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ABSTRACT

UniPrime is an open-source software (http://uni
prime.batlab.eu), which automatically designs large
sets of universal primers by simply inputting a gene
ID reference. UniPrime automatically retrieves and
aligns homologous sequences from GenBank, iden-
tifies regions of conservation within the alignment
and generates suitable primers that can amplify
variable genomic regions. UniPrime differs from
previous automatic primer design programs in that
all steps of primer design are automated, saved and
are phylogenetically limited. We have experimentally
verified the efficiency and success of this program
by amplifying and sequencing four diverse genes
(AOF2, EFEMP1, LRP6 and OAZ1) across multiple
Orders of mammals. UniPrime is an experimentally
validated, fully automated program that generates
successful cross-species primers that take into
account the biological aspects of the PCR.

INTRODUCTION

Comparing the genomic structure and content of phylo-
genetic and ecologically diverse taxa will act as a ‘Rosetta’
stone allowing us to annotate and interpret our own
genome (1–4). Evolutionary analyses of whole genomes
and targeted genes sequenced in divergent species have
advanced our understanding of the patterns of human
disease mutations in many inherited diseases and cancers
(5–7). Comparative genomics is a powerful and expanding
field, which is evident from the exponential increase in the
number of non-human sequence entries in GenBank and
EMBL within the past decade. GenBank has doubled in
size about every 18 months. It currently contains over
65 billion nucleotide bases from more than 61 million
individual sequences, with 15 million new sequences added
in the past year (8). Since the completion of the human
sequence project in 2001 (9,10), the number of whole
genomes sequenced or in the process of being sequenced
is also increasing. Currently, over 617 genomes are

completed, 531 are in assembly stage, 652 are in process
and 421 have been approved for whole genome sequence
(11). Researchers are faced with vast quantities of mole-
cular data that can only be stored, analysed and mined
with appropriate computer-based algorithms and pro-
grams. Subsequently, the bioinformatics software used to
mine these data are also increasing exponentially (4).
Although many species will be sequenced at the whole

genome level, this number still only represents a small
fraction of the diversity of life: e.g. 107/5000 mammals
either sequenced, in the process or accepted to be
sequenced (11,12). Therefore, smaller comparative geno-
mic projects that target key genes in key taxa (4) will still
play a large role in future comparative studies. Good
primer design is a crucial step in any comparative genomics
project and ensures specificity and efficiency of target
amplification, necessary to achieve reliable PCR results.
Traditionally, universal primers were designed by first
generating a multispecies alignment then, manually identi-
fying conserved regions in that alignment, finally an
algorithm was used to estimate the melting temperature
of candidate primers sequences within the conserved
regions. This is a laborious process with many defined
user steps, including downloading and aligning sequences
of phylogenetic interest.
Recent advances in bioinformatics primer design soft-

ware have increased the speed of some steps within this
process. Most programs will automatically design compa-
tible forward and reverse PCR primers from an inputted
sequence [e.g. Primer3 (13), Oligo 6 (http://www.oligo.net),
AutoPrime (14), CODEHOP (15), ExonPrimer (http://
ihg.gsf.de/ihg/ExonPrimer.html)], or an inputted user
defined multiple alignment [e.g. PrimaClade (16), Primer
Premier (http://www.premierbiosoft.com)]. A recent pro-
gram QPRIMER (17) generates universal primers within
exons by automatically creating multi-genome alignments
of human, mouse, rat, chicken, dog, zebrafish and fruit fly.
Although, all of these programs enhance the speed and
accuracy of primer design, none automate all steps in the
process for all regions within the genome. To our knowl-
edge, no automatic primer design program uses phylo-
genetic information to retrieve and align all homologous
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sequences from GenBank. They do not automatically
assess levels of variation across the alignment, design non-
degenerate primers, nor estimate the possibility of false
positive amplifications.
To address these problems, we have designed the

UniPrime program, an open-source suite where users
can automatically design sets of universal primers to
amplify regions of suitable inter-specific variation across
divergent taxa, by simply inputting a reference sequence or
accession number. UniPrime uniquely allows all steps of
the process to be saved, including initial data retrieval,
multispecies alignment and primer design sites. We have
experimentally verified the efficiency and success of this
program by amplifying and sequencing four diverse genes
(AOF2, EFEMP1, LRP6 and OAZ1) across multiple
Orders of mammals. The program is available at http://
uniprime.batlab.eu and is licensed under the Creative
Commons GNU GPL.

