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Abstract
This review focuses on the emerging evidence that attenuation of the production of reactive oxygen
species (ROS) and inhibition of inflammatory pathways play a central role in the anti-aging
cardiovascular effects of caloric restriction (CR). Particular emphasis is placed on the potential role
of the plasma membrane redox system in CR-induced pathways responsible for sensing oxidative
stress and increasing cellular oxidative stress resistance. We propose that CR increases bioavailability
of NO, decreases vascular ROS generation, activates the Nrf2/ARE pathway inducing ROS
detoxification systems, exerts anti-inflammatory effects and, thereby, suppresses initiation/
progression of vascular disease that accompany aging.

Historical perspective
Almost a century ago Moreschi and Rous published separately their observations on the impact
of underfeeding laboratory animals on transplanted and induced tumors 1,2. Two decades later,
McCay and colleagues first observed lifespan extension in laboratory rats maintained on a CR
diet 3. Since then, CR has been studied intensively with consistent results showing its beneficial
effects on longevity, age-associated diseases, attenuation of functional declines, and
carcinogenesis across a broad variety of species and diet formulations 4–5. Despite these
observations the precise mechanism(s) underlying the effects of CR protection and lifespan
extension remain unknown. It is safe to say that, calorie restriction reduces metabolic rate and
oxidative damage, improves markers of diabetes such as insulin sensitivity.

CR decreases the incidence of cardiovascular disease and has been shown to alter
neuroendocrine and sympathetic nervous system in laboratory animals and some of these are
replicating now in ongoing human studies. In particular, the National Institute on Aging
through its program, CALERIE (Comprehensive Assessment of Long-Term Effects of
Reducing Intake of Energy, initiated in 2002) endeavors to fund clinical trials address the
feasibility of using CR as therapeutical tool as well as its effects and mechanisms in disease
prevention. CALERIE studies examine the delay of aging-related comorbidities, particularly
those associated with metabolic rate and biomarkers of aging, studying those that predict age-
related diseases such as cardiovascular disease and type 2 diabetes 6–13.

Oxidative stress, aging and the plasma membrane
Mitochondria are the main source of ATP production. During mitochondrial oxidative
phosphorylation, reactive oxygen species [ROS] are produced. ROS are associated with
damage to DNA, lipids and proteins 14–16. The pathology of aging and age-related diseases
involves oxidative stress as an early stage in its development 17–19 as confirmed by a decrease
in antioxidant defenses and an increase in oxidative damage 20, 21. Aging is also associated
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with changes in levels of antioxidant capacity and oxidative damage ostensibly leading to
mitochondrial impairment. These changes have been coupled to increased oxidative damage
to DNA 22–25, lipids 26, 27 and proteins 23, 28–30. Accumulation of mitochondrial DNA
mutations, commonly identified in age-related diseases, induce impairments of mitochondrial
complexes 31–33, including mitochondrial complex III activity in aged heart 34. Impaired
mitochondrial function causes shortage of ATP supply, resulting in induction of further
problems in biochemical pathways 31.

The free radical theory of aging 35, 36 has generated considerable interest regarding the search
for possible biochemical bases of aging processes. Many past studies have shown that CR
decreases production of reactive oxygen species (ROS) production thus minimizing oxidative
damage 37, 38. These studies have lead collectively to the hypothesis that CR by reducing
oxidative stress extends the lifespan. The mitochondrial 39 and plasma 40 membranes are sites
of active and abundant ROS production and thus are at high risk of ROS damage. Therefore,
it follows that a central mechanism for the actions of CR may involve membrane alterations
that either reduce ROS production or resist oxidative damage.

It has been proposed that life span is inversely related to the degree of membrane phospholipid
unsaturation 41, 42 and that elucidation of this relationship can provide insight on the
mechanism for life span extension with CR43. Modulation of membrane susceptibility to
peroxidation, however, may be too simplistic to explain aging processes since this hypothesis,
for the most part, does not consider other membrane-associated processes. Such processes
include changes in cellular signaling, leakage of protons (and other ions) 44, production of
ROS 39, induction of apoptosis 45, and maintenance of antioxidant systems 46–49. Membrane-
induced alterations in any of these processes could have major consequences that influence
oxidative stress and life span.

