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Abstract
This study aimed to identify neural mechanisms that underlie perceptual learning on a visual
discrimination task. We trained two monkeys to decide the direction of visual motion while recording
from the middle temporal area (MT), which in trained monkeys represents motion information used
to solve the task, and the lateral intraparietal area (LIP), which in trained monkeys represents the
transformation of motion information into a saccadic choice. During training, improved behavioural
sensitivity to weak motion signals was accompanied by changes in motion-driven responses of
neurons in LIP but not MT. The time course and magnitude of the changes in LIP were correlated
with the changes in behavioural sensitivity throughout training. Thus, for this task, perceptual
learning appears to involve improvements not in how sensory information is represented in the brain
but rather how the sensory representation is interpreted to form the decision that guides behaviour.

Training can induce long-lasting improvements in our ability to detect, discriminate or identify
sensory stimuli1. Despite the prevalence of this phenomenon, called perceptual learning, our
understanding of the underlying neural plasticity is incomplete. Changes in early sensory areas
of cortex have been inferred from psychophysical studies2 (but see refs 3, 4) and identified in
monkeys trained on auditory5 and somatosensory6 tasks. However, monkeys trained on visual
tasks show only moderate or no change in early visual cortex7–11. Changes in higher stages
of processing, including those that contribute to decision-making and attention, have also been
inferred from psychophysical studies3, 4, 8, 12–14. However, such changes have not been
identified directly in the brain. We sought to identify experience-dependent changes in visual
processing in two different cortical areas, one in extrastriate visual cortex and the other in
parietal cortex, and determine their relative contributions to perceptual learning.

We trained monkeys to decide the direction of motion of a random-dot stimulus and indicate
their direction decision with an eye movement. Most neurons in the middle temporal area (MT)
of extrastriate visual cortex are tuned for the location and direction of moving visual
stimuli15. In trained monkeys, MT responses can be as sensitive to random-dot motion signals
as the monkey’s behavioural reports and are weakly predictive of the monkey’s choices on the
discrimination task16, 17. Moreover, MT lesions degrade performance18, and MT
microstimulation biases performance on the task19. Thus, MT provides at least some of the
motion information used to form the direction decision.

Neurons in the lateral intraparietal area (LIP) of parietal cortex, which has been implicated in
a variety of cognitive and visuomotor functions, including attention, intention, reward
anticipation and decision-making20–23, also respond during performance of the
discrimination task. These responses are modulated by the strength and duration of the motion
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stimulus and can be strongly predictive of the monkey’s saccadic choices24, 25. LIP
microstimulation can bias performance on a reaction-time version of the task26. Thus, LIP
appears to play a role in transforming motion information into a saccadic choice, although that
role might be shared among several oculomotor regions including the frontal eye field and
superior colliculus that show similar responses during task performance27, 28.

We recorded the activity of individual MT and LIP neurons while two naïve monkeys were
trained on the direction-discrimination task. Behavioural sensitivity to weak motion signals
improved continuously during training, long after monkeys had acquired the stimulus/response
association. This improvement in behavioural sensitivity corresponded to changes in the
responses of neurons in LIP but not MT during motion viewing. The results are consistent with
a model in which perceptual improvements result from changes in how sensory evidence is
interpreted and used to instruct behaviour, as reflected in LIP, but not in changes to the
representation of the evidence itself in MT.

Results
Discrimination threshold improves with training

We trained two rhesus monkeys on a one-interval, two-alternative direction-discrimination
task (Fig. 1a; monkey C: 165 sessions over 645 d; monkey Z: 155 sessions over 473 d). Each
daily training session began by introducing recording electrodes into MT and/or LIP (Fig. 1b).
As in previous studies, quantifying the relationship between behavioural and neuronal
performance depended on matching the visual stimulus to the properties of the neuron(s) being
recorded16, 25. Within this constraint, we sought to minimize changes in the stimulus
configuration across sessions by selecting neurons with consistent tuning properties, including
receptive field (RF) location and direction preference of MT neurons and response field
location of LIP neurons (Fig. S1). After finding the appropriate neuron(s), we placed the motion
stimulus in the MT RF (or in its modal location if no MT neuron was found) and one of the
two choice targets in the LIP response field (or in its modal location if no LIP neuron was
found). Training occurred only while the responses of at least one MT or LIP neuron were
isolated and recorded, allowing us to make direct, session-by-session comparisons of
behavioural and neuronal performance as training progressed.

