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Abstract

Corticotropin Releasing Hormone (CRH) or Corticotropin Releasing Factor (CRF) and its family of
related naturally occurring endogenous peptides and receptors are becoming recognized for their
actions within central (CNS) and peripheral (PNS) nervous systems. It should be recognized that the
term ‘CRH’ has been displaced by ‘CRF’ (Guillemin 2005). However, to maintain uniformity among
contributions to this special issue we have used the original term, CRH. The term ‘CRF’ has been
associated recently with CRH receptors and designated with subscripts by the IUPHAR nomenclature
committee (Hauger R.L. et al. 2003) to denote the type and subtype of receptors activated or
antagonized by CRH ligands. CRH, as a hormone, has long been identified as the regulator of basal
and stress-induced ACTH release within the hypothalamo-pituitary-adrenal axis (HPA axis). But the
concept, that CRH and its related endogenous peptides and receptor ligands have non-HPA axis
actions to regulate CNS synaptic transmission outside the HPA axis, is just beginning to be
recognized and identified (Orozco-Cabal et al. 2006). It is especially noteworthy that since the
synapse has become a prime focus for a variety of mental diseases, e.g. schizophrenia (Fischbach
2007), and neurological disorders, e.g., Alzheimer’s disease (Bell and Cuello 2006), we suggest that
“THE STRESSED SYNAPSE” has been overlooked (c.f., Kim and Diamond 2002; Radley and
Morrison 2005) as a major contributor to many CNS disorders. We present data demonstrating CRH
neuroregulatory and neuromodulatory actions at three limbic synapses, the basolateral amygdala to
central amygdala synapse; the basolateral amygdala to medial prefrontal cortex synapse, and the
lateral septum mediolateral nucleus synapse. A novel stress circuit is presented involving these three
synapses. We suggest that CRH ligands and their receptors are significant etiological factors that
need to be considered in the pharmacotherapy of mental diseases associated with CNS synaptic
transmission.
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1. INTRODUCTION

CRH, as an endogenous signaling molecule, has existed and functioned phylogenetically even
prior to the evolution of tetrapods and teleosts (Chang and Hsu 2004). Such a genetic history
suggests that CRH and its family of structurally related peptides are essential ingredients for
the maintenance of an organism’s well-being or homeostasis (Valdez et al. 2005; Lovejoy and
Balment 1999). A primary hypophysiotropic ‘releasing function’ for CRH was described
initially in vitro (Guillemin and Rosenberg 1955), and its endogenous functions reviewed
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(Guillemin 1967; Saffran and Schally 1977). A major contribution to further understanding
the roles of CRH was its characterization and synthesis by Vale and colleagues (Vale et al.
1981). Over the past 30+ years, CRH, originally implicated within the HPA axis as the “stress
hormone”, has also been considered for its role within the CNS (Ito and Miyata, 1999; Bale
and Vale 2004) outside the HPA axis (Guillemin 2005), within GIT (Tache and Bonaz 2007),
heart (Kimura et al. 2002), and lung (Wu et al. 2006).

1.1 CRH as a mediator of organismic homeostasis

Why consider that CRH ligands have functional roles within CNS synapses outside of the
HPA? Immunolabeling, radioimmunoassay, and mRNA expression studies have demonstrated
that CRH and its receptors are widely distributed in brain, e.g., human (Charlton et al. 1987),
rat (Fischman and Moldow 1982), and mouse (Nakane et al. 2007). Within the CNS, CRH is
synthesized and stored at specific synapses, and, under appropriate conditions may be released
or co-released along with classical neurotransmitters. Immunohistochemical studies
demonstrated a nerve terminal localization for CRH (Cain et al. 1991). Within the
hippocampus, CRH has been demonstrated within GABAergic neurons (Yan et al. 1998). In
addition, CRH has also been identified at the electron microscopic level within both glutamate
and GABA terminals of the rat locus coeruleus (Valentino et al. 2001). Significantly, synaptic
peptide release, previously considered to be minimal and requiring extraordinary stimuli, in
terms of both intensity and frequency of stimuli, has recently been demonstrated to exhibit
comparable release properties and Kinetics as that of biogenic amines (Whim 2006). Thus,
CRH is available for release at CNS synapses, but its functions within specific synapses are
only beginning to be elucidated. Importantly, CRH actions and associated functions differ
depending on the particular synapse.