METHODS

Algorithm

We designed an automated method to: (i) design success-
ful universal primers for any given locus; (ii) maximize the
number of variable positions in the fragment amplified
given a user defined similarity threshold; (iii) evaluate the
‘mis-priming’ potential of the primers generated. This
process is defined in five steps and shown schematically in
Figure 1. Each step can be reviewed by the companion
web interface to assess potential challenges resulting from
sequencing error, incorrect annotation or an artifactual
duplication of the locus. The main module of UniPrime
uses a command line interface. The commands are simple,
they are detailed in the ‘readme’ file and the number of
parameters requested is small. Each step is described
subsequently.

Step 1—Initial sequence. Initially, the GenBank GeneID
(unique identifiers for genes provided by Entrez Gene) of
the target locus (protein coding gene, snRNA, etc.) is
input by the user. This reference code is used to retrieve
the sequences related to this target locus (the genomic
DNA and the mRNA sequences). The program then
selects a single nucleotide sequence (proto-type sequence),
which is usually the reference mRNA sequence of the
longest isoform of the gene. If no mRNA sequence is
known for the gene, the reference genomic DNA sequence
is then used. If required, the user can enforce the use of
the DNA rather than mRNA sequence. In such cases, the
quality of the alignment is less accurate with multiple
insertions/deletions introduced due to introns, but the
overall scheme of the primer design method is unchanged.

Step 2—Search for orthologues. The prototype sequence
is used as a ‘query’ for a Blastn (18) search of the NCBI
database to identify highly similar homologous sequences.
The user can delimit the search at varying phylogenetic
levels by incorporating the Entrez Query BLAST option.
The NCBI ‘Reference genomic sequence’ (RefSeq) data-
base (19) is used as the default search database. An e-value

threshold of 10�100 is incorporated as the default cut-off
point for valid hits. Both parameters are user-defined and
can be modified. Due to problems with variable intron
length and number within divergent taxa, this step
preferentially uses an mRNA prototype sequence when
available; otherwise, the DNA sequence of target locus is
used. If the prototype sequence is mRNA, then only
mRNA sequences will be retrieved. Likewise, if the
prototype sequence is DNA then only DNA sequences
will be retrieved. The sequences with the best e-value score
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Figure 1. Schematic diagram of the UniPrime algorithm. Steps carried
out by UniPrime are shown in white boxes. Steps performed by
external programs, are shown in grey boxes. The five main functions of
UniPrime are highlighted.
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for each species within the database are retrieved, and
stored in the database. Using this method, we hope to
retrieve orthologous sequences; however, as our retrieval
method is based only on a high blast score, this step may
also gather closely conserved paralogous sequences.
UniPrime allows the user to review the retrieved sequences
and remove any sequences that are considered paralogous
before primer design. Also, users can further modify the
phylogenetic distance between the taxa they want incor-
porated in the primer design step by including or removing
the required taxa.

Step 3—multi-species alignment. The stored sequences are
concatenated into a single file, which is then imported into
the alignment program T-Coffee (20). Users can restrict
the taxa they want to be included in this input file. The
sequences are aligned using the default parameters in
T-Coffee (20). From this alignment, a consensus sequence
is inferred with a conservative default threshold of 60%
(i.e. only the nucleotide which occurs >60% at a single
position in the alignment is represented in the consensus
sequence, otherwise an N is reported). Only A, T, C, G
and N are used in the consensus sequence. As the number
of non-N-sites in the consensus sequence is limited by the
threshold, increasing this threshold should lower the
number of primers designed but increase their specificity.
Likewise, decreasing this threshold should increase the
number of primers designed but lower their specificity. If
required the user can manually incorporate their own
alignment.