Behavioural performance improved steadily for both monkeys with training (Fig. 2). In early
sessions we trained monkeys on a simplified version of the task using only the strongest motion
stimulus (99% coherence) to reinforce the association between motion direction and saccade
target. After performance on this easy condition improved to well above chance (>~75%
correct), we introduced more difficult stimuli using randomly interleaved motion coherences
and viewing durations (indicated as session 1 in Fig. 2c). Nevertheless, we continued to
interleave trials with 99% coherence randomly in each session throughout training (Fig. 2c).
For both monkeys, declining error rates on these high-coherence trials as a function of session
were fit by a single-exponential function with a lower asymptote of zero (mean±SEM initial
value = 0.51±0.02 for monkey C, 0.48±0.01 for monkey Z; time constant = 3.6±0.4 sessions
for monkey C, 30.4±1.1 sessions for monkey Z). Thus, both monkeys learned how to perform
the task in early sessions and soon could express the visuomotor association for high-coherence
stimuli with few or no errors.

In addition to learning the association, the monkeys learned to better discriminate weaker and
weaker motion signals at shorter viewing times. Fig. 2a shows performance from two sample
sessions, one early and one late in training, for monkey C. For nearly all coherences and viewing
times, the percentage of correct responses was greater in the later session. Indeed, throughout
training, performance improved significantly for all non-zero coherences for monkey C and
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for 12.8–99.9% coherence for monkey Z (linear regression of percent correct per coherence
with training session, H0: slope=0, p<0.05).

To further quantify improvements in performance with training, we used a time-dependent
cumulative Weibull function (Eq. 1 and solid lines in Fig. 2a,b) to estimate the discrimination
threshold, which is the motion strength at which the monkey achieved ~82% correct for a 1-s
viewing duration, for each session. This function takes into account associative (high-
coherence) errors (λ in Eq. 1) and thus can indicate changes in threshold that are distinct from
changes in associative learning or lapses of attention (Fig. S2). Thresholds improved from
~67% to ~15% coherence for monkey C and from ~68% to ~19% coherence for monkey Z,
with a time course that was substantially longer than for the associative improvements (Fig.
2c: mean±SEM time constants of single-exponential solid curves = 24.6±0.4 sessions for
monkey C and 58.5±2.5 sessions for monkey Z; final value = 14.7±0.1% coherence for monkey
C, 19.3±0.4% coherence for monkey Z; Fig. 2d: improvements in high-coherence errors were
limited to early sessions, whereas improvements in threshold were apparent throughout most
of training). Other behavioural parameters including the shape and time dependence of the
psychometric function did not show similar systematic changes with training (Table S1). The
goal of this study was to identify changes in the response properties of MT and LIP neurons
that accompanied the improvements in discrimination threshold.

MT responses do not change with training
We recorded the responses of individual MT neurons to the motion stimulus both before and
during training (Fig. 3; Monkey C: n=50 MT neurons recorded during a passive viewing
condition before discrimination training began, n=92 during training; monkey Z: n=47 before,
n=60 during training). As illustrated in Fig. 3a, MT responses before and during training
showed a pattern of activation similar to that reported in trained monkeys16: motion in the
preferred direction elicited an increase in spike rate and motion in the opposite direction elicited
a decrease in spike rate to relatively constant values that depended on motion strength and
sustained throughout motion viewing. To quantify these responses and test for changes with
training, we fit a simple linear model to the normalized responses of individual neurons. This
model describes the neural responses in terms of the baseline firing rate and three stimulus-
based terms: a dependence on motion coherence that does not change with viewing time, a
dependence on viewing time that does not change with motion coherence and a dependence
on the (multiplicative) interaction between coherence and viewing time that is consistent with
an accumulation of motion information over time29 (Eq. 3, Fig. 3b and Fig. S3). For both
monkeys, only the coherence-alone term was typically >0, consistent with the idea that MT
responses provide evidence about motion direction that depends only on stimulus strength and
not viewing time. Moreover, none of the three terms changed significantly with training (linear
regression versus session, computed separately for each term, each monkey and before and
during training, H0: slope=0, p>0.05 for all conditions).