CR Increases CoQ-Dependent Reductases in Plasma Membranes in vivo and in vitro
Coenzyme-Q (CoQ) contributes to stabilize plasma membrane, regenerates antioxidants such
as ascorbate and α–tocopherol, and regulates the extracellulary-induced ceramide-dependent
apoptosis pathway49, 50. NAD(P)H-dependent reductases act at the plasma membrane to
regenerate CoQH2, contributing to maintain its antioxidant properties. As a whole, both CoQ
and its reductases (Fig. 1) constitute a trans-plasma membrane antioxidant redox system
responsible of the above described functions 51–53.

The aforementioned antioxidants are maintained in their reduced forms at the plasma
membrane by different CoQ-dependent reductases, NADH-dependent cytochrome b5-
reductase 54 and NAD(P)H:Quinone-oxidoreductase-1 (NQO1) 55. Different dietary
modifications can modulate these enzyme activities to protect the plasma membrane 56–58.
Our previous work has shown that these two enzyme activities are increased in plasma
membranes from rat and mouse tissues under long term CR compared to ad libitum conditions
46–48. Increases in the activities of these enzymes are due to enhanced concentration of these
proteins at the plasma membrane 46, 47. Both enzyme activities are known to be present in the
cardiovascular system 59–62 and we posit that they are regulated by CR in a similar manner.
Data from our laboratories and others, provide support that the plasma membrane redox system
is, at least in part, responsible of the maintenance of the antioxidant capacity during oxidative
stress challenges induced by the diet and aging. The up-regulation of the plasma membrane
redox system that occurs during CR decreases the levels of oxidative stress in aged membranes
46, 48, 63, 64. CR modifies composition of fatty acid in the plasma membrane, resulting in
decreased oxidative damage including lipid peroxidation 65 66. More importantly, plasma
membrane redox activities and also the content of CoQ, which decline with age, are enhanced
by CR providing protection to phospholipids and preventing the lipid peroxidation reaction
progression 46, 48, 63, 64.
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The plasma membrane also contributes to the regulation of the cellular redox homeostasis
through the maintenance of NAD(P)+/NAD(P)H ratio 67. This function is driven in cooperation
with mitochondria, an interaction particularly observed in ρ° cells 68, 69 48. The ratio of
pyridine nucleotides is considered an important regulator of yeast life span, as well as the
establishment of respiration 70. The ratio of NAD+/NADH is also an important regulator of
the deacetylase activity of Sir2, an enzyme involved in the regulation of life span in yeast. We
and others have shown that expression of mammalian Sir2 (SIRT1) is induced under CR in
laboratory animals and humans, as well as in cells in culture that are treated with serum from
CR animals11, 47, 71–73. As we have indicated above, CR increases the activity of NAD(P)
H-dependent reductases in the plasma membrane and CoQ, which likely contributes to the
regulation of NAD(P)+/NAD(P)H ratio. Since NADH and NADPH are substrates for NAD(P)
H oxidases, the availability of these electron donors also influences the generation of ROS by
these enzymes38. There is increasing evidence for age-related up-regulation of NAD(P)H
oxidases in the cardiovascular system74, 75, however, neither the role of CR-induced
alterations in NAD(P)+/NAD(P)H ratio in modulation of NAD(P)H oxidase activity nor the
role of the plasma membrane redox system in this process are well understood. Plasma
membrane-associated redox system and mitochondria are the major source of ROS in cells,
which are generated mainly when CoQ-dependent electron transport is disrupted 37, 76. Aging
is associated with increased rates of stress-induced apoptosis in multiple organs77, including
an increased rate of endothelial apoptosis75, 78. CR promotes the activation of stress response
genes and attenuates the stress-induced apoptosis by inducing SIRT1 72, 79. Ceramide is a
major signal molecule that mediates stress responses 80, and induces apoptosis through the
activation of caspases 81. We have previously shown that CoQ within plasma membranes
prevent the cytosolic accumulation of ceramide by inhibiting the neutral sphingomyelinase
present in membranes 50, 82. It is conceivable that changes in CoQ concentration observed in
liver plasma membrane induced by CR (see above) modulates the activity of neutral
sphingomyelinase. We have studied this activity in plasma membrane-enriched fractions of rat
liver and brain and observed that the activity of neutral sphingomyelinase decreases
significantly after long-term CR 47, 46, 48