Step 4—primer design. All possible primers along the
consensus sequence are generated by Primer3 (13) using
the following parameters: melting temperature (Tm)
55–658C; primer length 20–25 bp; GC clamp (G or C at
30 end); GC content 40–60%; and, an optimum product
size of 600 bp. The user can vary the product size. To
ensure that all possible primers are defined along the
consensus sequence, they are generated using a sliding
window approach. The sliding window of 250 bp moves
along each nucleotide position in the consensus sequence
and primers are designed where possible. By default, sites
that are over 40% variable within the alignment are
defined as Ns; therefore, primers cannot be generated
within these regions. Users can change this threshold,
thereby controlling the level of expected variability within
the resulting amplicon. To select the optimal primer pairs
each primer sequence is examined against all input
sequences using the following filters: (i) the entire primer
sequence must be found in all input sequences but can
have a mis-match of 20% with each sequence; (ii) the last
5 bp at the 30 end of each primer must be 100% conserved
in all input sequences. This is an essential filter, as DNA
polymerase cannot bind efficiently to a template if there
are mismatches at the 30 end of a primer, regardless of the
specificity in 50 end region. If the last two residues of the
primer do not match the template, then no amplification
can occur (21).

Step 5—virtual PCR. The possibility of amplifying non-
target sequences using the proposed primer pairs is

assessed in an optional last step by completing a ‘virtual
PCR’. The primer sequences are submitted for a Blastn
search within the ‘Whole-genome shotgun reads’ (wgs)
databases of GenBank to identify sequences that match
the forward and reverse primer sequence within a
compatible size range for PCR amplification (primers
<10 kb apart).
All steps and results are stored in the UniPrime

database and their details can be viewed using the web-
based interface.

Computer implementation

We implemented this algorithm in a software suite called
UniPrime. The basic algorithm requires Bioperl 1.4 (22),
T-Coffee 3.2 (20), PostgreSQL 7 (http://www.postgresql.
org) and Primer3 (13) version 1.0. Newer versions of these
programs can also be used. Primer3 version 1.1.1 is used
as it includes an advanced Tm calculation method (23).

Web interface

The intermediate results for each step of the UniPrime
suite can also be viewed, accessed and modified through
the web companion interface. This is implemented in PHP
script using PHP 4.3 or above (http://www.php.net) and
any PHP compliant web server.

Laboratory verification

We used UniPrime to generate primers from four diverse
genes. We validated the primers designed by amplifying
and sequencing five fragments from these genes in five
divergent Orders across Class Mammalia. The sequences
retrieved and used by UniPrime are available in the
Supplementary data and belong to Bos taurus (cow), Canis
lupus familiaris (dog), Homo sapiens (man), Macaca
mulatta (macaque), Monodelphis domestica (opossum),
Mus musculus (mouse), Pan troglodytes (chimp) and
Rattus norvegicus (rat).

Taxa and genes

The genomic DNA from six divergent mammal species
was used (Table 1). The four genes selected (Table 2) have
diverse functions and show different variability levels as
estimated by DnaSP 4.10.9 (24). The five selected primer
sets are shown in Table 2.

Table 1. Mammalian species used

Species name Abbrev. Common name Order

Myrmecophaga
tridactyla

Mtri Giant anteater Xenarthra

Ornithorhynchus
anatinus

Oana Platypus Monotremata

Rousettus lanosus Rlan Long-haired rousette Chiroptera
Tragelaphus eurycerus Teur Bongo Cetartiodactyla
Tupaia minor Tmin Pygmy tree shrew Scandentia
Euphractus sexcinctus Esex Six-banded armadillo Xenarthra

For each species the common name and the Order name are
indicated (12).

PAGE 3 OF 7 Nucleic Acids Research, 2008, Vol. 36, No. 10 e56

http://www.postgresql
http://www.php.net


PCR and DNA sequencing

PCR was performed with 2 nM of each primer, 1.5mM
MgCl2, 1U of Platinum Taq DNA polymerase
(Invitrogen Corporation, Carlsbad, California, USA),
and 10 ng of genomic DNA. Touchdown conditions of
amplification were used for all species, as follows: 10
cycles of denaturation at 958C for 30 s, annealing at 658C
for 30 s �18C per cycle, extension at 728C for 60 s;
followed by 35 cycles with 958C for 30 s, annealing at 558C
for 30 s, extension at 728C for 60 s. The initial denatura-
tion step and the last extension step were 3min each. The
PCR products were separated and visualized in 1%
agarose gel. Sequencing reactions were performed in
both directions on PCR products, using the same primer
set as for amplification.

