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Abstract
Embryonic knockdown of candidate dyslexia susceptibility gene (CDSG) homologs in cerebral
cortical progenitor cells in the rat results in acute disturbances of neocortical migration. In the current
report we investigated the effects of embryonic knockdown and overexpression of the homolog of
DCDC2, one of the CDSGs, on the postnatal organization of the cerebral cortex. Using a within-
litter design, we transfected cells in rat embryo neocortical ventricular zone around E15 with either
1) small hairpin RNA (shRNA) vectors targeting Dcdc2, 2) a DCDC2 overexpression construct, 3)
Dcdc2 shRNA along with DCDC2 overexpression construct, 4) an overexpression construct
comprised of the C Terminal domain of DCDC2, or 5) an overexpression construct comprised of the
DCX Terminal domain of DCDC2. RNAi of Dcdc2 resulted in pockets of heterotopic neurons in the
periventricular region. Approximately 25% of the transfected brains had hippocampal pyramidal cell
migration anomalies. Dcdc2 shRNA-transfected neurons migrated in a bimodal pattern, with
approximately 7% of the neurons migrating a short distance from the ventricular zone, and another
30% migrating past their expected lamina. Rats transfected with Dcdc2 shRNA along with the
DCDC2 overexpression construct rescued the periventricular heterotopia phenotype, but did not
affect the percentage of transfected neurons that migrate past their expected laminar location. There
were no malformations associated with any of the overexpression constructs, nor was there a
significant laminar disruption of migration. These results support the claim that knockdown of
Dcdc2 expression results in neuronal migration disorders similar to those seen in the brains of
dyslexics.
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Linkage analysis has revealed a number of gene intervals conferring susceptibility to
developmental dyslexia—a language-based learning disability affecting 4–10% of the
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population. Recently, candidate dyslexia susceptibility genes (CDSGs) have been proposed at
some of these intervals, including MRPL19 and C2ORF3 on Chr 2 (Anthoni et al., 2007),
ROBO1 on Chr 3 (Hannula-Jouppi et al., 2005), DCDC2 and KIAA0319 on Chr 6 (Francks et
al., 2004, Cope et al., 2005, Meng et al., 2005, Paracchini et al., 2006, Schumacher et al.,
2006), DYX1C1 on Chr 15 (Taipale et al., 2003, Brkanac et al., 2007, Marino et al., 2007) but
see also (Scerri et al., 2004, Bellini et al., 2005, Marino et al., 2005). We have previously
demonstrated that embryonic knockdown of Dcdc2, Kiaa0319, or Dyx1c1 function in the rat
disrupts the process of neuronal migration to the cerebral cortex, as assessed during the prenatal
period (Meng et al., 2005, Paracchini et al., 2006, Wang et al., 2006). Recent evaluation of the
postnatal consequences of embryonic knockdown of Dyx1c1 function in rats revealed the
presence of a variety of neocortical malformations, including molecular layer ectopias and
periventricular heterotopias (Rosen et al., 2007).

The potential role of these genes in neuronal migration is intriguing when considered in light
of previous evidence demonstrating the presence of neuronal migration disorders in the brains
of dyslexics (Galaburda and Kemper, 1979, Galaburda et al., 1985, Humphreys et al., 1990),
which consist of nests of neurons and glia in the molecular layer (ectopias), intracortical laminar
dysplasias, and occasional instances of focal microgyria. In addition, there is a reported
increased incidence of developmental dyslexia in patients with periventricular nodular
heterotopias (Chang et al., 2005, Sokol et al., 2006). Taken together, these results suggest that
disruption of the function of any of these CDSGs may underlie the anatomic phenotype of this
disorder.

Of the CDSGs currently reported, the strongest support has been given for DCDC2 and
KIAA0319 on Chr 6 (Francks et al., 2004, Cope et al., 2005, Meng et al., 2005, Harold et al.,
2006, Paracchini et al., 2006, Schumacher et al., 2006). In the original report identifying
DCDC2 as a candidate dyslexia susceptibility gene, in utero electroporation of small hairpin
RNA (shRNA) targeted against the rat homolog of this gene was shown to disrupt neuronal
migration when assessed 4–7 days after transfection (Meng et al., 2005). What is not known
is the postnatal phenotype of this embryonic knockdown. Here we examine the brains of
postnatal rats where Dcdc2 was either knocked down (using shRNA) or overexpressed during
cerebral cortical development. We find that knockdown, but not overexpression, of Dcdc2
results in neocortical malformations in the cerebral cortex.

