, separated by 
12 introns of various lengths of 5490, 310, 1451, 635, 757, 1282, 4755, 1034, 1751, 1008, 2170 and 2808 bp, respectively.

Southern blot analysis of S. exigua genomic DNAFigure 5
Southern blot analysis of S. exigua genomic DNA. 
Samples (15 μg) of S. exigua genomic DNA were digested 
with HindIII, SalI or XhoI. DNA fragments were separated by 
electrophoresis, transferred onto a nylon membrane, and 
hybridized with an [α-32P]dCTP-labeled SeTre-2 cDNA frag-
ment. The strong and faint bands correspond to the SeTre-2 
and SeTre-1 genes, respectively. The numbers on the left are 
DNA ladder sizes.

10kb 

5kb 

2.5kb 

1.5kb 

0.5kb 
Page 6 of 12
(page number not for citation purposes)



BMC Molecular Biology 2008, 9:51 http://www.biomedcentral.com/1471-2199/9/51

Page 7 of 12
(page number not for citation purposes)

Northern blot (A) and RT-PCR (B) analyses of the SeTre-2 transcript in different tissues of fifth instar larvae of S. exiguaFigure 6
Northern blot (A) and RT-PCR (B) analyses of the SeTre-2 transcript in different tissues of fifth instar larvae of 
S. exigua. (A) For Northern blot analysis, total RNA was extracted from various tissues: brain (1), fat body (2), cuticle (3), 
Malpighian tubules (4), and midgut (5). Probes specific for SeTre-2 were radiolabeled using [α-32P]dCTP. (B) RT-PCR analysis of 
DL2000 marker (M), midgut (1), brain (2), Malpighian tubules (3), cuticle (4), fat body (5), trachea (6), and spermary (7). β-Actin 
was used a loading control and visualization was by ethidium bromide staining.
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Developmental expression of S. exigua Tre-2 mRNA in the midgut (A) and fat body (B)Figure 7
Developmental expression of S. exigua Tre-2 mRNA in the midgut (A) and fat body (B). [α-32P] dCTP-labeled 
SeTre-2 cDNA was amplified using specific primers SeTreFP and SeTreRP and used as a probe. β-Actin was labeled with [α-
32P]dCTP as a control.(A) RNA was extracted from the midgut third instar (3L), fourth instar (4L), fifth instar (5L) and wan-
dering (pre-pupae) larvae (W) and from pupae (P). (B) RNA was extracted from the fat body of fifth instar (5L) and wandering 
(pre-pupae) larvae (W) and pupae (P).
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in Malpighian tubules. Sequencing results confirmed the
RT-PCR result (Figure 6B), demonstrating that SeTre-2 is
expressed in the fat body, midgut and Malpighian tubules.

Developmental SeTre-2 expression
Semi-quantitative RT-PCR experiments were carried out to
determine SeTre-2 expression patterns in the midgut and
fat body during different developmental stages of S. exi-
gua. SeTre-2 transcripts were detected in the midgut of lar-
vae throughout the feeding stage, with higher expression
levels in day-1 fourth instar (Figure 7A, lane 3) and day-4
fifth instar larvae (lane 8). However, no SeTre-2 expres-
sion was observed in the midgut of day-1 and day-3 pupae
(lanes 10 and 11). Furthermore, SeTre-2 expression was
observed in the midgut of pre-pupae (Figure 7A). In fat
body, SeTre-2 expression patterns were different. SeTre-2
mRNA was detected in the fat body of fifth instar larvae
and pupae (Figure 7B). Furthermore, higher SeTre-2
expression levels were observed in the fat body of day-4
fifth instar larvae (lane 4), as well as day-4 and day-7
pupae (lanes 9 and 12). Lower SeTre-2 expression levels
were observed in the fat body of day-1 and day-2 fifth
instar larvae, pre-pupae, and day-1 and day-2 pupae.
However, SeTre-2 expression was not observed in the fat
body of day-3 fifth instar larvae and day-3, day-5 and day-
6 pupae.

Discussion
Two types of trehalase, soluble (Tre-1 or acid trehalase)
and membrane-bound trehalase (Tre-2 or neutral treha-
lase), have been purified from a variety of organisms, and
the corresponding genes have also been cloned. Treha-
lases facilitate the uptake and utilization of trehalose from
food or blood [10-12,24-29]. Insects also have two types
of trehalases [16-19,21,22,30,31]. The presence of two tre-
halase genes in S. exigua was verified by Southern blotting
(Figure 5). We cloned one trehalase gene and protein
sequence analysis suggested that it codes for a soluble tre-
halase (GenBank accession no. EU427311). These results
are consistent with studies in other insect species for
which trehalase genes have been cloned [16-19,21,22,30-
32].

