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Abstract
A number of proteinases are expressed on the surface of leukocytes including members of the serine,
metallo-, and cysteine proteinase superfamilies. Some proteinases are anchored to the plasma
membrane of leukocytes by a transmembrane domain or a glycosyl phosphatidyl inositol (GPI)
anchor. Other proteinases bind with high affinity to classical receptors, or with lower affinity to
integrins, proteoglycans, or other leukocyte surface molecules. Leukocyte surface levels of
proteinases are regulated by: 1) cytokines, chemokines, bacterial products, and growth factors which
stimulate synthesis and/or release of proteinase by cells; 2) the availability of surface binding sites
for proteinases; and/or 3) internalization or shedding of surface-bound proteinases. The binding of
proteinases to leukocyte surfaces serves many functions including: 1) concentrating the activity of
proteinases to the immediate pericellular environment; 2) facilitating pro-enzyme activation; 3)
increasing proteinase stability and retention in the extracellular space; 4) regulating leukocyte
function by proteinases signaling through cell surface binding sites or other surface proteins; and 5)
protecting proteinases from inhibition by extracellular proteinase inhibitors. There is strong evidence
that membrane-associated proteinases on leukocytes play critical roles in wound healing,
inflammation, extracellular matrix remodeling, fibrinolysis, and coagulation. This review will outline
the biology of membrane-associated proteinases expressed by leukocytes and their roles in
physiologic and pathologic processes.
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Introduction
Leukocytes and resident tissue cells produce a diverse array of proteinases that contribute to
physiologic processes such as extracellular matrix (ECM) remodeling, wound healing,
inflammation, coagulation, fibrinolysis, host defense against infection, and various pathologic
processes. Until recently, there has been little information available about the mechanisms by
which cells use and control their proteinases to degrade extracellular proteins in vivo.
Proteinases must circumvent the effects of high-affinity, extracellular proteinase inhibitors in
order to cleave extracellular proteins. Inflammatory cells bathed in fluids containing
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physiologic proteinase inhibitors are associated with pericellular proteolysis (Figure 1). One
mechanism that enables cells to cleave or degrade proteins in their immediate environment is
the localization of proteinases on cell surfaces. In vertebrates, serine, metallo-, and cysteine
proteinases are expressed on the surfaces of various cell types including leukocytes, fibroblasts,
epithelial cells, endothelial cells, and tumor cells (Table 1). These enzymes include members
of the serine proteinase superfamily such as the leukocyte serine proteinases, proteinases
involved in fibrinolysis, the type II transmembrane serine-protease (TTSP) family (Szabo et
al., 2003;Qiu, Owen, Gray, Bass, & Ellis, 2007a), and the kallikrein/kinin system [reviewed
in (Schmaier & McCrae, 2007)]. Serine proteases involved in the coagulation cascades can
also bind to endothelial, platelet, and leukocyte cell surfaces [reviewed in (Doshi & Marmur,
2002;Bouchard & Tracy, 2001) and Table 1]. Metalloproteinases and lysosomal cysteine
proteinase also function as cell membrane-associated enzymes (Cavallo-Medved & Sloane,
2003). Space limitations of the journal preclude comprehensive coverage of all proteinases
known to be expressed on the surface of all types of cells. Because of my interest in leukocyte-
proteinase mediated tissue injury, I will focus this review on proteinases expressed on the
surface of leukocytes that play important roles in leukocyte biology. I will review the biology
of leukocyte surface-bound proteinases, the advantages that cell surface binding confers upon
individual proteinases, and the roles of leukocyte membrane-associated proteinases in
physiologic and pathologic processes.

Serine Proteinases
Serine proteinases were among the earliest proteinases shown to be expressed on the surface
of leukocytes. In 1985, urokinase type plasminogen activator (uPA or urokinase) was shown
to bind to a surface receptor on monocytes and U937 cells (Vassalli, Baccino, & Belin,
1985). In 1990, proteinase 3 was identified on the surface of polymorphonuclear neutrophils
[PMNs (Csernok, Ludemann, Gross, & Bainton, 1990)], and in the mid 1990s, neutrophil
elastase (NE) and cathepsin G (CG) were also localized on the surface of activated PMNs
(Owen, Campbell, Sannes, Boukedes, & Campbell, 1995b; Bangalore & Travis, 1994b). More
recently, a new family of membrane-associated serine proteinases was identified: type II
transmembrane serine proteases (TTSP). In 2006, a member of the TTSP family, matriptase,
was identified on the monocyte surface (Kilpatrick et al., 2006).