EXPERIMENTAL PROCEDURES
In Situ Hybridization

In order to better interpret the knockdown and overexpression findings, we first determined
the expression of Dcdc2 in the prenatal brain by in situ hybridization. We obtained time-mated
pregnant females (Charles River Laboratory, Wilmington, MA) and sacrificed the litters on
E15, E17 or E19. Three embryos from each litter were immediately frozen and they were cut
in either the horizontal, sagittal, or coronnal plane on a cryostat at 18 μm, and the slides were
processed for in situ hybridization of Dcdc2 as described below.

The cDNA prepared from frontal, parietal, and occipital lobes of human embryonic brain (20
weeks, Biochain Institute, Hayward, CA) was amplified with respective forward
(ATGAGCGGCAGCAGCGCCAGG) and reverse primers
(CTAAGCCACGGCAGCATAGTCC) for 35 cycles. All fragments were then cloned into t
vector (Invitrogen, Carlsbad, CA) and sequenced to verify Dcdc2 amplification. Rat embryonic
and postnatal brain cDNAs were synthesized from total RNA and amplified with the primers
(Forward = ATGAACGGTCCCAGCCCCAGG; Reverse =
CTATGCCACAGCAGAAGAGGCTT) to rat Dcdc2. The amplified DNA was gel-purified,
cloned, and sequence verified to be Dcdc2. Nonradioactive in situ hybridizations were done
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by UB-In Situ (Natick, MA), as previously described (Berger and Hediger 2001), using a
digoxigenin-labeled cRNA probe. The antisense and sense probes were obtained from the
polymerase chain reaction (PCR) products, amplified from rat E14 brain cDNA, and cloned
in pGEMT-Easy flanking T7 and SP6 promoters. Two probes, one from the first 400 bp
generated from PCR primer pairs and the second full-length cDNA yielded similar results.

In Utero Electroporation
In utero electroporation was performed at the University of Connecticut and all procedures
were approved by the Institutional Animal Care and Use Committee of that institution.

Five pregnant Wistar rats were obtained (Charles River Laboratory) and each litter was
assigned to one of five conditions: Dcdc2 shRNA, Rescue, DCDC2 Overexpression, DCDC2-
DCX Domain Overexpression, or DCDC2-C Terminal Domain Overexpression (see Table 1).
Within each litter, pups were randomly assigned to receive one of two treatments: Treatment
1 was the “experimental” construct (shRNA or Overexpression) and treatment 2 was a
“control” construct (scrambled shRNA, Rescue, or fluorescent protein only). This design was
essential for the analysis of migrational distance as it controlled for between-litter variation in
gestational age. In utero electroporation of plasmid DNA was performed at E15 as described
previously (Bai et al., 2003,Rosen et al., 2007). Concentration of GFP and RFP plasmids were
0.5 μg/μL, the shRNA was 1.5 μg/μL, and overexpression plasmids were 2.0 μg/μL.

Plasmids—For the Dcdc2 shRNA condition, plasmids encoding shRNA (pU6shRNA-
Dcdc2A) and plasmids encoding enhanced green fluorescent protein (GFP) (pCAGGS-GFP)
were co-transfected into the ventricular zone (VZ). Littermates were co-transfected with
plasmids encoding a scrambled version of the shRNA fused with GFP (pU6shRNA-Dcdc2
scram along with plasmids encoding monomeric red fluorescent protein (RFP) (pCAGGS-
RFP) and plasmid encoding GFP. In the Rescue condition, subjects were co-transfected with
pU6shRNA-Dcdc2A, a fusion construct coding for the human DCDC2 protein with GFP
(pCAGGS-DCDC2-GFP), and pCAGGS-RFP. Littermates were transfected with pCAGGS-
GFP. Pups in the DCDC2 overexpression group were co-transfected with pCAGGS-DCDC2-
GFP and pCAGGS-RFP, and their littermates with pCAGGS-GFP. The DCDC2 DCX Domain
overexpression group was transfected with pCAGGS-DCDC2 DCX domain-GFP plasmids
and pCAGGS-RFP, and the remaining pups in the litter received pCAGGS-GFP. In the
DCDC2 C-Terminal Domain overexpression group, pups were co-transfected with pCAGGS-
DCDC2 C-Terminal-GFP pCAGGS-RFP, and paired littermates were transfected with
pCACGS-GFP. Previous research indicated that co-transfection is highly efficient (Rosen et
al., 2007).