1.2 Extra-HPA axis roles for CRH

In the brain, two main sources of CRH can be distinguished, one within the HPA-axis, and
others in non-HPA axis sites. The production of anxiety-like behavioral and autonomic effects
after centrally administered (intracerebroventricularly, icv) CRH (Dunn and File 1987; Britton
et al. 1982; Koob and Bloom 1985) have been associated with non-HPA axis-CRH, CNS
sources of CRH, since these anxiety-related outcomes persist in hypophysectomized rats
(Eaves et al. 1985).

Abnormalities in extra-HPA axis CRH homeostasis have been associated with prevalent
neuropsychiatric conditions including anxiety disorders, depression, and Alzheimer disease.
Earlier studies (Reul and Holsbhoer 2002; McCarthy et al. 1999; Arborelius et al. 1999) suggest
that CRH receptor antagonists may be useful as therapeutic agents to treat these stress-related
disorders.

Bremmer et al. (Bremner et al. 1997) reported higher levels of CRH (29.0 pg/ml; ~37%
increase) in CSF of patients diagnosed with chronic combat-related posttraumatic stress
disorder versus CSF-CRH in comparison subjects (21.9 pg/ml). Subsequently, Vythilingam
(Vythilingam et al. 2000) concluded that in healthy humans, CSF-CRH represented CRH
derived primarily from non-HPA axis (hypothalamic-pituitary-adrenal axis) CRH neurons
rather than HPA-axis-CRH neurons projecting from the paraventricular nucleus of the
hypothalamus. Plasma CRH (1.8 pmole\L) is elevated by 100 to 255% above normal values
in patients diagnosed with mild to severe depressive disorder (Catalan et al. 1998); these
elevated levels of plasma CRH occur without any accompanying changes in plasma ACTH.
Plasma and CSF levels of CRH are diminished in the elderly, especially as noted in patients
diagnosed with Alzheimer’s disease. Earliest studies demonstrated that in individuals with
Alzheimer disease, CRH immunoreactivity is reduced in neocortex (Bissette et al. 1985). CRH-
immunoreactivity in spinal fluid was also reduced in Alzheimer disease (Mouradian et al.
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1986). A later study in which cerebrospinal fluid (CSF) CRH-immunoreactivity was measured
correlated a lower CSF-CRH-immunoreactivity with a greater cognitive impairment in
Alzheimer disease patients. Powers (Powers et al. 1987) demonstrated abnormal CRH-
immunoreactive axons, as well as neurites associated with deposits of amyloid in brain regions
showing senile plaques. Behan (Behan et al. 1996) demonstrated that in Alzheimer disease
there are dramatic reductions in human CRH concentrations and reciprocal increases in CRH
receptor density in the cortex.

These results also point to different variables that should be considered when comparing the
actions of CRH receptor ligands. First, is the state/condition of the subject (Heilig and Koob
2007; Griebel et al. 2002; Contarino et al. 1999; Henry et al. 2006), i.e., animals exposed to
acute, chronic, or no stress will establish different baseline CRH levels from which one could
expect a tonic or phasic action by CRH at its receptors. Second, is brain area, e.g., central
amygdala nucleus vs lateral septum mediolateral nucleus (Liu et al. 2004). It is important to
note that one of the first anatomical sites exposed to the most common means of central
administration, namely, icv injection of CRH or CRH-ligands, is the lateral septum
mediolateral nucleus. Excitatory transmission within this nucleus is affected by CRH ligands
(Liu, et al. 2004; Liu et al. 2005).

1.3 CRH receptors

As a means of determining synaptic function(s) for CRH, the presence and characterization of
CRH receptors was essential. The ability to characterize CRH receptors followed upon the
purification of CRH from ovine hypothalamic extracts and concomitant determination of its
41-residue peptide structure (Vale et al. 1981). Subsequent isolation of additional endogenous
CRH receptor ligands, namely, Urocortin 1, Urocortin 2, and Urocortin 3, and, synthesis of
peptide and non-peptide ligands for CRH receptors have provided essential tools necessary to
investigate the roles of CRH within CNS synapses.