An insect trehalase gene was first cloned from Tenebrio
molitor [16,33]. Trehalase genes in B. mori [17,18] and P.
hypochondriaca [30] have also been cloned and studied. All
of these insect genes code for soluble trehalases and are
expressed mainly in the pupal midgut [16-19,30,31], but
also in larval midgut, Malpighian tubules and ovary
[17,18]. Although immunoblot analysis revealed that two
trehalases exist in insects [12], the second trehalase gene,
Tre-2, was not reported until 2005 for B. mori and 2007 for
A. mellifera [21,22]. The BmTre-2 gene is completely differ-
ent from the Tre-1 gene of B. mori [17,18] and T. molitor
[16,33]. BmTre-2 transcripts are expressed in the midgut of

B. mori larvae [21]. The Tre-2 gene structure was first
reported for A. mellifera [22]. However, the tissue distribu-
tion, expression patterns and genomic structure of lepi-
dopteran Tre-2 are still unknown. In the present study,
Northern blotting and RT-PCR results suggest that SeTre-2
is expressed not only in midgut, but also in the fat body
and Malpighian tubules (Figure 6). Moreover, SeTre-2 has
different expression patterns in the midgut and fat body.
SeTre-2 is expressed in the fat body, with higher expres-
sion levels in day-4 fifth instar larvae, and day-4 and day-
7 pupae (Figure 7B). SeTre-2 transcripts were also detected
in midgut throughout the feeding stage, which is consist-
ent with results for BmTre-2 [21]. SeTre-2 expression levels
before the wandering (pre-pupae) larval stage were higher
than those in day-1–3 fifth instar larvae in both the mid-
gut and fat body. A possible reason may be that more
energy is needed for pupa development. According to pre-
liminary results for RNAi experiments involving injection
of dsRNA of an ecdysteroid receptor gene in S. exigua,
changes in SeTre-2 transcripts in the midgut and fat body
are modulated by morphogenetic hormones (data not
shown).

Insect trehalases have several common characteristics,
namely, a signal peptide leader, a coiled-coil domain, a
highly conserved glycine-rich (GGGGEY) region, and two
conserved signature motifs (Figures 1 and 2) [21]. In addi-
tion, Tre-2 also has some unique characteristics, such as a
transmembrane helical region and two conserved motifs
(DAKTFVDMK and LGRKM; Figure 2), but Tre-1 does not
have a putative transmembrane region. Based on the
genomic sequence of S. exigua obtained in this study, the
exons and introns of Tre-2 are reported for the first time.

Trehalases are important enzymes in insects as they cata-
lyze the hydrolysis of trehalose to glucose [13,14,17,18].
It has been reported that B. mori midgut contains two tre-
halases, BmTre-1 and BmTre-2 [21]. Tre-2 is involved in
incorporating trehalose from the blood into muscular
cells and then providing the energy required by visceral
muscles to support peristaltic movement of the midgut for
active feeding [13,21]. The chitin biosynthesis pathway
starts with trehalose, which is mainly synthesized by tre-
halose-6-phosphate synthase in the fat body and released
into the hemolymph in insects [20,34,35]. According to
the SeTre-2 expression patterns observed in the midgut
and fat body (Figure 7), Tre-2 may have different func-
tions in these two tissues. This is the first report of treha-
lase transcript expression in fat body, but its function in
this tissue is still unknown. We also cloned the trehalose-
6-phosphate synthase gene (GenBank accession no.
EF051258) from S. exigua, which is expressed mainly in
fat body and not in midgut, and found that its expression
levels showed the same trend as trehalose levels in hemo-
lymph of S. exigua (unpublished data). This demonstrates
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that both Tre-2 and trehalose-6-phosphate synthase are
synthesized in the fat body. Thus, the Tre-2 gene may have
a crucial function in regulating the balance of trehalose in
hemolymph.

The relative importance of Tre-1 and Tre-2 in the chitin
biosynthesis pathway in S. exigua is currently being inves-
tigated in our laboratory.

Conclusion
We have demonstrated that two trehalase genes exist in S.
exigua. SeTre-2 transcripts are expressed not only in the
midgut, but also in fat body and Malpighian tubules. Fur-
thermore, there are different SeTre-2 expression patterns
between midgut and fat body. This suggests that SeTre-2
may have different functions in these different tissues.

Methods
Insect cultures
S. exigua larvae were reared at 26 ± 1°C under a L14:D10
photoperiod on an artificial diet [36]. The developmental
stages were synchronized at each molt by collecting new
larvae or pupae. The midgut and fat body from larvae to
pupae and the brain, cuticle, tracheae and Malpighian
tubules from larvae were dissected in ice-cold saline, and
stored at -80°C for later use.