Histology
At P21, animals were deeply anesthetized (Ketamine/Xylazine 10:1, 100 mg/mL) and
sacrificed by transcardial perfusion with 0.9% saline followed by 4% paraformaldehyde. The
brains were removed from the skull and were coronally sectioned at 80 μm on a vibratome.
Sections were then mounted and coverslipped with VECTASHIELD Mounting Medium
(Vector Labs, CA) and visualized under fluorescence for the presence of GFP and/or RFP. One
series of every tenth section was stained for Nissl substance using Thionin. One adjacent series
of free-floating sections was processed for immunohistochemical detection of GFP (Chemicon,
1:200) using ABC protocols. Adjacent series in some brains were processed for
immunofluorescence detection of Cux-1 (CDP (M-222), Santa Cruz Biotechnology, CA,
1:1000) —a transcription factor that labels supragranular neurons in the cerebral cortex (Nieto
et al., 2004)—with Alexa Fluor 594 secondary antibody (Invitrogen, CA, 1:200).
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Analysis
In situ quantification—Individual sense and antisense sections from horizontally prepared
brains (1 each from E15, E17, and E19 rats) were imaged with monochrome digital camera
(Insight, Diagnostic Instruments, Sterling Heights, MI) on a light box (Aristo Grid Lamp
Products, Waterbury, CT) and interfaced via firewire to Macintosh G4 computer (Apple
Computer, Cupertino, CA). Each antisense section image and its corresponding sense section
were captured using SPOT software (Diagnostic Instruments) with common exposure settings.
Using ImageJ <http://rsb.info.nih.gov/ij/>, optical density values were measured for the
combined cortical plate and ventricular zone. A total of 9–13 sections were measured for each
brain. The average difference in optical density between sense and antisense images were
computed and expressed as a percent of sense density.

Postnatal Analysis—All analyses of postnatal brains were performed blind with respect to
condition. Nissl-stained sections were surveyed for the presence of neocortical and/or
hippocampal malformations, and the location noted. Quantitative analysis of migrational
distance was conducted as previously described (Rosen et al., 2007). Briefly, the location of
immunohistochemically labeled cells was charted in the immunohistochemically stained series
using Neurolucida (MBF Biosciences, Williston, VT). These were then imported into Canvas
X (ACD Systems, Miami, FL), and a counting rectangle subdivided into 10 equal-size bins
was scaled to extend from the white matter to the pial surface. The number of labeled cells
within each decile was manually counted and recorded. For each brain, the rectangle was
arbitrarily placed in the transfected hemisphere from the 4–8 sections. The percentage of
labeled cells in each decile was determined for each animal, and the mean value across all
animals within each condition was determined. Differences in the distribution of migrated
neurons across deciles were assessed using repeated measures analysis of variance.

Image Processing
Fluorescent images were obtained on a confocal microscope (Zeiss LSM 510 Meta, Carl Zeiss,
Inc., Thornwood, NY). Photomicrographs were adjusted for exposure and sharpened (unsharp
mask filter) using Adobe Photoshop (Adobe Inc., San Jose, CA). Some images were acquired
using the Virtual Slice Module of Neurolucida. Image montages were created in Canvas X.

RESULTS
Dcdc2 is ubiquitously expressed at a modest level in the forebrain

In situ hybridization of Dcdc2 in embryonic rat embryos revealed relatively ubiquitous
expression in the forebrain during development (Fig. 1A–F). Overall, expression is modest
throughout the brain. Quantification of expression in the combined cortical plate and
ventricular zone demonstrated an approximately 2 fold increase in optical density in the
antisense sections at E15. In comparison, there was an approximately 0.6–fold increase in
optical density at E17 and E 19. These results are mostly compatible with those of Reiner et
al (2006), who found limited expression of Dcdc2A in the brains of mice at E14.5.