CR Induces SIRT1 Protein Levels In Vivo and In Vitro
SIRT1 is distributed in all mammalian tissues studied and modulates cellular and tissue
homeostasis interacting with metabolic and stress response proteins and factors. Mounting
evidence suggests that SIRT1 regulates energy metabolism, endocrine signaling and some
stress responses 83. SIRT1 is also inducible by a broad variety of signals, in response to CR
79 or fasting 84, suggesting a broad role in mammalian physiology. It is becoming clear that
sirtuins are regulated by stress and nutritional status in yeast, worms, flies and mammals 79,
85–87. Endocrine and energy metabolism pathways coordinate organismal development and
physiology, and are intrinsic to pathologies such as cancer, neurodegeneration and diabetes.
These systems respond to a variety of external signals, as diverse as environment, stress and
nutrients. Sir2 regulates, in opposite ways, both replicative 88 and chronological life span in
yeast 89. Extra copies of sirtuin genes extend the life spans of multicellular organisms such as
worms, flies and fish 86, 90, 91]. In principle, understanding how these pathways respond to
environmental and nutritional factors could enable us to better understanding to develop
successful therapies.

SIRT1 regulates several transcription factors that regulate stress responses, energy metabolism
and endocrine signaling, including peroxisome proliferator-activated receptor γ (PPARγ),
PPARγ-coactivator 1α (PGC1-α), forkhead-box transcription factors (FOXOs), LXR and
p5392–98. There is mounting data supporting that SIRT1 regulates energy metabolism,
endocrine signaling and some stress responses 83, 99. The biological effects identified for
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sirtuins have fueled speculation that sirtuins modulate processes that affect longevity, age-
related disease, diabetes and tumorigenesis 100.

CR animals and humans have significantly higher levels of SIRT1 protein in most tissues
including brain, kidney, muscle, visceral fat pads, and liver 11, 79, 101. Up regulation of SIRT1
by CR is also observed in cultured cell models that recapitulate the key in vivo proliferative
and phenotypic features of CR 72. Increasing the resistance of cells to apoptosis is beneficial
if a cell is not critically damaged and is difficult to replace. However, this situation is clearly
not always desirable if, for example, a cell is mutated or otherwise irreparably damaged. Under
conditions of severe stress or pro-apoptotic signals such as TNF, SIRT1 can switch into a pro-
apoptotic mode 79. A recent study by Alt et al. 102, 103 found that mouse embryonic cells
lacking the SIRT1 gene continue to divide long after they should have senesced due to chronic
cell stress, indicating that SIRT1 is able to suppress the proliferation of damaged cells. SIRT1
regulates several transcription factors that regulate stress responses, energy metabolism and
endocrine signaling, including peroxisome proliferator-activated receptor γ (PPARγ) 97,
PPARγ-coactivator 1α (PGC1-α) 98, forkhead-box transcription factors (FOXOs)92–96,
LXR104 and p53. There is mounting data supporting that SIRT1 regulates energy metabolism,
endocrine signaling and some stress responses83, 99. Recent reports associate SIRT1 with the
regulation of apoptosis, senescence and proliferation 79, 105–107.

Vasoprotective effects of CR
CR was shown to attenuate atherogenesis in rodents108. The cardiovascular effects of CR
observed so far are consistent with the view that CR may confer vasoprotection in humans,
although the effects of CR on progression of atherosclerosis and plaque composition in elderly
humans or aged primates109 are still not well documented. In general, CR may affect vascular
health both by improving systemic risk factors for coronary artery disease (CAD) (e.g. plasma
lipid and glucose levels, blood pressure) and by modulating cellular functions and gene
expression in endothelial and smooth muscle cells that create a microenvironment in the
vascular wall, which does not favor atherogenesis (e.g. attenuation of ROS production, anti-
inflammatory effects).