Plasminogen Activators
Plasminogen activators are serine proteinases which convert plasminogen (an abundant
extracellular protein) to plasmin, another serine proteinase which plays critical roles in
degrading fibrin in blood clots and the provisional matrix deposited at sites of tissue injury.
There are two plasminogen activators which differ in the structure of their non-catalytic
domains (Blasi & Carmeliet, 2002; Medcalf, 2007). Tissue-type plasminogen activator (tPA),
and urokinase-type plasminogen activator (uPA or urokinase). Both enzymes function as both
soluble and cell-associated proteinases, but active tPA is primarily a clot-associated protease.
Urokinase is expressed by leukocytes. Tissue-type plasminogen activator is not expressed by
leukocytes, but binds to CD11b/CD18 integrin on macrophages to promote macrophage
adhesion to fibrin and macrophage migration in vitro (Cao et al., 2006).

Structure, expression, and regulation of urokinase—Urokinase is produced and
released by cells as an inactive, single chain pro-enzyme (pro-urokinase). This inactive pro-
enzyme is cleaved at a single locus by a wide range of serine proteinases including plasmin,
kallikrein, factor XIIa, matriptase, tryptase epsilon, human T cell-associated proteinase-1, and
hepsin which is a TTSP (Blasi et al., 2002; Kilpatrick et al., 2006; Yasuda et al., 2005; Brunner,
Simon, & Kramer, 1990; Moran et al., 2006). Several non-serine proteinases such as cathepsin
B, cathepsin L, matrix metalloproteinase-3 (MMP-3) and the bacterial metalloproteinases,
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thermolysin also activate pro-urokinase (Kobayashi et al., 1993a; Goretzki et al., 1992; Orgel
et al., 1998; Marcotte & Henkin, 1993). Cleavage of pro-urokinase by these enzymes generates
a disulfilde-linked, two-chain, active enzyme (Blasi et al., 2002; Kilpatrick et al., 2006).
Urokinase has three functional domains: 1) an NH2-terminal epidermal growth factor (EGF)-
like domain which binds the enzyme to its cell surface receptor; 2) a kringle domain; and 3) a
COOH-terminal catalytic domain with the His-Ser-Asp catalytic triad typical of the serine
proteinase family. Pro-urokinase binds with high affinity (KD ~1 nM) to a specific receptor
(uPA receptor or uPAR) which is a GPI-anchored protein on leukocytes and many other cells
(Blasi et al., 2002; Yasuda et al., 2005; Ragno, 2006). However, pro-urokinase also binds to
CD11b/CD18 integrin on PMNs which accelerates plasminogen activation and fibrinolysis on
the PMN surface (Pluskota, Soloviev, Bdeir, Cines, & Plow, 2004).

Urokinase is expressed by PMNs, monocytes, macrophages, and many other types of cells
(Table 1). However, the biology of urokinase differs in PMNs compared to other urokinase-
expressing cell types. PMNs do not synthesize urokinase de novo. Preformed urokinase is
stored in the specific granules of PMNs along with uPAR. Unstimulated PMNs express
minimal cell surface uPAR or urokinase, but both proteins translocate rapidly from the specific
granules to the PMN surface when PMNs are activated to degranulate by phorbol esters,
chemoattractants, and cytokines (Plesner et al., 1994;Heiple & Ossowski, 1986). In monocytes,
macrophages, and other cells, urokinase expression is regulated at the transcriptional level by
pro-inflammatory mediators and growth factors (Medcalf, 2007). During the chemotactic
response, receptor-bound uPA becomes rapidly polarized to the leading edge of these
phagocytes where it regulates cell adherence and migration (Blasi et al., 2002;Mondino &
Blasi, 2004). The main inhibitor of urokinase in plasma is plasminogen activator inhibitor-1
(PAI-1), a member of the serine proteinase inhibitor (serpin) family which is secreted by many
cell types including endothelial cells. Other less efficient inhibitors of urokinase include PAI-2,
and protease nexin I (Blasi et al., 2002;Mondino et al., 2004). These inhibitors inhibit urokinase
by forming irreversible covalent complexes with the enzyme.