Periventricular heterotopias are present only in Dcdc2 shRNA transfected subjects
For the purposes of qualitative analysis, the Dcdc2 shRNA treated rats from litters 1 and 2 were
combined. Examination of the Nissl-stained sections revealed what we term periventricular
heterotopias (PVH), which reflects both nodular heterotopias and heterotopias in the white
matter, in 7 of 8 Dcdc2 shRNA-treated rats (Fig 2A, B, E, ,F). PVH consisted of large
collections of neurons within the white matter, or at the cortical/white matter border that were
visible on Nissl- and immunohistochemically-stained sections.
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In order to determine the specificity of the RNAi for Dcdc2 we performed experiments in which
the Dcdc2 shRNA was co-transfected with a plasmid encoding human DCDC2 (pCAGGS-
DCDC2-GFP). Human DCDC2 nucleotide sequence does not match rat Dcdc2 sequence in
the region targeted by the Dcdc2 shRNA and therefore is not susceptible to RNAi. Of the rats
simultaneously transfected with Dcdc2 shRNA and the human DCDC2 overexpression
construct, 1 out of 4 had a small (<10) collection of hetertopic neurons clustered together on
one section (3 of these neurons were GFP-positive). The remainder had no obvious
malformations (Fig 2 C, D). This suggests that overexpressing the human DCDC2 protein in
Dcdc2 shRNA-treated rats rescued the PVH phenotype, and indicates that the effects of the
RNAi are not due to off target effects. None of the rats in other treatment groups had PVH.

In the Dcdc2 shRNA condition, only a subset of the neurons in the PVH were immunopositive
for GFP, indicating that there were large numbers of ectopic neurons that had not been
transfected with Dcdc2 shRNA. Because the efficiency of co-transfection is nearly 100%
(Rosen et al., 2007), this suggests that there are non cell-autonomous effects of Dcdc2 shRNA
transfection. Those cells that were immunopositive for GFP were clearly neuronal in
morphology, but their normal radial orientation was disturbed (Fig. 2E, F, G).

Immunostaining for Cux-1, a transcription factor uniquely expressed in supragranular layers
(Nieto et al., 2004), revealed large numbers of Cux-1 positive neurons in the PVH (Fig 3). Of
the shRNA-transfected neurons throughout the cerebral cortex, most were Cux-1 positive. The
presence of numerous non-transfected Cux-1 positive neurons in the PVH again supports the
contention that there are non-cell autonomous effects of Dcdc2 shRNA transfection.

Malformations of the Hippocampus
There were hippocampal malformations in 2 of 8 Dcdc2 shRNA treated rats (see Fig. 4A, B).
These malformations consist of cells originally from the pyramidal layer localized in the
stratum radiatum and stratum oriens (see Fig. 4A,B), and were not associated with the injection
site. Comparison between immunostained and adjacent Thionin-stained sections revealed that
only a small percentage of the ectopic neurons stained positively for GFP (Fig. 4A′). As with
the PVH discussed above, this suggested non-cell autonomous effects in the hippocampus of
Dcdc2 shRNA transfection. Of the remaining rats in the experiment, there were 3 (2 GFP
controls and 1 Dcdc2 DCX domain overexpression group) that exhibited more modest
malformations of the hippocampus (<5 mismigrated neurons), but they were associated with
the injection site and were likely artifactual.

Dcdc2 shRNA-transfected neurons migrate in a bimodal pattern
Migration distance analysis was performed within each group using a repeated measure
ANOVA with Treatment (1 vs. 2) as the between, Deciles as the within, and the percent of
neurons within each decile as the dependent measure. In Group 1 (Fig. 5A,B), there was a
significant Treatment × Decile interaction (F9.45 = 3.9, P < .05), indicating that the laminar
dispersion of Dcdc2 shRNA-transfected neurons significantly differed from those of neurons
transfected with the mutant form of Dcdc2. Further analysis revealed that there were
significantly more Dcdc2 shRNA-transfected neurons in the lower four deciles (F3,15 = 4.9, P
< .05) and a significantly greater number of these neurons that migrated past the expected
lamina (F9.45 = 3.9, P < .05).

In Group 2, the Dcdc2 shRNA + pCAGGS-DCDC2-GFP condition, there was no significant
difference in the distribution of transfected neurons between the treatments (F6,30 < 1, NS).
This suggested that the treatment of shRNA-transfected neurons with the DCDC2
overexpression construct failed to rescue this migration phenotype. Although there appeared
to be a mild arrest of migration in animals transfected with either the DCDC2 overexpression
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construct (Fig 5E,F) or the C terminal domain (Fig 5I,J), there were no significant differences
in laminar dispersion of the transfected neurons between Groups 3, 4, or 5 (F9.36 = 1.3, NS;
F9.54 < 1, NS; F9.44 = 1.9, NS; respectively)(Fig 5E–J).