Caloric restriction improves cardiovascular risk factor profile
Most current knowledge on the effects of CR on cardiovascular risk factors in humans emanates
from studies in which obese individuals were treated with some form of relatively short-term
dietary restriction to loose weight. High calorie diets and the resulting obesity are major risk
factors for hypertension and coronary artery disease, In addition, weight loss has been
associated with significant improvement in the cardiovascular risk factor profile in these
individuals (including a decreased weight, body mass index, waist circumference, hip
circumference, waist-to-hip ratio, total body fat, total cholesterol, serum triglyceride) 110,
111. CR exerts beneficial effects on risk factors of atherosclerosis in non-obese individuals as
well. This effect has also been shown both in studies on the eight individuals (including Dr.
Roy Walford, an early proponent of CR) sealed inside Biosphere 2 for two years, who had to
restrict their calorie intake due to a technical problem112 and on 18 individuals who had been
on voluntary CR for an average of 6 years6. Accordingly, CR in non-obese individuals elicits
significant decreases in serum cholesterol, triglycerides, fasting glucose and fasting insulin
levels as well as in systolic and diastolic blood pressure6, 10, 112. Studies of the effects of CR
in rhesus monkeys have also shown reductions in serum triglyceride113, Lp(a) in males114
and fasting plasma glucose and insulin levels115, which likely contribute to the
cardioprotective effect of CR. The available rodent data seem to corroborate this
conclusion116–118.
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CR increases bioavailability of NO and improves endothelial function
The direct effects of CR on vascular function and phenotype in aging are not well characterized.
It is generally accepted that tonic release of NO from the endothelium exerts vasculoprotective
and cardioprotective effects, such as maintenance of normal coronary blood flow, inhibition
of platelet aggregation and inflammatory cell adhesion to endothelial cells and disruption of
pro-inflammatory cytokine-induced signaling pathways. Abundant experimental and clinical
data show that aging impairs endothelial NO production (recently reviewed elsewhere119,
which has been suggested to play a role in atherogenesis. The severe impairment of NO
bioavailability in aging also limits cardiac blood supply and alters myocardial O2 consumption
and cardiac contractility120. Our recent data suggest that lifelong CR in rats prevents aging-
induced endothelial dysfunction. Accordingly, CR elicited significant improvement of both
agonist- and flow-induced, NO-mediated dilation of resistance arteries from the skeletal muscle
of aged F344 rats (Fig. 2A–B), suggesting that CR increases bioavailability of NO. Available
data also suggest that weight reduction with very low calorie diets improves flow-mediated
vasodilation in obese individuals121, 122. It is yet to be determined whether CR can also
improve endothelial function in non-obese aged monkeys109 and elderly humans independent
of weight reduction.

The mechanisms by which CR increases bioavailability of NO improving endothelial function
in aged rodents likely include up-regulation of eNOS (Fig. 2C–D). Although the upstream
mediator(s) of the vascular effects of CR are not well understood, there is data suggesting that
CR may regulate both eNOS activity and expression via activation of SIRT-1. An interesting
study recently reported that SIRT1 and eNOS colocalize in endothelial cells, and SIRT1
deacetylates eNOS, stimulating eNOS activity and increasing endothelial nitric oxide123.
Moreover, CR in mice leads to deacetylation of eNOS123, whereas SIRT1 overexpression or
SIRT1 activators were shown to induce eNOS expression in endothelial cells124. Further
studies are definitely needed to elucidate whether SIRT-1 activation results in increased NO
bioavailability improving endothelial function in aged CR individuals.

CR may attenuate vascular inflammation in aging
Atherosclerotic vascular disease is now recognized as a chronic inflammatory disease125.
There is abundant evidence showing that aging is associated with vascular inflammation
promoting atherogenesis (reviewed recently elsewhere 119, 126, 127). For example, aging
promotes endothelial activation, increasing the expression of adhesion molecules75, 124,
128, 129 and enhancing leukocyte adhesion to the endothelial cells124, 129, 130. Previous
studies by this and other laboratories have shown that endothelial activation in aging is
mediated, at least in part, by oxidative stress-induced increased NF-κB activation124, 129. In
this regard it is important that CR seems to attenuate vascular NF-κB induction and endothelial
activation in aged rats128, 129. CR also protected against the age-associated increase of JNK
and P38 activities in aged rat aortas131. Moreover, CR similarly reversed the age-related
increase of AP-1 DNA binding activity131. In aging a pro-inflammatory shift develops in the
vascular cytokine expression profile (including up-regulation of TNFα, IL-1β and IL-6)74,
78, 132. Aging is also associated with increased plasma levels of inflammatory mediators (e.g.
TNFα, IL-6 and CRP), both in humans and rodents7, 133, 134. In studies of CR in rats and
mice, it was found that CR results in marked decreases in these inflammatory markers135,
136. The observation that CR in humans also seem to decrease serum CRP and TNFα137
provides preliminary evidence that CR may also reduce vascular inflammation in humans.