RNA isolation, cDNA synthesis and PCR
Total RNA was isolated from fat body of S. exigua pupae
using an acid guanidinium thiocyanate-phenol-chloro-
form method [37,38]. Fat body (100 mg) was homoge-
nized in solution D (solution D: 4M guanidinium
thiocyanate, 0.025M sodium citrate, 0.1M mercaptortha-
nol, 0.05% sarcosyl), placed on ice for 5 min and then
sodium acetate and chloroform/isoamylalcohol (49:1)
were added. The sample was centrifuged at 10,000× g at
4°C for 20 min and the supernatant was transferred into
a new tube, and isopropanol was then added. After cen-
trifugation, the RNA pellet was washed in 75% ethanol
and then dissolved in ddH2O. A sample of 1 μg of total
RNA was reverse-transcribed at 42°C for 1 h in a 10-μl
reaction mixture containing reaction buffer, 10 mM DTT,
0.5 mM dNTP, 0.5 mg of oligo-dT18, and reverse tran-
scriptase from avian myeloblastosis virus (AMV, Takara,
Japan) [39].

Three degenerate primers, SeTre-F1 (5'-CTA YTG GGA
CDS WTA YTG G-3'), SeTre-F2 (5'-GCY GAR AGC GGK
TGG GAC TT-3') and SeTre-R (5'-ACG CCR TTC GWC
CAY CCG-3'), were designed based on the conserved
amino acid sequences of known trehalases. The first PCR
amplification was performed with primers SeTre-F1 and
SeTre-R under the following conditions: 3 cycles of 40 s at
94°C, 40 s at 45°C, and 90 s at 72°C, then 28 cycles of 40
s at 94°C, 40 s at 48°C, and 90 s at 72°C. A second PCR

was carried out using nested reverse primers SeTre-F2 and
SeTre-R under the same conditions as for the first PCR.
After PCR products were electrophoresed, a weak DNA
band corresponding to the expected size of approximately
700 bp was excised from the agarose gel and purified
using a DNA gel extraction kit (Takara, Japan). These PCR
products were cloned into the pMD18-T vector (Takara)
and sequenced by the dideoxynucleotide method
(Takara).

Rapid amplification of cDNA ends (RACE)
For 5'- and 3'-RACE, cDNA was synthesized according to
the manufacturer's protocol (SMART™ kit, Clontech). Spe-
cific primers SeTreR1 (5'-CGG AGA AGC TGG GCG TTC
C-3') and SeTreR2 (5'-GGC ATT CAG GTC TAC TGG G-3')
for 5'-RACE, and SeTreF1 (5'-GGA CTA TCC GAA TGC
CTG GC-3') and SeTreF2 (5'-CCA CTA AAT GGG TCA
GGT CG-3') for 3'-RACE were synthesized based on the
cDNA sequence obtained from the PCR product. 5'-RACE
was performed on 2.5 μl of 5'-ready-cDNA with Universal
Primer Mix (UPM, Clontech) and SeTreR1, then nested
PCR was carried out with Nested Universal Primer (NUP,
Clontech) and SeTreR2. 3'-RACE was performed on 2.5 μl
of 3'-ready-cDNA with UPM and SeTreF1, then with NUP
and SeTreF2. PCR conditions were 10 min at 94°C, fol-
lowed by 30 cycles of 30 s at 94°C, 30 s at 55°C, and 90 s
at 72°C, then 10 min at 72°C. After PCR products were
electrophoresed, DNA bands corresponding to approxi-
mately 1200 bp from the 5'-RACE and ~600 bp from the
3'-RACE were excised from the agarose gel and purified
using a DNA gel extraction kit (Takara, Japan). These PCR
products were cloned into the pMD18-T vector (Takara)
and sequenced by the dideoxynucleotide method
(Takara). The resulting overlapping sequences were
assembled to obtain the full-length SeTre-2 cDNA
sequence. To confirm the assembled cDNA sequence from
overlapping PCR products, the entire coding regions of
SeTre-2 were amplified by PCR with the forward and
reverse primers SeTreF5 (5'-CAT TGT CGA TAG TTT ATT
TGT CG-3') and SeTreR3 (5'-CAC TCA CGT TCC ACC
GGT CGA G-3'). PCR was performed as follows: denatur-
ation at 94°C for 30 s, annealing at 55°C for 30 s and
elongation at 72°C for 3 min using Takara Taq polymer-
ase for 30 cycles.

cDNA and protein sequence analyses
The sequence of SeTre-2 cDNA was compared with
sequences of other trehalases deposited in GenBank using
the BLAST-N and BLAST-X tools available from the
National Center for Biotechnology Information (NCBI)
web site. A phylogenetic tree was constructed using MEGA
3.1 software based on the amino acid sequences of known
trehalases. A bootstrap analysis was carried out, and the
robustness of each cluster was verified in 1000 replica-
tions. The amino acid sequence of SeTre-2 was deduced
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from the corresponding cDNA sequence using the transla-
tion tool at the ExPASy Proteomics website (please see
Availability & requirements). Other protein sequence
analysis tools used in this study, including molecular
weight, pI, and N-glycosylation sites were also obtained
from the ExPASy Proteomics website. The transmembrane
helices of Trehalase proteins were analyzed using
TMHMM v.2.0 (please see Availability & requirements).
Multiple sequence alignments of deduced amino acid
sequences were made using Vector NTI 9.0 software.