Briefly, mammalian CRH receptors have been differentiated broadly into two major types,
CRH; and CRH,; each type exhibiting a 70% sequence homology (Perrin and Vale 1999) and
also possessing molecular splice variants. Consistent with structural differences, CRH; and
CRH;, receptors display distinct pharmacological profiles (Dautzenberg and Hauger 2002; De
Souza 1995; Gulyas et al. 1995; Fekete and Zorrilla 2007; Chatzaki et al. 2006). CRH receptor
immunoreactivity has been detected in cholinergic, dopaminergic, and noradrenergic neurons
of the murine basal forebrain and brainstem nuclei (Sauvage and Steckler 2001). CRH receptors
have also been associated with serotonin pathways and 5-HT release (Valentino and Commons
2005). We demonstrated CRH; and CRH,, receptor functions both at pre- and post-synaptic
CNS sites within three different CNS synapses, Fig. 2—4 (Liu et al. 2004;0rozco-Cabal et al.
In press).

CRH receptors belong to the family of class ‘B’ G-protein coupled receptors. Although CRH
receptors primarily couple to G4 protein and adenylate cyclases to increase CAMP production,
CRH receptors have the ability to interact with other G-protein systems including Gg, Gj, G,
G2, and G, (Grammatopoulos et al. 2001). Thus, CRH receptors can modulate various
signaling pathways and kinases including phosphokinase A (PKA), phosphokinase B (PKB),
phosphokinase C (PKC), mitogen activated protein (MAP) kinases (e.g., ERK1/2 — p42,44),
and intracellular Ca* concentrations in a tissue-specific manner, and activate these various
G-protein systems in a concentration-dependent manner (Grammatopoulos and Chrousos
2002). These latter results also suggest that there are various degrees of coupling potency
between CRH receptors and their respective G-protein systems. We propose that at the single
cell level, the net effect of a CRH receptor ligand upon synaptic transmission is determined by
its ability to modify the existing balance between the possible signaling cascades it may
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activate, rather than the effect of CRH upon one pathway exclusively (Orozco-Cabal et al.
2006a; Arzt and Holsboer 2006).

Another possibility we considered was that CRH receptors may also share the property of
constitutive activity, a property of many G-protein coupled receptors. Constitutive activity of
G-protein coupled receptors would modulate the baseline activity/sensitivity of the cell on
which that receptor is localized in the absence of ligand, i.e., an intrinsic property of many G-
protein coupled receptors. However, to identify this receptor property on a given neuron an
inverse agonist for a CRH receptor is required. Currently, no inverse agonist of a CRH; or
CRH;, receptor has been identified. Moreover, CRH receptor ligands - at given concentrations
- may have different effects at different loci, not only at different sites within the CNS but also
at peripheral sites. Finally, different actions of endogenous and exogenously applied CRH
receptor ligands can be expected based upon their different receptors.

1.4 Semantics associated with CRH synaptic functions

As electrophysiologists we propose that semantics in terminology have contributed to the delay
in considering the synaptic role by which CRH activation of its receptors serves a
neuroregulatory function (Orozco-Cabal et al. 2006a). Non-HPA- axis CRH was initially
identified as a putative neurotransmitter (Valentino 1988; Valentino 1989; Valentino and Foote
1988; Thomas et al. 2003; Valentino et al. 2001; Dunn and Berridge 1990). These earlier reports
suggesting CRH as a neurotransmitter were based primarily on behavioral assessments and
extracellular in vivo electrophysiological recordings. Instead, we propose that CRH was acting
either as a possible neuromodulator or neuroregulator in each of these earlier referenced
instances, and may indeed have been acting within specific synapses to affect synaptic
transmission. Subsequently, and based on intracellular electrophysiological recordings, we
have limited the definition of a neurotransmitter to be an endogenous neuroactive substance
which when released from a nerve terminal or transported in a volume, paracrine fashion
activates a synaptic membrane receptor that causes a change in that neuron’s membrane
potential. Examples of classical ionotropic-receptor-coupled neurotransmitters would be
glutamate, GABA, acetylcholine, etc. A property associated with a neurotransmitter is the
speed by which it induces membrane potential changes in the neuron where its receptor is
located. The kinetics of neurotransmitters’ actions is typically in the tens of milliseconds range
or less. CRH, at physiological concentrations, does not induce a membrane potential change
irrespective of its exposure time. Applying these considerations to CRH, neither endogenous
CRH nor CRH receptor ligands-applied exogenously and at concentrations comparable to those
measured in plasma or cerebrospinal fluid (< 10nM ~ 20pg/ml in CSF, i.e., physiological
concentrations)-should be considered a neurotransmitter.