DISCUSSION
Embryonic knockdown of Dcdc2 function is associated with neocortical malformations

Previous work showed that the embryonic knockdown of Dcdc2 function in neocortical
progenitor cells by transfection with shRNA resulted in a disturbance in neuronal migration
when assessed 4–7 days post transfection. Here, we demonstrate that this disruption of neuronal
migration results in malformations that can be seen in the postnatal cerebral cortex.
Specifically, we found periventricular heterotopias in the brains of animals transfected with
shRNA targeted against Dcdc2. These heterotopias, which are apparent in Nissl-stained
sections, are located at the neocortical/white matter border, and are composed of both
transfected and non-transfected neurons. Moreover, large numbers of these non-transfected
neurons were Cux-1 positive, suggesting that they were neurons destined for supragranular
layers whose migration was halted by non-cell autonomous effects of Dcdc2 shRNA treatment.
Co-transfection of Dcdc2 shRNA with the DCDC2 overexpression construct mostly rescued
this phenotype, as there was only one small collection of heterotopic neurons noted in this
group. There were no PVH in any of the rats from the three overexpression conditions. Taken
together, this supports the claim that PVH are the result of the knockdown of Dcdc2 function.

Dcdc2 and neuronal migration
The specific function of Dcdc2 in neuronal migration has yet to be elucidated, but analysis of
its protein structure provides some clues. DCDC2 is one of an eleven-member group of proteins
distinguished by the presence of tandem or single dcx domains. DCX, the first gene of this
family to be characterized, was identified after the discovery of mutations in a gene that caused
double cortex syndrome and lissencephaly in humans (Allen et al., 1998, des Portes et al.,
1998). The dcx domain appears critical for binding to and stabilizing microtubules and is
regulated by phosphorylation (Gleeson et al., 1999, Graham et al., 2004, LoTurco, 2004, Reiner
et al., 2004, Schaar et al., 2004). More recently another member of the DCX family, Dclk, has
been shown to genetically interact with Dcx in mice, and functional knockdown of either of
these genes results in the interruption of normal neuronal migration in neocortex. Interestingly,
two functioning copies of Dcx and Dclk appear to be necessary both for growth of axons across
the corpus callosum as well as for neuronal migration in cerebral cortex (Deuel et al., 2006,
Koizumi et al., 2006, Friocourt et al., 2007). A comparison of the biochemical and cellular
functions of proteins in the Dcx family found that Dcdc2 exhibits the same functional features
shown by Dclk and Dcx (Coquelle et al., 2006), and analysis suggests that DCX, DCDC2, and
DCLK are the most conserved genes in this superfamily (Reiner et al., 2006).

RNAi of DCX and Dcdc2 leads to qualitatively different impairments in migration, however,
indicating that their roles in migration are distinct. Whereas RNAi of DCX leads to large
continuous subcortical band heterotopia, RNAi of Dcdc2 leads to smaller isolated PVH.
DCDC2 may act earlier in the migration path for migrating cells than does DCX because PVH
occurs nearer to the ventricles than are subcortical band heterotopia. Another striking
difference between DCX and DCDC2 RNAi is that DCX RNAi does not lead to cells that
overmigrate, and instead causes a general impairment of all migration to upper layers (Bai et
al., 2003, Ramos et al., 2006). This difference suggests that DCDC2, unlike DCX, also
functions in the normal termination of migration.
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Overexpression of DCDC2 does not affect neuronal migration
The initial report identifying DCDC2 as a candidate dyslexia susceptibility gene did not offer
evidence as to the functional consequences of the specific polymorphisms linked to the
behavioral phenotype (Meng et al., 2005). It could be, therefore, that the DCDC2 gene variants
result in either overexpression or knockdown of the DCDC2 protein. The results reported here
confirm the initial reports that knockdown of Dcdc2 expression via shRNA in neocortical
progenitor cells disrupts neuronal migration to the cerebral cortex (Meng et al., 2005).
Overexpression of DCDC2, however, does not significantly impair neuronal migration. Thus,
there were no cerebral cortical malformations in rats embryonically transfected with plasmids
encoding either the full DCDC2 protein, or the C terminal or DCX domain. Although
overexpression of the DCDC2 protein or the C Terminal domain appeared to mildly arrest
migration (see Fig E,F, I, J), there was not a statistically significant disruption of laminar
disposition comparable to that seen in following embryonic transfection with Dcdc2 shRNA.
Taken together, these results do not provide support for the role of DCDC2 overexpression in
the neuronal migration. This does not discount, however, the possibility that DCDC2
overexpression may affect other anatomic, physiologic, or behavioral phenotypes. These
possibilities are being addressed in ongoing experiments.