We also quantified the motion sensitivity of individual MT neurons by computing a
“neurometric” discrimination threshold using the same time-dependent cumulative Weibull
function used to estimate behavioural threshold (Eq 1, Fig. S4). Neurometric thresholds were,
on average, ~4% better during versus before training, but the differences were not significant
(monkey C: geometric mean threshold coherence before training = 25.9%, during training =
21.0%, Mann-Whitney U test p=0.1964; monkey Z: before = 21.1%; during = 18.4%,
p=0.4762). Moreover, the neurometric thresholds of neither the whole population nor the 50%
most sensitive MT neurons changed systematically as a function of session either before or
during training (linear regression, H0: slope of log threshold versus session=0; before training:
monkey C, p=0.7612; monkey Z, p=0.9507, during training: monkey C, whole population,
p=0.9498, 50% most sensitive, p=0.9899; monkey Z, whole population, p=0.8870, 50% most
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sensitive, p=0.9480). Interestingly, this lack of long-term changes across sessions occurred
despite short-term changes within sessions, as has been reported previously (geometric mean
±SEM ratio of psychometric thresholds in the second 200 versus the first 200 trials = 0.92±0.22
in monkey C and 0.84±0.29 in monkey Z; ratio of neurometric thresholds in MT in the second
200 versus the first 200 trials = 0.87±0.23 in monkey C and 0.98±0.29 in monkey Z)30. Other
response properties including the width of directional tuning were unaffected by training (Table
S1 and Fig. S3).

There was, however, a slight strengthening of the relationship between the trial-by-trial
variability of MT responses and the monkeys’ choices with training. This analysis, called
choice probability, has shown that MT neurons predict choice slightly but reliably in fully
trained monkeys (~0.55, where 0.5 is chance and 1.0 is perfect; ref 17), which is the relationship
expected for elements in a pool of weakly correlated neurons that provide noisy evidence for
the decision31. Choice probability increased as a function of training session (combined data
from both monkeys, mean±SEM choice probability = 0.493±0.011 for the first 30% and 0.549
±0.018 for the last 30% of sessions). Moreover, the relationship between choice probability
and motion sensitivity in MT changed systematically over the course of training such that more
sensitive neurons became more predictive of the monkey’s direction decision as training
progressed (Fig. 3c; correlation coefficient between choice probability and neurometric
thresholds of MT neurons in the 1st 1/3 sessions, r=0.02, H0: r=0, p=0.5600; 2nd 1/3 sessions,
r=−0.23, p=0.1137; 3rd 1/3 sessions, r=−0.34, p=0.0423).

In principle, the increases in choice probability could arise from an increase in correlated firing
among MT neurons. However, a small number of simultaneously recorded pairs of MT neurons
provide preliminary evidence that the degree of correlation is similar before (mean±SEM
correlation coefficient r=0.16±0.06, n=8) and during (r=0.18±0.04, n=9) training and does not
increase over the course of training (linear regression, H0: slope=0, p=0.5728). Thus, the
systematic change in choice probability is likely to reflect an increasingly selective read-out
of activity from MT neurons, particularly those most sensitive to the motion stimulus.

LIP responses change with training
We recorded the responses of individual LIP neurons during motion viewing throughout
training (monkey C, n=123; monkey Z, n=99 LIP neurons recorded during training). Fig. 4a
shows the average spike rates of the population of LIP neurons recorded from monkey Cy
aligned to motion onset (left) and saccade onset (right) for different training epochs.
Throughout training, on trials in which the monkey selected the saccade target in the neuron’s
response field LIP activity tended to increase gradually during motion viewing, stay elevated
during the subsequent delay period and then increase just prior to saccade onset. On trials in
which the other target was selected, LIP activity tended to decrease gradually during motion
viewing and then remain below baseline levels until after the saccade. The peri-saccadic
activity tended to be smaller in the first ~15 sessions (average activity from −0.5 to −0.1s before
saccade onset=18.6 spikes/s from sessions 1–15 and 31.3 spikes/s from sessions 16–160, t-test
p=0.0157 for monkey C; 27.0 spikes/s from sessions 1–15 and 48.6 sp/s from sessions 16–130,
p=0.0024 for monkey Z) but then remained relatively stable throughout the rest of training
(linear regression, H0: slope of average activity versus session=0, p=0.1174 for monkey C;
p=0.3124 for monkey Z). In contrast, the responses during motion viewing changed
substantially throughout training, with the rates of rise and fall becoming steeper and
increasingly dependent on motion strength (higher coherences corresponding to steeper
slopes).