Historically, another function assigned to CRH and its family of related peptides is that of a
neuromodulator (Radulovic et al. 1999; Merchenthaler 1984). Neuromodulators can balance
more delicately the net drive at a given synapse, and in so doing, regulate the function
(excitation or inhibition) of a given neuronal circuit and its associated behaviors. From an
electrophysiologist’s perspective, a neuromodulator would be an endogenous substance that
modifies the action of a neurotransmitter by either enhancing or depressing the primary
membrane change induced by a neurotransmitter. The modulatory action is brought about by
the neuromodulator changing membrane potential, and/or, electrical excitability of the
neuronal membrane where its receptor and that of the neurotransmitter is located. Other
modulatory actions, typically not measured by an electrophysiologist could include effects
mediated by receptor modification, such as phosphorylation of a neurotransmitter receptor, or
changes in the number of receptors expressed in the neuronal membrane, etc.

These modulatory actions are typically mediated by activation of a G-protein coupled receptor
(GPCR) associated with a particular neuromodulator. Neuromodulator receptors are
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considered to be metabotropic as opposed to ionotropic. The speed at which a neuromodulator
affects a response is in the hundred to thousands of milliseconds range. Examples of
neuromodulators include the biogenic amines, opiates, tachykinins, neuropeptides, etc. The
unique synaptic attribute of neuroregulation we have assigned to CRH (and possibly other
endogenous molecules), is the neuroregulator’s ability, by activating one of its two G-protein
coupled receptors (CRH; and CRH)), to affect (‘prime’) the subsequent actions of a
neurotransmitter or neuromodulator without itself, the neuroregulator, inducing any apparent
membrane potential change or change in electrical excitability of the neuronal membrane on
which its receptors are located (Orozco-Cabal et al. 2006a). We consider this neuroregulator
role of CRH, its primary, most basic function in a hierarchy of actions. This primary,
neuroregulator function results in the facilitation or depression of a neurotransmitter’s action.
In its primary role, the neuroregulator does not exhibit any affect upon membrane potential or
membrane excitability, rather it acts in a ‘silent’ process that affects a transmitter’s action. As
neuroregulators, CRH receptor ligands may affect the actions of: 1) neurotransmitters, e.g.,
glutamate (Koenig and Luthi 2002; Liu et al. 2004), GABA (Nie et al. 2004); 2)
neuromodulators, e.g., serotonin (Tan et al. 2004), dopamine (Orozco-Cabal et al. 2005),
endocannabinoids (Bayatti et al. 2005; Hermann and Lutz 2005); and/or, 3) possibly other
neuroregulators, e g., Brain Derived Neurotropic Factor (BDNF, Traver et al. 2006). CRH has
already been reported to modulate actions of norepinephrine (Valentino et al. 1983) and opiates
measured during a stress reaction. A secondary role for CRH receptor ligands (#2 above) would
be to affect the action of a neuromodulator which subsequently affects the action of a
neurotransmitter. As an example, Price et al. (2000) demonstrated CRH regulation of serotonin
release at the lateral septal nucleus of swim-stressed rats. Thus, in this case CRH modulates
the effects of serotonin.

A recent review (Leach et al. 2007) characterizes a group of molecules which they identify as
allosteric GPCR modulators. Anallosteric GPCR modulator is defined as a ligand that increases
or decreases the action of an (primary or orthosteric) agonist or antagonist by combining with
a distinct (allosteric) site on the receptor macromolecule, while having no effect of its own
(Schwartz and Holst 2007). We suggest that CRH receptor ligands acting as neuroregulators
may also be identified as GPCR allosteric ligands, i.e., as allosteric GPCR agonists or
modulators. In this role, CRH may also contribute to the process of synaptic plasticity which
has been associated with cellular models of learning and memory. CRH has been suggested to
be responsible for “Priming” (Blank et al. 2002; Rainnie et al. 2004), and as such may also
contribute to a functional synonym for priming, namely, “Metaplasticity” (Abraham and Bear
1996). CRH has been implicated directly in long-term potentiation (LTP, Rebaudo et al.
2001; Fu et al. 2006; Pollandt et al. 2006; Wang et al. 2000; Wang et al. 1998) and long-term
depression (LTD, Miyata et al. 1999; Schmolesky et al. 2007).