Laminar organization is disrupted following Dcdc2 shRNA transfection
Migration distance analysis revealed that Dcdc2 shRNA-transfected neurons migrated in a
bimodal pattern, with peaks at the white matter border and upper laminae. Those neurons in
the upper laminae migrated past their expected location when compared to their control
littermates. This is a similar pattern to that seen following Dyx1c1 shRNA transfections, and
is discussed in detail elsewhere (Rosen et al., 2007). In the current experiment, however, we
found that there was no significant difference in the laminar disposition of neurons between
rats transfected with Dcdc2 shRNA and those co-transfected with Dcdc2 shRNA and the
DCDC2 overexpression construct. Specifically, while a few neurons that remained along the
white matter border with the cerebral cortex in the “rescue” condition, the majority of the
neurons migrated past the expected lamina.

The lack of rescue of this migration phenotype could indicate that “overmigration” is the result
to an off-target effect of the Dcdc2 shRNA. Or, it could be the case that the human DCDC2
overexpression construct was not effective because of the slight differences in sequence
between the human and rat. This is unlikely, however, since, as we have shown, this construct
successfully rescued the malformation phenotype. Another explanation could be that both the
knockdown and overexpression constructs have the same effects on the migration distance
phenotype. This does not appear to be the case, however, as transfection with the DCDC2
overexpression construct alone did not produce an overmigration phenotype, and instead
transfected neurons migrated to slightly lower laminae (Fig 5 E,F). On the other hand, there
were far fewer surviving transfected neurons following Dcdc2 shRNA + DCDC2
overexpression treatment, when compared to their littermates who were transfected solely with
Dcdc2 shRNA. This raises the possibility that co-transfection in this case was particularly toxic
to the cells, and that those neurons that survive comprise a special population that is atypical.
The stoichiometry of the knockdown and overexpression constructs are not known at this time,
and it could be that the timing of their expression in the cell may prove important in
understanding this phenomenon. At the very least, we cannot exclude the possibility that this
overmigration phenotype is the consequence of some as yet undefined off-target effect of
Dcdc2 shRNA treatment.

Comparison to knockdown of other candidate dyslexia susceptibility genes
Previously, we have demonstrated that embryonic knockdown of the candidate dyslexia genes
Kiaa0319 (Paracchini et al., 2006) and Dyx1c1 (Wang et al., 2006, Rosen et al., 2007) disrupted
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neuronal migration. In the case of both of these genes, transfected neurons were severely
delayed in their migration out of the ventricular zone when assessed 4–7 days post transfection
(Paracchini et al., 2006, Wang et al., 2006). In adulthood, we found that the disruption of
neocortical migration by knockdown of Dyx1c1 function caused a variety of malformations in
the forebrain similar to those reported here. For both Dyx1c1 and Dcdc2, the majority of
shRNA-transfected brains examined had PVH that contained transfected and non-transfected
neurons. Approximately 25% of the brains in both groups were noted to have remarkably
similar hippocampal malformations. In addition, the bimodal pattern of migration of
transfected neurons was similar for both Dyx1c1 and Dcdc2 shRNA groups. In both cases,
approximately 7–15% of the transfected neurons failed to migrate past the white matter/
neocortical border, and the peak locations of the neurons that did migrate were superficial to
their expected lamina (but see above). On the other hand, there were phenotypic differences
between the brains of rats embryonically transfected with Dyx1c1 or Dcdc2 shRNA. In the
case of the former, there were clusters of mostly non-transfected neurons in the molecular layer
of the neocortex, which were not associated with the injection site. There were no such
molecular layer ectopias in the Dcdc2 shRNA-transfected brains.