Sequence validation

Newly generated sequences were concatenated and
aligned, using T-Coffee (20), with the original sequences
used to generate the primers. Maximum likelihood (ML)
analyses were performed for each data set with PAUP
4.0b10 (25) using the parameters settings (Table 3) for the
optimal model of sequence evolution as estimated by
Modeltest (26). Starting trees were obtained via neighbor-
joining (NJ). 100 ML bootstrap analyses were performed
using tree-bisection and recombination branch swapping.
Ornithorhynchus anatinus (platypus) was used as an
outgroup in all analyses apart from EFEMP1, where
Monodelphis domestica (opossum) was used.

Supporting information

The generated sequences were deposited in GenBank
(Table 4).

RESULTS AND DISCUSSION

Empirical evaluation of the optimal number of input sequences
required to successfully design universal primers

The design of optimal primers relies on the quality of
the alignment and directly depends on the number of
homologous sequences initially retrieved. We assessed how
many optimal primer pairs UniPrime could design when
the number of input sequences was varied. From 200
randomly selected mammalian genes, we identified and
retrieved their homologous genes using UniPrime. The
maximum number of species retrieved was 10 as only 10
mammalian genomes were annotated in the default RefSeq
database at time of analyses. All possible combinations
of retrieved sequences were generated for each gene and
every combination was used to design primers: i.e. for each
gene, regardless of phylogenetic affinity, we systematically
jack-knifed the number of species present from 10 to one
and each iteration was used to design primers. Figure 2A
shows the correlation between the number of input
sequences and the average number of primers identified
per kilobase pair. The data fits with an inverse function
(R2=0.97): above five sequences, the number of primer
sets reached an asymptotical value of 0.5. Therefore, only
five to six initial sequences are necessary to design optimal
primers using UniPrime.

This result has only been established for mammals [last
shared a common ancestor �220 MYA; (12)] and for the
default consensus threshold of 60%. This result will vary
at different Linnaean ranks and among phylogenetically
diverse organisms. (Figure 2C). UniPrime will work with
any data set regardless of genetic diversity as long as it
is possible to create an alignment and thus a consensus
sequence. The quality of the alignment will dictate the
number of primers found, and this quality is dependent
on both phylogenetic similarity and genetic diversity of
the taxa or genes being used (Figure 2). UniPrime was
consistently able to generate a similar amount of primers

Table 2. Primers used and estimated product length

Gene GeneID Primers (50 ! 30) CORE index Size Location (human)

AOF2 23028 F ATGCAGTTCTCTGTACCCTTCC 41 550 Exon 15–Exon 16
R AACATGCCCNAACAAATTGAC

EFEMP1 2202 F GCATTGCAAAACTCTGTATGG 37 650 Intron 6–Exon 7
R TACCTTCACAGTTGAGCCTGTC

LRP6 (1) 4040 F ATCAGNTCCCTCAGTATCATGG 37 800 Exon 21–Exon 22
R TAATGTGATCGCTCTGTGG

LRP6 (2) 4040 F GAACTCAATTGTCCTGTNTGCTC 37 1200 Exon 18–Exon 19
R CAGTTCATCTGANTTGTCACTGC

OAZ1 4946 R TCCCTNCACTGCTGTAGTAACC 33 550 Exon 2–Exon 3
F CNGGGATCTCGATGTAGAGG

For each gene/locus the forward (F) and reverse (R) primers are indicated. The ‘GeneID’ was the entry used for the initial step. The ‘CORE index’
has been provided by T-coffee, and is the reliability score of the alignments. The expected product length is an average value inferred from the
multiple alignment but varies between species. Two sets of primers were used for the LRP6 gene.