2. CNS SYNAPTIC ACTIONS OF CRH LIGANDS RECORDED
INTRACELLULARLY

Outside of the cerebellum, there are nine in vitro reports of electrophysiological intracellular
investigations of specific CRH ligand effects upon synaptic transmission, namely, synapses of
the central amygdala nucleus and lateral septum mediolateral nucleus (Liu et al. 2004); lateral
septum mediolateral nucleus (Liu et al. 2005); basolateral amygdala (Rainnie et al. 2004);
central amygdala nucleus (Nie et al. 2004); ventral tegmental area (Ungless et al. 2003); dorsal
vagal complex (Lewis et al. 2002); hippocampus (Blank et al. 2002; Schierloh et al. 2007; and
medial prefrontal cortex (Orozco-Cabal et al. In press). These reports represent all information
utilizing intracellular electrophysiological techniques with an in vitro brain preparation that
demonstrate a synaptic location and function for CRH and its related family of peptides. There
are several reports indicating a synaptic role for CRH ligands in the cerebellum, v.i.
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2.1 Synapses of the central amygdala nucleus and lateral septum mediolateral nucleus

Our report (Liu et al. 2004) was the first to demonstrate functional data - at the cellular level
- that CRH and its related family of peptides act differentially at CRH; vs. CRH, synaptic
receptors to facilitate or depress excitatory transmission. Notably, the effects of CRH and its
ligands occurred without any apparent direct action on membrane potential or membrane
excitability. As a result, we have suggested that the role of CRH at these limbic synapses is
that of ‘neuroregulator’. Furthermore, at the two limbic nuclei we investigated - the central
nucleus of the amygdala and the lateral septal medial lateral nucleus - we concluded that
CRH; and CRH,, receptors were present on the same post-synaptic neuron, while only CRH,
receptors were located pre-synaptically (Fig. 2). Moreover, the functions of these receptors
were different depending on the synapse and synaptic locus. Our data utilized new
pharmacological tools (Rivier et al. 2002; Rivier et al. 2007) to characterize the CRH receptor
types responsible for these functional synaptic effects. Selective and potent CRH; and CRH,
receptor agonists and antagonists had been a limiting factor in identifying CRH synaptic
actions. Lewis (Lewis et al. 2002) reported facilitation of excitatory postsynaptic currents
(EPSCs) at the rat dorsal vagal complex by a pre-synaptic action of CRH; a CRH, receptor
was suggested as being responsible. Similarly, if a CRH receptor type was inferred from other
reports (Rainnie et al. 2004; Ungless et al. 2003; Lawrence et al. 2002; Smagin et al. 2001), a
CRHy, not CRH1 receptor, was suggested at the pre-synaptic site.

We suggested (Fig. 2, Left) pre- and post-synaptic loci for CRH1 and CRH> receptors within
two limbic synapses, the central amygdala nucleus, and lateral septum mediolateral nucleus.
Note, although both synapses exhibit a comparable pre- and post-synaptic location of CRH;
and CRH> receptors, their functions (facilitation vs. depression of glutamatergic transmission)
is opposite within each synapse. Importantly, the results (Fig. 2 Right) from which we derived
the synaptic locations and functions of CRH; and CRH>, receptors at these synapses yielded
apparent receptor association values for \nCRH and urocortin | at low nanomolar
concentrations, concentrations equivalent to those measured endogenously.

Our (Liu et al. 2004) findings with CRH and Ucn I and those of Rainnie (Rainnie et al. 2004)
with Ucn demonstrated that CRH-peptides, at nanomolar concentrations do NOT affect
membrane potential or neuronal input resistance and point to a regulatory role rather than a
transmitter role for the CRH ligands. Our data also demonstrated that endogenous CRH ligands
could induce a tonic effect on excitatory glutamatergic transmission at synapses within both
these nuclei since application of competitive, selective CRH; or CRH, receptor antagonists
resulted in an enhancement or depression of glutamatergic EPCS (Liu et al 2004). A similar
tonic endogenous action of CRH ligands was not observed under control conditions in the
medial prefrontal cortex (Orozco-Cabal et al. In press). This latter result further emphasizes
that CRH effects are different depending upon the CNS synapse being investigated. We also
observed different effects of CRH during in vitro brain slice investigations which were
conducted with brains obtained from rats administered cocaine in vivo chronically when
compared with brain slices from drug naive subjects (Fig. 4, 5). A role of CRH in cocaine
addiction has been reviewed (Sarnyai et al. 2001; Koob 1999).