To quantify the effects of training on the coherence-dependent LIP responses, we fit spike rate
data from individual neurons to the same linear model we used for the MT responses (Fig. 4b).
For both monkeys, the coherence- and time-alone terms tended to be near zero throughout
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training (although the coherence term decreased slightly to small negative values with training
in both monkeys, and the time term increased slightly to small positive values with training in
monkey C). A larger effect was seen in the coherence × time interaction term, which began
near zero and thus indicated little or no influence of the motion stimulus on the LIP responses
at the beginning of training, and progressed steadily to more positive values. Because these
neurons were selected based on spatially tuned pre-saccadic activity (see Methods, Fig. S5),
this result implies that training both established and then shaped the sensory-driven responses
in these sensory-motor neurons.

The changes in sensory-driven LIP responses reflected the improvements in behavioural
sensitivity to weak motion signals. The pattern of coherence-specific changes in LIP was
similar to the pattern of coherence-specific behavioural improvements: both the rate of rise of
stimulus-driven LIP responses and discrimination performance increased as a function of
training session for most non-zero coherences, with greater increases for higher coherences
(H0: slope of a linear regression between session number and either average LIP rate of rise or
percent correct for each coherence=0, p<0.05 for coherences ≥6.4% for LIP data and ≥3.2%
for behavioural data for monkey C; for coherences ≥25.6% for LIP data and ≥12.8% for
behavioural data for monkey Z, Fig. 4c). Moreover, LIP activity was correlated with
behavioural threshold across sessions after taking into account the high-coherence errors (Fig.
5, left; partial correlation rth,(k3|λ) = −0.42, H0: r=0 using Fisher’s Z transformation, p<10−5

for monkey C; rth,(k3|λ) =−0.35, p=0.0049 for monkey Z), but the converse was not true, with
no correlation between high-coherence errors and LIP activity after taking into account the
changes in behavioural threshold (rλ,(k3|th) =0.0460, p=0.6198 for monkey C; rλ,(k3|th)=
−0.0590, p=0.6011 for monkey Z).

The changes in sensory-driven LIP responses with training also did not appear to reflect
changes in other motor (Fig. 5, middle) or motivational parameters (Fig. 5, right) known to
modulate LIP activity21, 22. Some of these parameters changed with training, but none were
consistently correlated with the changes in LIP responsiveness over the course of training for
both monkeys (Fig. 5 and Table S1).

Comparison of behavioural, MT and LIP data during training
In trained monkeys, MT and LIP are thought to play different but complementary roles in
forming the direction decision: MT (possibly in tandem with other motion-sensitive areas like
the middle superior temporal area, or MST) provides sensory evidence used to form the
decision, whereas LIP (possibly in tandem with other sensory-oculomotor areas like the FEF
and superior colliculus) accumulates and interprets the sensory evidence to form the categorical
judgment that instructs behaviour23. Our results suggest that the improvements in behavioural
sensitivity result from changes not in the sensory representation but rather its interpretation.

To test this idea and more directly compare the MT, LIP and behavioural data, we used a
sequence of three nested models. The first model describes the coherence-dependent sensory
evidence and was fit to MT data. The second model builds on the first, describing the
accumulation over time of the sensory evidence into a decision variable, and was fit to LIP
data. The third model builds on the second, describing the monkey’s decisions in terms of the
value of the LIP decision variable, and was fit to behavioural data29, 32(Fig. 6a). The advantage
of this scheme is that MT, LIP and behavioural data can be fit separately but then compared
directly via a term common to the three models describing how the sensory evidence used to
form the decision scales with motion coherence (aMT, aLIP and abe in Fig. 6a). For both
monkeys, the value of this motion-sensitive term grew as a function of training session in a
similar manner for data from behaviour and LIP but not MT (Fig. 6b,c; monkey C: correlation
coefficient between MT and behaviour r=0.03, H0: r=0 using Fisher’s Z transformation,
p=0.7874; LIP and behaviour r=0.59, p<10−12; monkey Z: MT and behaviour r=−0.14,
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p=0.2911; LIP and behaviour r=0.60, p<10−9). A straightforward interpretation of this result
is that training does not affect the representation of sensory evidence in MT directly but
effectively scales its output, providing increasingly sensitive evidence to the decision variable
in LIP used to guide behaviour.

Specificity of learning
Perceptual learning is typically specific to the stimulus attributes used during training,
including motion direction in a direction-discrimination task33. This phenomenon helps to
distinguish perceptual learning from cognitive or motor changes and has been used to argue
that the underlying changes occur at early stages of sensory processing2. For our task, the
stimulus configuration used in a given session depended on the characteristics of the MT and/
or LIP neuron(s) being recorded and thus varied slightly from session to session (a factor that
in of itself can affect the specificity of learning34). We tested for the specificity of learning by
analyzing performance relative to the similarity of the current stimulus configuration to
configurations used in previous sessions.