CR attenuates oxidative stress in the vasculature
Advanced age is associated with endothelial oxidative stress, which leads to functional
inactivation of NO by high concentrations of O2

.− resulting in an enhanced ONOO−

formation74, 120, 138, 139. The role of increased oxidative and nitrosative stress in eliciting
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endothelial dysfunction and activation of proatherogenic inflammatory processes in aging has
been recently reviewed119, 126. In 1996 Dr. Richard Weindruch’s group38 proposed that the
anti-aging action of CR stems from the attenuation of the age-associated increase in oxidative
stress140. Indeed, it has been amply demonstrated that CR decreases the age-associated
accumulation of oxidatively damaged lipids, proteins, and nucleic acids in multiple organ
systems, including the liver and skeletal muscle141–143. Our findings suggest that CR in aged
rats significantly decreases vascular O2

.− production (Fig. 2E). This data is in line with the
findings that endothelial cells obtained from CR mice exhibit decreased O2

.− and H2O2
production as compared with those obtained from mice fed ad libitum130. CR also significantly
attenuates oxidative DNA damage144 and normalizes the tissue content of lipid peroxidation-
derived aldehydes (HNE, MDA) in aortas of aged rats131. There are studies extant suggesting
that reduction of oxidative stress in the arterial wall may contribute to the anti-atherogenic
effect of CR in ApoE−/− mice108. In parenchymal tissues of experimental animals CR
modulate the expression of various antioxidant enzymes, however, at present it is unclear
whether this is the case in the vasculature as well. Previous studies have identified vascular
NAD(P)H oxidases as an important source of ROS production in small coronary arteries, aorta
and carotid arteries of aged rodents74, 75, 119. In addition, aging also increases mitochondrial
ROS generation in the endothelial cells124. Future studies should elucidate how CR affects
NAD(P)H oxidase activity/expression and mitochondrion-derived ROS generation145, 146 in
the aged blood vessels.

There is data in the literature attributing some of the effects of CR to a decreased insulin-like
signaling. Studies in Caenorhabditis elegans provided the first evidence that reduced insulin-
like signaling may actually promote longevity in lower organisms. By now it is well established
that insulin-like signals promote the phosphorylation and deactivation of DAF-16, a forkhead
transcription factor, which is a key regulator of oxidative stress resistance and metabolism in
C. elegans (reviewed in Ref.147). There is also evidence that loss of IGF-like signaling
contributes to longevity response to CR in Drosophila148. The first evidence to support a role
of insulin-like signals in regulation of mammalian longevity came from the observation that
mice with hereditary dwarfism (Ames dwarf) have low circulating IGF-1, extended longevity
and exhibit many symptoms of delayed aging149. However, the link between IGF signaling
and vascular oxidative stress is likely complex. In Ames dwarf aortas endothelial ROS
generation are more than in vessels of wild type mice (Ungvari, submitted 2008). Moreover,
in cultured coronary arterial endothelial cells treatment with IGF significantly reduces cellular
O2

− and H2O2 production and ROS generation by mitochondria and up-regulates expression
of antioxidant enzymes and eNOS (Ungvari, submitted 2008). These in vitro findings accord
with the observations that in humans GH and IGF-I deficiency is associated with premature
atherosclerosis and elevated cardiovascular disease mortality150. Recent evidence suggests
that cardiovascular disease risk may also be elevated among apparently healthy individuals
who have serum IGF-1 levels in the low-normal range151. There is also increasing evidence
that IGF-1 may exert vasculoprotective effects in aging152, 153. By now it has been firmly
established that IGF-1 protects myocardiocytes from apoptotic cell death154–156. Cardiac
stem cells and early committed cells were also demonstrated to express IGF-1 receptors and
secrete IGF-1157 and IGF-1 was shown to promote cardiac stem cell survival and
proliferation157, 158. The findings that cardiac overexpression of IGF-1 significantly
improved cardiomyocyte contractile function in old mice159 support the view that IGF-1
signaling plays protective role in the cardiovascular system and that loss of IGF-1 contributes
to cardiac aging. Thus, low IGF-1 levels are less likely to be the cause of reduced ROS
production and increased bioavailability of NO in the vasculature in CR.
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Nrf2: a novel pathway for vasoprotection
Nrf2 (NF-E2-related factor 2) is a transcription factor that binds to the antioxidant response
element (ARE) of target genes and increases the transcription of a variety of antioxidant
proteins. Kelch-like ECH-associated protein-1 (Keap1) normally sequesters Nrf2 in the
cytoplasm, but upon oxidation of cysteine residues Nrf2 dissociates from Keap1, translocates
to the nucleus and binds to ARE sequences leading to transcriptional activation of phase II
detoxifying genes (such as glutathione-S-transferase and NQO1 and antioxidant enzymes (such
as glutathione reductase, glutathione peroxidase and catalase). In parenchymal tissues of the
aged rat there is a significant decline in transcriptional activity of Nrf2, which causes age-
related loss of glutathione synthesis160 likely promoting cellular oxidative stress. In a series
of studies currently we are testing the hypothesis whether Nrf2 induction plays a role in
attenuation of cellular oxidative stress in aged tissues. In this context our recent studies
demonstrated that induction of Nrf2 is responsible for the anti-carcinogenic effects of CR, but
is dispensable for increased insulin sensitivity. Accordingly, Nrf2 deficient mice developed
tumors more readily in response to carcinogen exposure than did wild-type mice, and CR was
ineffective in suppressing tumors in the Nrf2-deficient mice (Pearson K and de Cabo R, in
press). The aforementioned Nrf2-dependent ROS detoxification systems are expressed in
endothelial cells and previous studies have provided solid evidence that the ARE-mediated
genes are regulated by atheroprotective laminar flow through a Nrf2-dependent
mechanism103, 161–163. Also, induction of Nrf2 in cultured endothelial cells results in a
marked increase in ARE-driven transcriptional activity and protected the cells from H2O2 -
mediated cytotoxicity103. Nrf2 also suppresses TNFα-induced endothelial activation and
inhibits monocyte adhesiveness to the endothelial cells103. Although presently it is unknown
how aging affects Nrf2 transcriptional activity in the vascular endothelial and smooth muscle
cell, we have strong evidence for an age-dependent decline in glutathione synthesis in aged rat
aortas, which is prevented by CR (Csiszar A, Ungvari Z, Pinto J, unpublished data 2008).
Further studies are evidently needed to test the hypothesis that the Nrf2/ARE pathway is
induced in aged arteries, which acts as an endogenous atheroprotective system for antioxidant
protection and suppression of redox-sensitive vascular inflammation.