Genomic DNA sequencing and gene structure analysis
To obtain the SeTre-2 gene, genomic DNA was extracted
from the fat body of fifth instar larvae using a Genomic
DNA Purification Kit (Promega) according to the manu-
facturer's instructions. Overlapping PCR fragments were
obtained using pairs of gene-specific primers designed
from the corresponding cDNA sequence of SeTre-2 and
genomic DNA as a template. Cloning and sequencing of
these PCR products were carried out in the same manner
as described above [36]. Exons and introns were identified
by comparing and analyzing the cDNA and genomic DNA
sequences of SeTre-2.

Southern blot analysis
Genomic DNA was prepared from fresh S. exigua pupae
and was purified after complete digestion with HindIII,
SalI or XhoI. The digested DNA (15 μg per lane) was sepa-
rated on a 0.8% agarose gel in TAE buffer (40 mM Tris ace-
tate, 2 mM EDTA) After electrophoresis, DNA was
transferred to Hybond-N+ nylon membranes (Amersham)
in 20× SSC [Au: What is SSC?] for 17 h [40]. DNA was
fixed to the membrane by baking at 120°C for 30 min. A
cDNA fragment of 770 bp (using primers SeTreFP 5'-AGG
ATC TGA GTT CGA GGA CTG G-3' and SeTreRP 5'-GGC
ATT CAG GTC TAC TGG G-3') was labeled with [α-
32P]dCTP using a random primer DNA labeling kit
(Takara) as the hybridization probe. Membranes were
prehybridized at 42°C for 4 h, followed by addition of the
32P-labeled SeTre-2 cDNA at 42°C for 18 h in 5× SSPE (1×
SSPE: 180 mM NaCl, 10 mM sodium phosphate, pH 7.7,
1 mM EDTA) containing 50% formamide, 5× Denhardt's
solution, 0.1% SDS and 100 mg/ml salmon sperm DNA.
After hybridization, the membrane was washed with 0.2×
SSPE at 45°C, and finally exposed to X-ray film at -70°C
for 24 h.

Northern blot and RT-PCR analysis
To detect SeTre-2 expression in fat body, midgut and other
tissues, Northern blotting and RT-PCR were performed.
Samples of 25 μg of total RNA isolated from various larval
tissues using TRIzol reagent (Life-Tech, Rockville, MD)
were separated on a formaldehyde agarose gel containing
ethidium bromide, and subsequently blotted onto a
Hybond-N+ membrane (Amersham). Membranes were

prehybridized and hybridized with the [α-32P]dCTP-
labeled probe as described above [41]. RT-PCR was per-
formed using SeTreFP and SeTreRP primers and total RNA
from midgut, brain, Malpighian tubules, cuticle, fat body,
tracheae and spermary as templates for 30 cycles of 40 s at
94°C, 40 s at 55°C, and 60 s at 72°C. A 5-μl sample of
each PCR product was electrophoresed and detected by
ethidium bromide staining. β-Actin was used as a loading
control.

Developmental SeTre-2 expression in fat body and 
midgut
The fat body of fifth instar larvae, pre-pupae and pupae,
and the midgut of third, fourth and fifth instar larvae, pre-
pupae and pupae were dissected. Total RNA was isolated
from the fat body of 12 stages and the midgut of 11 stages.
Then 1 μg of total RNA from each sample was reverse-
transcribed at 42°C for 1 h in a 10-μl reaction mixture
containing reaction buffer, 10 mM DTT, 0.5 mM dNTP,
0.5 mg of oligo-dT18, and reverse transcriptase from avian
myeloblastosis virus (AMV, Takara, Japan). PCR reactions
were performed using primers SeTreFP, SeTreRP and
SeActinF/R for 22 cycles of 40 s at 94°C, 40 s at 55°C, 60
s at 72°C. A 5-μl sample of each PCR product was electro-
phoresed and transferred to a Hybond-N+ membrane and
then hybridized with [α-32P]dCTP-labeled probes as
described above. The amount of S. exigua β-actin loaded
per lane is indicated as a control.

Availability & requirements
ExPASy Proteomics: http://expasy.org/tools/dna.html

TMHMM v.2.0: http://www.cbs.dtu.dk/services/
TMHMM-2.0/
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