For both monkeys, discrimination performance depended on the familiarity of the axis of
motion (Fig. 7). We calculated for each session the difference between the motion sensitivity
computed from behavioural data (a in Eq. 4) and its 21-session running average. This quantity
provides an estimate of discrimination performance relative to its current trend: a positive value
implies better-than-average performance, a negative value implies worse-than-average
performance. For both monkeys, the value of this quantity was negatively correlated with the
absolute z score of motion direction (monkey C: correlation coefficients r=−0.39, H0: r=0 using
Fisher’s Z transformation p<10−7; monkey Z: r=−0.49, p<10−9), indicating that performance
tended to degrade when an unfamiliar stimulus was used. This specificity for the axis of motion
was mirrored in neural activity in LIP (Fig. 7b, red symbols; monkey C: r=−0.37, p=0.0004;
monkey Z: r=−0.29, p=0.0204) but not MT (Fig. 7b, cyan symbols; monkey C: r=0.09,
p=0.5439; monkey Z: r=0.22, p=0.2063), which is consistent with the idea that perceptual
learning can be specific by virtue of what is learned (in this case, the LIP decision variable)
and need not involve changes in the sensory representation (direction-selective responses in
area MT)3.

Discussion
Our results show that for monkeys trained to discriminate the direction of motion of noisy
visual stimuli, improvements in discrimination threshold (i.e., higher sensitivity to weak
motion) corresponded to changes in sensory-driven responses in area LIP but not MT. In MT,
individual neurons responded similarly to motion stimuli before and throughout training, with,
on average, a sensitivity that was similar to that of trained monkeys. However, responses of
the most sensitive MT neurons became increasingly predictive of the monkeys’ choices with
training. In LIP, neurons tuned for saccadic direction were insensitive to visual motion at the
beginning of training but developed responses that grew increasingly strongly with motion
strength and viewing time as performance on the task improved. The results suggest that the
perceptual improvements corresponded to an increasingly selective read-out of highly sensitive
MT neurons by a decision process, represented in LIP, that instructed the behavioural response.

Because the motion sensitivity of MT neurons likely arises from their direct and indirect input
from V135, our results appear to rule out learning-induced changes in V1, as well. This finding
is consistent with electrophysiological studies in monkeys that found little or no changes in
V1 with perceptual learning7–9 (although larger effects have been found in V1 of human
subjects using fMRI36) and provides additional evidence that the stimulus specificity of
perceptual learning does not necessarily imply changes in primary sensory cortex3, 4. Our
results also further distinguish early visual cortical areas from primary somatosensory and
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auditory cortices, which in both monkeys and humans can show dramatic changes with
perceptual learning5, 6, 37–39. We cannot rule out the possibility of changes in other parts of
extrastriate visual cortex that carry appropriate motion signals, like area MST40. Nevertheless,
it is striking that we found no changes in MT sensitivity over the course of training despite the
established role of MT in task performance16–19; the increase in MT choice probabilities with
training, indicating an increasingly strong correspondence with behaviour; and the fact that
our recording and analysis methods could resolve within-session changes in MT
sensitivity30 that were smaller in magnitude than the longer-term changes that we would expect
based on behaviour.

The changes we report for LIP complement and extend previous findings. Learned sensory-
motor associations have been shown to correspond to changes in LIP but not MT41, 42.
Consistent with those findings, we found that motion-driven LIP responses appeared when the
monkeys learned the association between motion direction and saccadic response. However,
unlike previous studies we showed that both behaviour and LIP responses continued to evolve
well after the visuomotor association was established, together reflecting improved sensitivity
to weak motion. These results support the intriguing possibility that associative and perceptual
learning might share common mechanisms4, 43. Learning a stimulus-response association
establishes functional connectivity from neurons that represent the sensory stimulus to neurons
that control the motor response. Improvements in perceptual sensitivity might then involve
refinement of this connectivity to provide a more selective read-out of the most sensitive
sensory signals associated with that response. Our results are consistent with such a refinement
of direct or indirect ascending projections from MT to LIP44, an idea that merits further testing.