We had demonstrated that following the stresses associated with chronic cocaine
administration and its acute withdrawal, the distributions and functions of both CRH; and
CRH receptors within the lateral septum mediolateral nucleus changed (Liu et al. 2005).
‘Normal’ regulation of glutamatergic transmission by CRH ligands was altered after chronic
cocaine and its withdrawal (Fig. 3) and led to a functional loss of pre- and postsynaptic
CRH;, receptors — both CRH;, receptors being responsible normally for depression of excitatory
glutamatergic transmission within the lateral septum mediolateral nucleus (Fig. 3 and 6).
Following chronic cocaine and its acute withdrawal there was a ‘switch’ within the lateral
septum mediolateral nucleus synapse from the normal balance of facilitation and depression

Eur J Pharmacol. Author manuscript; available in PMC 2009 April 7.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gallagher et al. Page 7

by CRH-ligands acting at their respective receptors to facilitation only. We concluded that the
signaling pathways associated with both CRH receptors switched from a dominant PKA
process to become PKC dominant.

2.2 Excitatory transmission at the basolateral amygdala to medial prefrontal cortex synapse
is affected by dopamine, CRH, and their combination

Since both CRH and dopamine systems have been implicated as stress-sensitive modulators
of synaptic transmission within limbic reward circuits (Sarnyai 1998; Koob and Heinrichs
1999), we initiated studies with a novel brain slice preparation (Orozco-Cabal et al. 2006b)
containing a putative glutamatergic (Bacon et al. 1996) amygdala to medial prefrontal cortex
synapse. We confirmed the glutamatergic nature of this excitatory synapse (Orozco-Cabal et
al. 2006b). Additional investigations compared the actions of dopamine, CRH, and their
combination on excitatory transmission at this putative basolateral amygdala to Layer V
pyramidal neuron synapse (basolateral amygdala-medial prefrontal cortex synapse). We chose
this pathway, since output from the amygdala to the medial prefrontal cortex plays a significant
role in human executive functions (Fuster 2000). Our goal was to determine the normal actions
of dopamine, CRH, and their combination upon excitatory transmission at this synapse, and
furthermore, examine if chronic administration of a stressor (cocaine) and its acute removal -
as we had demonstrated for CRH at the lateral septum mediolateral nucleus synapse (Liu et al.
2005) - altered excitatory transmission (and as a possible inferred corollary - decision-making
processing) at this putative basolateral amygdala-medial prefrontal cortex synapse.

Dopamine via D1-like receptor activation depressed glutamatergic transmission at a putative
basolateral amygdala to Layer V medial prefrontal cortex pyramidal neuron synapse within
the rat medial prefrontal cortex (Orozco-Cabal et al. In press). This depressant action of
dopamine was potentiated with co-administration of CRH - although CRH, itself, was without
any apparent effect on basolateral amygdala-medial prefrontal cortex glutamatergic
transmission. However, following administration of cocaine chronically, dopamine no longer
depressed EPSCs, rather dopamine facilitated EPSCs and this facilitation was potentiated by
co-administration of CRH. Additional changes in dopamine and CRH receptor distribution and
function also occurred subsequent to cocaine.

2.3 Summary of effects of CRH; and CRH,; activation upon excitatory CNS synaptic
transmission at three different limbic synapses

CRH ligands, interacting with CRH synaptic receptors, produced specific effects upon
excitatory glutamatergic transmission at three different but anatomically connected limbic
synapses, namely, basolateral amygdala-central amygdala nucleus (Fig. 5, #a), lateral septum
mediolateral nucleus (Fig. 5, #b), and basolateral amygdala-medial prefrontal cortex (Fig. 5,
#c). At the basolateral amygdala-central amygdala synapse (Fig. 5, #a) and under control
conditions, activation of postsynaptic CRH; receptors resulted in a net depression (—)of evoked
glutamatergic transmission despite weak pre- and postsynaptic facilitatory actions mediated
by CRH, activation. On the other hand and under control conditions, evoked excitatory
synaptic transmission at the lateral septum mediolateral nucleus (Fig. 5, #b) was facilitated (+)
primarily by activation of a postsynaptic CRH; receptor, despite potential concomitant
depressant actions by CRH ligands acting at pre- and post-synaptic CRH> receptors. Finally,
and different from its effects at the two previously described synapses, CRH does not affect
(0) evoked glutamatergic transmission at the putative basolateral amygdala-medial prefrontal
cortex (Fig. 5, #c) synapse. Although CRH had no effect on glutamatergic transmission at the
basolateral amygdala-medial prefrontal cortex synapse under control conditions, a postsynaptic
CRH;-mediated potentiation (+) of a pre- and postsynaptic dopamine 1-like receptor (D1-like)
mediated depression occurred following exogenous application of CRH plus dopamine. Thus,