The phenotypic similarities between Dyx1c1 and Dcdc2 shRNA brains could indicate that they
share cellular and/or molecular pathways that are important for neuronal migration. There is
no evidence as yet to directly link the function of these two genes, but previous reports suggest
that Dyx1c1 is localized in the cytoplasm along microtubules (Wang et al., 2006), which is
also the site where Dcdc2 is hypothesized to be localized. On the other hand, it could be that
the phenotypes shared between these two genes are the result of a non-cell autonomous
disruption of neuronal migration, while those that are unique are the result of the specific, and
differential, effects of the knockdown of the gene in question. If this were the case, one would
hypothesize that PVH, hippocampal malformations, and the bimodal distribution of transfected
neurons would be seen following knockdown of function of any number of neuronal migration
genes. As mentioned above, embryonic knockdown of Kiaa0319 via RNAi disrupts neuronal
migration when assessed 4–7 days post transfection (Paracchini et al., 2006), and preliminary
examination of these brains postnatally reveals all three phenotypes (unpublished
observations). On the other hand, embryonic knockdown of Dcx does not produce PVH, nor
is there an over-migration phenotype (Bai et al., 2003, Ramos et al., 2006). Dissection of the
cellular and molecular consequence of the knockdown of these neuronal migration genes will
help elucidate these issues.