We do not know the exact role that LIP plays in task performance throughout training. In trained
monkeys, multiple brain areas including LIP, the superior colliculus and parts of the prefrontal
cortex including the FEF exhibit similar sensory-motor responses during performance of the
discrimination task24, 25, 27, 28. We do not know what, if any, differences exist in the
contributions of these brain areas to task performance either during or after training. Moreover,
LIP plays a multitude of cognitive and sensory-motor roles that could, in principle, change
during training and account for the changes in LIP responses during motion viewing 20–22.
However, we found no evidence for such modulation by numerous oculomotor and
motivational parameters. Instead, the sensory-driven LIP responses changed in a manner that
was consistent with a decision process that used increasingly sensitive motion evidence to
determine the saccadic choice. These decision computations represented in LIP appear to be
critical for performance of trained monkeys, an idea supported by a close relationship between
LIP responses and reaction times25 and the ability to bias performance using electrical
microstimulation of LIP26. Additional work is needed to establish similarly strong links
between LIP activity, decision-making and behaviour throughout training.

The results also further support a close relationship between learning and attention12. Of the
learning-induced changes that have been found previously in V1, attentional modulation
appears to play a primary role8. Attentional modulation might likewise account for the slight
overall improvement in MT sensitivity in our data when comparing sessions before and during
training or, like in several other studies, within training sessions30, 45. The changes in choice
probabilities in MT and motion-driven responses in LIP might also be thought of in terms of
improved attention to appropriate features of the motion representation used to form the
decision. This idea is parsimonious with the widely reported role of LIP in spatial and feature-
based attention20, 46 and the relationship between attention and perceptual learning on other
tasks12. It remains to be seen how general a role this kind of mechanism plays in different
forms of perceptual learning, which can have much different time courses47, attentional
demands12 and magnitudes48.
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Methods
Behavioural task

The motion stimulus was a random-dot kinematogram described elsewhere16, 29. Motion
direction, coherence, and duration (a random time between 0.1–1.4s from an exponential
distribution) were varied randomly from trial-to-trial. Correct responses and half of the 0%
coherence trials elicited a juice reward of a variable amount (1–4 drops). Incorrect responses
were followed by a “time out” period lasting 1–5s. Task difficulty was held relatively constant
by adjusting the distributions of coherences and viewing times to give ~70–80% correct per
session. This design kept the total reward per session roughly constant and helped to keep the
monkeys motivated throughout training. Eye position was monitored using a video-based
system (ASL, Bedford, MA) sampled at 240 Hz to enforce fixation during motion viewing and
register the saccadic response.

Electrophysiology
Monkeys were prepared for the experiments by surgical implantation of a head-holding device
and recording cylinders. MT and LIP were targeted using sterotaxic information and magnetic
resonance imaging (Fig. 1b). Neural activity was recorded using quartz-coated platinum-
tungsten microelectrodes advanced using two Mini Matrix systems (Thomas Recording, Inc.,
Giessen, Germany), one per recording cylinder. Spike waveforms were stored and sorted
offline (Plexon, Inc., Dallas, TX). All training, surgical and experimental procedures were in
accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the University of Pennsylvania Institutional Animal Care and
Use Committee.

We searched for MT neurons with consistent spatial, direction and speed tuning, measured
using a 99.9% coherence stimulus (Fig. S1 and S3). We searched for LIP neurons using a
delayed-saccade task and selected neurons with spatially tuned delay-period activity25 and
response fields in consistent locations (Fig. S1 and S5).

Analysis of behavioural data
We fit behavioural data to a time-dependent cumulative Weibull function in which
discrimination threshold is a power function of time:

[1]

where P is the discrimination performance at motion strength C (in percent coherence) and
viewing time T (in seconds), λ is the fraction of errors measured for stimuli of 99% coherence
and viewing times > 0.4s, and with fitted parameters α (threshold coherence at 1s), n (time
exponent) and β (shape parameter).

Analysis of MT and LIP data
To quantify the effects of motion coherence and viewing time on the responses of MT and LIP,
we first normalized the responses of each neuron:

[2]

where r(C,T) is the difference in responses (in spikes/s) at coherence C and viewing time T to
motion towards versus away from the neuron’s preferred direction (for MT) or preferred choice
(for LIP), rBL is the average baseline response 0.2–0s before motion onset and r97.5 is the 97.5-
percentile response at 99.9% coherence preferred motion.
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This normalized response (MT: from 0.1–1s; LIP: from the beginning to the end of the ramp
activity, which were estimated by fitting a piecewise-linear function (Eq. 6) to the neuron’s
responses to 99.9% coherent motion) was then fit to a simple linear model:

[3]

with parameters that describe the effect of coherence (k1), viewing time (k2) and coherence ×
time interaction (k3) on the neuron’s response.