Table 3. Model and parameters

Model ti/tv ratio a-shape p-inv

AOF2 HKY+I+G 2.2047 4.1884 0.1939
EFEMP1 HKY+I+G 1.8285 1.6702 0
LRP6 (1) HKY+I+G 1.6993 5.5588 0.0800
LRP6 (2) HKY+I+G 1.3773 2.9999 0.0905
OAZ1 HKY+I+G 2.0732 0.5506 0.1105

Optimal model and parameters settings of sequence evolution estimated
by Modeltest and used to establish the maximum likelihood bootstrap
consensus trees. ti/tv, Transition/transversion ratio; a-shape, shape of
the distribution; p-inv, proportion of invariable sites.
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per kilobase pair regardless of gene function and structure,
indicating that this is a robust and reliable primer design
method. Interestingly, there is no difference in the number
of primers designed when more than five input sequences
are used. As at least seven whole mammalian genomes are
available, it appears that it is possible to create reliable
mammalian primers for coding regions using this method.
Therefore, this is an invaluable tool for future phylo-
genetic and comparative studies.

Laboratory benchmark

We randomly selected a total of four genes that are well
studied, found throughout the genome and show a var-
iable degree of diversity (Figure 2B) within the human
population and among mammals: (i) AOF2 (also called
LSD1) is a component of several histone deacetylase
complexes and silences genes by functioning as a histone
demethylase (27); (ii) EFEMP1, an extracellular matrix

protein expressed in retina (28); (iii) LRP6, a low density
lipoprotein receptor protein and putative tumour sup-
pressor of leukaemia (29) and (iv) OAZ1, the ornithine
decarboxylase antizymes, that regulates polyamine synth-
esis (30). Among the Class Mammalia, we applied our
algorithm to these four genes to design five primer pairs
providing amplification products of about 600 bp (Table 2
and Supplementary material for the alignments used).
Despite the high levels of evolutionary divergence (�220
MYA) among our input sequences, all genes were suc-
cessfully amplified, sequenced and verified using phylo-
genetic analyses (Figure 3). The gene trees obtained for
these sequences were congruent with the established
species phylogeny (Figure 3).

Test design

For OAZ1, the sequences retrieved and primers gene-
rated as an output by UniPrime are shown in Figure 4.

Table 4. Genbank Accession numbers

OAZ1 LPR6 (1) LPR6 (2) EFEMP1 AOF2

Euphractus sexcinctus EF674548 EF674524 na EF674539 EF674533
Rousettus lanosus EF674547 EF674526 EF674529 EF674542 EF674535
Myrmecophaga tridactyla EF674546 EF674525 EF674528 EF674541 EF674534
Tragelaphus eurycerus EF674545 EF674522 EF674530 EF674543 EF674536
Ornithorhynchus anatinus EF674544 EF674527 EF674531 na EF674538
Tupaia minor na EF674523 EF674532 EF674540 EF674537
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Detailed information including related references for each
sequence, alignment or primer pair are available, and can
be reviewed through the web companion interface
Figure 4A. Users can update, add or remove a locus,
sequence alignment or primers through the web-based
interface (Figure 4B and C). The response time of the web

companion interface is nearly instantaneous, regardless of
the quantity of information stored in the database or the
number of target loci analysed. The primer generation
time depends on the response time of the NCBI server
but on average takes <10min per locus (not including
step 5—‘virtual PCR’).
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To date, UniPrime has been implemented in four phylo-
genetically diverse projects at University College Dublin,
Ireland. UniPrime is user friendly and has generated over
100 primer sets among which 90% have successfully
amplified the target locus (data not shown). One of unique
qualities of UniPrime is that only the Gene reference ID is
required to enable the user generate a full suite of
universal primers. UniPrime also stores and allows easy
access to wealth of information via the web interface.
UniPrime is an attractive alternative to the long and
troublesome steps required for manual retrieval and
alignment of homologous sequence from databases.
UniPrime represents a new generation of primer design
programs that builds on previous programs, automates all
steps, enables great user versatility and efficiently mines
the ever-expanding genomic databases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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