Conclusions and perspectives
Oxidative stress plays an important role in the pathogenesis of CAD by mediating expression
of inflammatory genes and eliciting oxidative modification of lipoprotein particles. CR seems
to attenuate both vascular oxidative stress and exert anti-inflammatory effects in aged animals.
We posit that CR activates the Nrf2/ARE pathway, which may serve as an endogenous
antioxidant system within the vasculature increasing cellular oxidative stress tolerance. CR
also increases bioavailability of anti-atherogenic NO and augments endothelial function. In
addition, CR exerts beneficial effects on a range of systemic cardiovascular risk factors. There
is a great deal of effort on dissecting the pathways that invoke CR benefits in order to develop
pharmacological agents that would act as CR mimetics164–166. Several of the currently
proposed CR mimetics are phytochemicals (resveratrol, quercetin and curcumin) that act, at
least in part, through the activation of Nrf2 pathway 167 168–170. Importantly, newly identified
CR mimetics, such as resveratrol, exert cardiovascular effects that are remarkably similar to
those of CR. Accordingly, resveratrol increases vascular oxidative stress resistance171, up-
regulate eNOS171, inhibit endothelial activation172 and vascular inflammatory gene
expression171 and activates both SIRT1 and the Nrf2/ARE pathways providing a
pharmacological alternative for CR for the prevention of CAD in the elderly.
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Figure 1.
A diagram of the plasma membrane redox system. The redox cycle is shown in blue. CoQ,
oxidized form of coenzyme Q; CoQ.−,semiquinone radical; CoQH2, reduced form of coenzyme
Q; NQO1, NADH-quinone oxidoreductase. Modified from Hyun et al. (2006a).
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Figure 2.
Dilations in response to step increases in intraluminal flow (Panel A) or administration of
acetylcholine (Panel B) in isolated, cannulated, first order gracilis muscle arterioles (d: ~100
μm; pressurized to 80 mmHg74) of aged (24 month old) F344 rats fed a standard diet (SD) are
impaired, as compared to young vessels. Lifelong caloric restriction (CR) preserved
microvascular endothelial function. *P<0.05 vs. aged SD. Data are mean±S.D. (n=4 in each
group). Panel C: Original Western blots showing that expression of eNOS is up-regulated in
carotid arteries of aged CR rats. Bar graphs (Panel D) are summary densitometry data. #P<0.05
vs. SD. Panel E: Lucigenin chemiluminescence measurements revealed that age-related
increases in O2.- production in the aorta of F344 rats are prevented by lifelong caloric restriction
(CR). *P<0.05 vs. young, #P<0.05 vs. standard diet (SD)-fed rats.
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