In addition, we also computed the sensitivity (“neurometric” discrimination thresholds)16 and
choice probability17 of each MT neuron. Sensitivity was computed using an ROC analysis of
distributions of MT responses separated by motion direction, computed separately for each
motion strength and cumulative bins of viewing time from 0–1s in 0.05-s steps and fit to Eq.
1. Choice probability was computed from the distributions of MT responses to 0% coherence
stimuli, separated by the monkey’s choices.

Model of the decision variable
We modelled the decision variable as the accumulated difference in activity between noisy
pools of motion sensors tuned to the correct and incorrect directions of motion29:

[4]

where C is fraction coherence, T is viewing time (in seconds), R0 is the response (in spikes/s)
of MT neurons for 0% coherence, 〈 〉 denotes expectation, and a, m and n are fitted parameters.
We assume that Sc and Si are normally distributed with variances that scale with their mean

, A correct response results when Sc>Si. If Sc and Si are independent
and normally distributed, then the probability of a correct response, P, is:

[5]

where μ is the expected value of the accumulated difference, 〈Sc − Si〉 = 〈Sc〉− 〈Si〉 and σ2 is
the sum of the variances of Sc and Si.

We used different versions of the model to estimate the coherence-dependence of the decision
variable (the parameter a in Eq. 4) separately for behavioural, MT, and LIP data. For behaviour,
we fit Eq. 5 to performance. For MT data, we estimated the linear dependence of preferred–
null direction responses averaged over the full viewing duration, consistent with the difference
between the time-independent portions of 〈Sc〉 and 〈Si〉. For LIP data, we fit

[6]