Dyslexia candidate susceptibility genes and neuronal migration disorders
Post mortem examination of the brains of individuals with developmental dyslexia has revealed
neocortical malformations (Galaburda and Kemper, 1979, Galaburda et al., 1985, Humphreys
et al., 1990). We and others have previously shown that animals with induced or spontaneously
occurring malformations of the cerebral cortex have profound changes in other aspects of
cerebral anatomy (Jacobs et al., 1999, Rosen et al., 2001), connectivity (Giannetti et al.,
1999, Giannetti et al., 2000, Jenner et al., 2000, Rosen et al., 2000), physiology (Luhmann and
Raabe, 1996, Frenkel et al., 2000, Gabel and LoTurco, 2001, Gabel and LoTurco, 2002, Jacobs
and Prince, 2005), and behavior (Fitch et al., 1994, Fitch et al., 1997, Peiffer et al., 2002, Peiffer
et al., 2004). Recent reports demonstrate that embryonic knockdown of any of three CDSG
homologs—Dyx1c1, Kiaa0319, and Dcdc2—by transfection with shRNA disrupts neuronal
migration in rats (Meng et al., 2005, Paracchini et al., 2006, Wang et al., 2006). More recently,
we have shown that embryonic knockdown of the candidate dyslexia susceptibility gene
Dyx1c1 in neocortical progenitor cells results in malformations of the cerebral cortex similar
to those seen in developmental dyslexia (Rosen et al., 2007). Moreover, these animals exhibit
behavioral deficits in rapid auditory processing that are reminiscent of those reported in
language impaired individuals and in animals with induced cortical malformations (Threlkeld
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et al., 2007). In the current experiment, we report that knockdown of function of the candidate
dyslexia susceptibility gene homolog Dcdc2 also results in neuronal migration anomalies that
resemble those found in humans with developmental dyslexia, including laminar dysplasias
(Galaburda et al., 1985) and periventricular nodular heterotopias (Chang et al., 2005, Chang
et al., 2007). Thus, of the currently identified dyslexia candidate susceptibility genes whose
functions have been investigated, all appear to play a role in neural development, specifically
in neuronal migration. Taken together, these results support the link between neuronal
migration disorders and developmental dyslexia. Future research will consider the long term
anatomic, connectional, physiological, and behavioral consequences of these genetically
induced malformations.
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Figure 1.
In situ hybridization of Dcdc2 in embryonic rat brains. Photomontages of in situ hybridization
of Dcdc2 antisense and sense probes in E15 (A,B), E17 (C,D), and E19 (E,F) rat embryos. The
expression of Dcdc2 is relatively ubiquitous with a modest increase in E19 in the ventricular
zone, striatum, and cortical plate. Bar in all panels = 1 mm.
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Figure 2.
Periventricular heterotopias (PVH) in a rat embryonically transfected with shRNA targeted
against Dcdc2. A. Photomicrograph of cerebral cortex of Nissl-stained section illustrating
region of PVH (arrows). This animal was embryonically transfected with Dcdc2 shRNA +
GFP. B. Photomicrograph of section adjacent to Panel A immunohistochemically stained for
GFP. Transfected neurons are located within the PVH. C. Photomicrograph of cerebral cortex
of Nissl-stained section of a rat from the “rescue” condition. This animal was embryonically
cotransfected with Dcdc2 shRNA + GFP along with a human DCDC2 protein overexpression
plasmid, and shows no evidence of PVH. D. Photomicrograph of section adjacent to Panel C
immunohistochemically stained for GFP. There is a solitary transfected neuron in Layer 6
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(arrow), but no evidence of PVH. Bar for A–D = 500 μm. E. High power photomicrograph of
PVH illustrated in panel A (arrows). F. High power photomicrograph of GFP-positive neurons
in PVH. In comparison with Panel E, note that not all neurons in the PVH are transfected. Bar
for E, F = 100 μm. G. High power photomicrograph of box in panel F. Note that transfected
neurons in the PVH have neuronal morphology, but are misoriented. Arrow indicates direction
of pial surface, arrowheads denote misoriented apical dentrites. Bar = 25 μm.
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Figure 3.
Confocal microscopy of the laminar specific transcription factor Cux-1 in the brain of rats
embryonically transfected with shRNA targeted against Dcdc2. Top row illustrates high
density of Cux-1 immunoreactive neurons in layer 2/3 as expected. Neurons transfected with
Dcdc2 shRNA + GFP are co-labeled with Cux-1 (arrows). Bar = 25 μm. Middle row illustrates
a single neuron in layer 5 that was transfected with Dcdc2 shRNA + GFP and is co-labeled
with Cux-1. Bar = 25 μm. Bottom row is large PVH that contains numerous Cux-1 positive
neurons (arrows and arrowheads), only a small subset of which are co-labeled with GFP
(arrows). Bar = 50 μm.
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Figure 4.
Hippocampal malformations in rats embryonically transfected with shRNA targeted against
Dcdc2. A. Photomicrograph of Nissl-stained section of rat embryonically transfected with
Dcdc2 shRNA + GFP. There is a periventricular heterotopia (white arrow) as well as a
malformation of the hippocampus (arrows). Bar = 250 μm. A′ High power photomicrograph
of hippocampal malformation. Arrows are for orientation with A. Bar = 100 μm. B and B′.
Section adjacent to A and A′ immunohistochemically stained for GFP. Note that only a small
subset of neurons in the malformation are GFP-positive. Bar for B = 250 μm, B′ = 100 μm.
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Figure 5.
Patterns of neuronal migration to the cerebral cortex in each of the five experimental groups.
First column contains plots of GFP-positive neurons in the cerebral cortex of rats exposed to
Treatment 1 (the “experimental” condition). The second column contains plots from Treatment
2 (“control” condition). The last column contains histograms representing the percent of
neurons contained within each of the deciles ranging from the white matter to the pial surface.
Analysis reveals significant differences in the pattern of neuronal migration only between A
and B, with there being significantly greater number of neurons in both the lower and upper
deciles in the Dcdc2 shRNA group as compared to the control condition.
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Table 1
Summary of litter treatments (N used for migration analysis/Total N).

Litter Group Treatment 1 Treatment 2

1 Dcdc2 shRNA
pU6shRNA-Dcdc2A +

pCAGGS-GFP
(5/5)

pU6shRNA-Dcdc2 scram +
pCAGGS-mRFP +

pCAGGS-GFP
(2/2)

2 Rescue
pU6shRNA-Dcdc2A +

pCAGGS-GFP
(3/3)

pU6shRNA-Dcdc2A +
PCAGGS-DCDC2-GFP +

pCAGGS-mRFP
(3/4)

3 DCDC2 Overexpression
pCAGGS-DCDC2-GFP +

pCAGGS-mRFP
(4/5)

pCAGGS-GFP
(2/2)

4 DCDC2 DCX Domain Overexpression
pCAGGS-DCDC2-DCX-GFP +

pCAGGS-mRFP
(3/3)

pCAGGS-GFP
(5/5)

5 DCDC2 C Terminal Domain Overexpression
pCAGGS-DCDC2-CTerm-GFP +

pCAGGS-mRFP
(3/5)

pCAGGS-GFP
(4/4)
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