Eur J Pharmacol. Author manuscript; available in PMC 2009 April 7.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gallagher et al.

Page 8

at this synapse CRH was acting to modulate the depressant action of dopamine resulting from
the combined activation of both receptors (D1-like plus CRH4).

In addition, the “state” of a particular synapse, i.e. under control conditions vs. under a
“stressed” state, e.g., due to exposure to cocaine administered chronically and its acute
withdrawal, altered a typical CRH effect (Fig. 3, 4). We suggest a novel CRH-regulated limbic
circuit (Fig. 5) which would result in positive or negative net signal depending on the presence
of a stressor, i.e., the state of the system, as may occur following exposure to chronic cocaine.

3.CRHand LTP

One of the net outcomes that could be affected from this circuit would be a learned or
remembered behavior. Long-term potentiation (LTP) is used as a cellular model of learning
and memory. CRH, itself, can induce LTP (Wang et al. 1998; Wang et al. 2000; Pollandt et al.
2006) or potentiate the magnitude of LTP induced by other means (Pollandt et al. 2006).

We (Fu and Shinnick-Gallagher 2007) demonstrated at the basolateral amygdala to central
amygdala nucleus (Fig. 5, #a) synapse that endogenous CRH co-released during high frequency
stimulation was blocked by the selective CRH; antagonist NBI30775. We had previously
demonstrated (Pollandt et al. 2006) at the lateral amygdala (LA) to central amygdala nucleus
synapse that exogenously applied CRH (12.5 nM) was sufficient to induce LTP in both
untreated rats and rats that had been administered cocaine chronically. Interestingly, the
exogenously applied CRH induced an LTP of greater magnitude when rats were withdrawn
from cocaine for a period of two weeks. This CRH-induced LTP was dependent on CRH,
receptors and involved PKA. These results may have direct implications regarding learning
and memory processing under stress (Joéls et al. 2006).

4. CEREBELLUM

A series of electrophysiological and immunocytochemical studies examining rat (Swinny, et
al. 2003; Swinny et al. 2004) and mouse (King and Bishop 2002; Bishop, 2002; Bishop, et al.
2000) cerebellum have concluded that CRH; and CRH>, are expressed differentially in pre-
and post-synaptic elements. Furthermore, Swinny et al. (Swinny et al. 2003) concluded that
CRH5 is membrane bound at synapses, while CRH¢ is not. As a result, they suggest that CRH-
peptide ligands couple to CRH, receptors via synaptic transmission, whereas these same
ligands couple to CRH receptors via volume transmission. The most recent
electrophysiological study (Schmolesky et al. 2007) concluded that by regulating climbing
fiber input to Purkinje cells, CRH facilitated LTD-induction at this synapse. This latter result
is the most recent demonstration of CRH affecting synaptic transmission at a specific CNS
synapse.

5. CONCLUSIONS and FUTURE DIRECTIONS

This special issue contains reviews (see: McEwen, Korosi & Baram, and Holsboer & Ising)
supporting the concept that CRH receptor antagonists may be useful as therapeutic agents to
treat a variety of mental illnesses often associated with stress, namely, anxiety, fear, depression.