to the difference in activity between leftward and rightward choices, letting β0, β1, β2, τ, and
γ be free parameters and reporting β1 as the coherence-dependent parameter (equivalent to a
in the behavioural model). These estimates are expected to be offset from each other by an
overall scale factor because of different pooling assumptions: we fit data from individual MT
neurons, from individual LIP neurons that were assumed to pool from an unknown number of
MT neurons and from behavioural data assumed to reflect both MT and LIP contributions;
note the different axes in Fig. 6 for behavioural and neural data. Nevertheless, these fits are
useful for comparing how each estimate changes with training.
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Figure 1.
Task and anatomical localization. a, Direction-discrimination task. The motion stimulus
matched the RF location and preferred direction (and its 180° opposite) of the MT neuron being
recorded or the modal values from previous sessions if no MT neuron was found. One target
was placed in the response field of the LIP neuron being recorded or the modal location from
previous sessions if no LIP neuron was found, the other in the opposite visual hemifield. b,
Anatomical localization of recording site locations in areas MT (left, cyan) and LIP (right, red)
using magnetic resonance imaging (MRI). Top: volume rendering using the AFNI49 render
plugin showing the 3D orientation of the recording cylinders relative to the head. Middle:
partial reconstruction of the cortical surface along with the projection of the recording cylinder
using Caret and SureFit50 and custom software. The yellow arrow in the left panel points to
the location of area MT (red), along the superior temporal sulcus. The yellow arrow in the right
panel points to the location of area LIP (brown), along the intraparietal sulcus. Bottom: partial
penetration maps of successful recording sites (black points) superimposed on planes of section
perpendicular to the long axis of the recording cylinder. MT sites (top) ranged in depth from
6–9 mm from the dura mater. LIP sites (bottom) ranged in depth from 4–7 mm from the dura
mater. These images were generated with methods described in R.M. Kalwani, L. Bloy, J.
Hulvershorn, M.A. Elliot & J.I. Gold, Soc. Neurosci. Abstr. 454.14, 2005.
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Figure 2.
Behaviour. a,b. Behavioural performance (a) and discrimination threshold (b, best fits and
68% CIs) as a function of viewing time (0.3-s-wide bins in 0.15-s intervals) for different motion
strengths (see legend) from two representative sessions early (left) and late (right) in training.
Discrimination thresholds in b were computed for each time bin using a cumulative Weibull
function16. Solid lines in a and b are behavioural performance and thresholds computed from
a time-dependent cumulative Weibull function (Eq. 1) fit to each data set (not binned by
viewing duration), respectively. We report error rates at 99.9% coherence (dashed arrows in
a, σ in c and d) and discrimination thresholds at 1-s viewing duration from the fits (dashed
arrows in b, ● in c and d). c, d, Discrimination threshold (●; note the logarithmic scale on the
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left ordinate) and error rate at 99.9% coherence (σ; linear scale on the right ordinate) with 68%
CIs plotted as a function of training session for the two monkeys. Prior to session 1, monkeys
were trained mostly with 99.9% coherence motion. Solid lines are best-fitting single
exponential functions. d, Learning rates (best fits and SEM) of discrimination thresholds (● )
and errors at 99.9% coherence (σ ) during training for the two monkeys. The learning rate was
computed as the slope of a linear fit to the behavioural data (log discrimination thresholds or
errors at 99.9% coherence) within a 41-session wide bin. A negative learning rate implies that
the behavioural parameter improved during that particular epoch of training.
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Figure 3.
MT responses. a, Average activity of MT neurons as a function of viewing time (using 0.1-s-
wide time bins with 0.025-s increments) for different motion strengths (see legend) for each
neuron’s preferred (solid line) and null (dashed line) motion during different training periods
for monkey C. “Pre-training” refers to responses to the motion stimulus measured while the
monkey was rewarded for simply fixating a central spot, before being trained on the
discrimination task. b, Coherence-, viewing time- and coherence × viewing time-dependence
(Eq. 3) of individual MT neurons before and during training for monkeys C (left) and Z (right).
Error bars are 68% CIs. c, Relationship between neurometric threshold and choice probability
for individual MT neurons during different training periods for monkeys C (■) and Z (▼).
Error bars are 68% CIs. Solid lines are linear fits.
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Figure 4.
LIP responses. a. Average activity of LIP neurons as a function of viewing time (using 0.1-s-
wide time bins with 0.025-s increments) for different motion strengths (see legend) for saccades
into (solid line) and out of (dashed line) each neuron’s response field during different training
periods for monkey C. Only correct trials were included. b. Coherence-, viewing time- and
coherence × viewing time- dependence (Eq. 3) of individual LIP neurons before and during
training for monkeys C (left) and Z (right). Error bars are 68% CIs. Solid lines are significant
linear fits (p<0.05 for H0: slope=0). c. Coherence-specific effects of training on the rate of rise
of LIP activities during motion viewing for monkeys C (top) and Z (bottom). The rate of rise
was estimated separately for each coherence using a piecewise-linear function (Eq. 6 with the
coherence-dependence term, β1, set to zero). Points and error bars are the slope and 68% CIs
of a linear regression relating this rate of rise to session number (* indicates p<0.05 for H0:
slope=0).
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Figure 5.
Relationship between the coherence- and time- dependent LIP responses (k3, Eq. 3) and various
behavioural, motor and motivational parameters. The r-values for the behavioural parameters
(left two columns) are the partial correlations between each parameter and k3 with the effect
of the other parameter on k3 removed. Other r-values are the correlation coefficients between
that behavioural parameter and k3. ♣ indicates a significant correlation between the behavioural
parameter and k3 (p<0.05). * indicates that the behavioural parameter changed significantly as
a function of training session (linear regression, p<0.05; see Table S1). Error bars are 68% CIs.
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Figure 6.
Decision model. a. Schematic of the decision model and example fits to behavioural, MT and
LIP data. The decision model assumes that MT represents the coherence-dependent sensory
evidence, LIP accumulates over time this sensory evidence into a decision variable, and the
monkey’s choice depends on the value of this decision variable. The model allows us to fit
separately data from MT, LIP and behaviour but extract a common parameter: the coherence
dependence of the sensory information represented in each stage of processing (a in Eq. 4).
b. Coherence dependence (best fit values and 68% CIs) computed from behavioural (left axes,
black symbols) and neural data (right axes, cyan symbols for MT data, red symbols for LIP
data). Solid lines are linear fits (H0: slope=0, monkey C: behaviour p<10−10, MT p=0.1056,
LIP p<10−13; monkey Z: behaviour p<10−10, MT p=0.6349, LIP p<10−13). c. Relationship
between a computed from behavioural data and neural data. ♣ indicates a significant correlation
(p<0.05). Error bars are 68% CIs.
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Figure 7.
Specificity of learning. a. The coherence dependence of the sensory information (a in Eq. 4)
estimated from behavioural performance from sessions 30–50 for monkey Z. The solid line is
a 21-session running average. b. The difference between the coherence dependence from a
given session and its 21-session running average for behaviour (black), MT (cyan) and LIP
(red) responses are plotted against the absolute z score of motion direction for monkeys C (top)
and Z (bottom). For a given session, the z score is computed using the distribution of motion
directions used prior to that session. Thus, less frequently used motion directions will have
larger z scores. Solid lines are linear fits.
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