Our results showing enhanced CRH actions in rats receiving chronic cocaine, and those
reporting elevation of CRH with cocaine via activation of the HPA axis (Rivier and Vale
1987; Goeders et al. 1990; Richter et al. 1995; Sarnyai et al. 1995) support the possible use of
CRH receptor antagonists in the pharmacotherapy for substance abuse. Multiple reports
support a close association between stress, CRH, and drug addiction (Smagin and Dunn
2000; Smagin etal. 2002). Thus, CRH receptor ligands hold a bright future as pharmacotherapy
in the treatment of substance abuse and other comorbid mental disorders.
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Fig. 1. Roles for CRH, CRH Receptor (CRHR) Ligands as Neuroregulators (‘Primers’) within CNS
Synapses

Tonic role of endogenous CRH as demonstrated following application of a CRH receptor
antagonist results in an enhancement or depression of the primary transmitter’s action, e.g.,
upon glutamate transmission at central amygdala nucleus or lateral septum mediolateral
nucleus synapses;

OR,

Phasic role of CRH acting either by evoked or volume transmission to modulate the action of
a principal transmitter, e.g., glutamate; or, a modulator, e.g., enhance dopamine’s affects on
basolateral amygdala to medial prefrontal cortex glutamatergic synaptic transmission.
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Distribution and regulatory functions depicted for CRH; and CRH, synaptic receptors upon
excitatory synaptic transmission, [facilitatory-light gray and depressant-dark grey]. CRH; and
CRH, receptors regulate glutamatergic transmission within synapses in the central amygdala
nucleus, Left, and lateral septum medial lateral nucleus, Right. R\hCRF and Ucn | (Urocortin
1), CRHq and CRH, receptor agonists, respectively —each produce opposite effects to inhibit
or facilitate excitatory transmission-monitored as excitatory postsynaptic currents (EPSCs)-in
the two different limbic nuclei, central amygdala nucleus and lateral septum mediolateral
nucleus. Note low nanomolar effective concentrations. Adapted From: J. Neurosci.,24, 4020-

4029.
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Following chronic cocaine administrations and its withdrawal there are changes in sensitivities
and functions of CRH and Ucn 1 within the lateral septal mediolateral nucleus. CRH4 receptor
mediated facilitation of glutamatergic transmission persists, albeit CRH is less potent compared
to control, whereas the former CRH,-mediated depression by Ucn 1 is switched to facilitation,
and at comparable potency. Diagram depicts receptor distributions and functions before and

after chronic cocaine at lateral septum mediolateral nucleus synapse. Adapted From: J.

Neurosci.,25, 577-583.
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Fig. 4.

Switch in dopamine and CRH actions after acute withdrawal from chronic cocaine. A. In saline
control slices D1-like activation (SKF 81297) inhibited excitatory postsynaptic current (EPSC)
amplitude; SKF 81297 effects were enhanced by addition of CRH at a concentration of CRH
that did not itself affect basolateral amygdala-medial prefrontal cortex EPSCs. B. After acute
withdrawal from chronic cocaine, SKF 81297 and CRH synergistically enhanced EPSC
amplitude at medial prefrontal cortex synapses. Comparable results to SKF 81297 obtained
with dopamine.
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CRH-Regulated Limbic Circuit Involved in Stresses

Associated with Cocaine Abuse

Hypothalamus

Nucleus Accumbens

e

Fig. 5.

DA + CRH + Glut

Diagram depicting a novel stress network

[medial prefrontal cortex <> amygdala < septum]
implicating CRH AND DOPAMINE (DA) as regulator and modulator of excitatory synaptic
transmission (glutamate -GLUT) between these three nuclei, and other major limbic nuclei.
Facilitatory or depressant regulatory roles of CRH upon excitatory glutamatergic transmission
under control conditions at two of the three synapses (#a=basolateral nucleus (BLA) to central
amygdala nucleus (CeA); #b=central amygdala nucleus (CeA) to lateral septum mediolateral
nucleus (LSMLN) are depicted as (+) or (—), respectively. At basolateral amygdala nucleus
(BLA) to medial prefrontal cortex (mPFC), synapse #c, and under control conditions CRH
does not regulate glutamatergic transmission (0), but rather modulates positively (+) the
depressant action of dopamine upon glutamatergic transmission.
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Fig. 6.

Long-Term Potentiation (LTP) in basolateral amygdala-central amygdala nucleus pathway
(Fig. 5,#a) is dependent on CRF; receptors in saline and cocaine-treated preparations. A.,B.
Orthodromic stimulation of basolateral amygdala-central amygdala nucleus pathway with high
frequency stimulation (HFS) induced LTP in saline-treated animals (Left) or chronic cocaine
treated animals (Right). HFS-LTP is blocked by selective CRF; antagonist (NBI27914, 250
nM) in both preparations. NOTE: Higher magnitude LTP in brains from cocaine-treated
animals (Right).
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