The binding of pro-urokinase to its surface receptor not only promotes urokinase and plasmin
activation on the cell surface (Blasi et al., 2002), but also protects both enzymes from inhibition,
and regulates urokinase surface levels by inducing urokinase-uPAR endocytosis. Urokinase
bound to uPAR has a 40% reduction in its association rate constant for PAI-1 and PAI-2 when
compared to soluble urokinase (Ellis, Wun, Behrendt, Ronne, & Dano, 1990). Urokinase-
mediated cleavage of cell membrane-bound plasminogen generates membrane-bound plasmin
which is also resistant to inhibition by α2-plasmin inhibitor which is an effective inhibitor of
soluble plasmin (Ellis et al., 1990). Although binding of PAI-1 to surface-bound urokinase is
reduced, when this happens, it is followed by endocytosis of the proteinase-inhibitor complex
by clathrin-coated pits and members of the low density lipoprotein receptor family. The
enzyme-inhibitor complex dissociates from uPAR, and the inhibitor-enzyme complex is
degraded in the lysosomes, but uPAR is recycled back to the cell surface to bind additional
urokinase (Blasi et al., 2002; Mondino et al., 2004). However, cleavage and shedding of uPAR
is currently regarded as a major regulatory process for this receptor (Blasi et al., 2002).

In vitro activities of urokinase and plasmin—Urokinase and tPA both have critical roles
in fibrinolysis by generating active plasmin (Carmeliet et al., 1994; Blasi et al., 2002). The
urokinase-uPAR system was initially thought to simply concentrate plasmin-mediated
fibrinolysis at cell surfaces during tissue injury. However, plasmin has numerous other
functions including cleaving proteins other than fibrin and activating cells. For example,
plasmin cleaves and activates latent growth factors (Taipale, Koli, & Keski-Oja, 1992) and
latent pro-MMPs (Parks, Wilson, & Lopez-Boado, 2004). Thus, plasmin may inhibit fibrotic
responses to injury by clearing the provisional fibrin matrix at sites of injury and by activating
pro-MMPs, or promote tissue fibrosis by activating latent transforming growth factor-β (TGF-
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β) which stimulates (myo)fibroblasts to deposit collagen in tissues. Plasmin also binds with
low affinity (likely via its lysine binding sites) to plasma membrane sites of leukocytes,
platelets, and endothelial cells and activates these cells by an active site-dependent manner
(Syrovets & Simmet, 2004). This leads to homotypic aggregation of PMNs, platelet
degranulation, release of arachidonic acid from endothelial cells, release of pro-inflammatory
mediators from monocytes, and induction of monocyte chemotaxis (Syrovets et al., 2004).
Plasmin activates platelets by cleaving and activating platelet protease activated receptor-4
[PAR-4 (Quinton, Kim, Derian, Jin, & Kunapuli, 2004)], but has no effect on platelet PAR-1.
However, plasmin activates PAR-1 on the surface of macrophages, which increases
macrophage MMP-12 production (Churg et al., 2007; Raza, Nehring, Shapiro, & Cornelius,
2000). Thus by generating plasmin, urokinase stimulates not only fibrinolysis, but also
regulates ECM turnover and inflammation in tissues.

Urokinase also stimulates intracellular signaling to promote adhesion and migration of
leukocytes and other cells by binding to uPAR even though this receptor lacks a cytoplasmic
domain. After binding urokinase, uPAR signals by binding to other transmembrane proteins
(including integrins and G protein coupled receptors) or to ECM proteins to promote cell
adhesion, migration, apoptosis, and cell proliferation [reviewed in (Blasi et al., 2002; Mondino
et al., 2004; Crippa, 2007; Ragno, 2006; Blasi, 2001). For example, uPAR stimulates
chemotaxis of leukocytes after urokinase binds to uPAR which unmasks a chemotactic epitope
in uPAR. The uncovering of this normally cryptic epitope in intact uPAR is caused by
endoproteolytic removal of the amino-terminal domain of uPAR by active proteinases
including those resulting from the biologic activity of uPAR [such as uPA, plasmin, and several
active MMPs (Blasi et al., 2002)]. This signal is transduced by uPAR binding to a G protein-
coupled fMLP receptor (Resnati et al., 2002; Blasi, 2001). The urokinase receptor also binds
with high affinity to α3β1 and α5β1 integrins, and with lower affinity to β2 and β3 integrins,
to promote adhesion and spreading of leukocytes and tumor cells on ECM proteins (Blasi et
al., 2002; Sidenius & Blasi, 2003; Wei et al., 1996). Urokinase-uPAR binding also regulates
cell survival and apoptosis. For example, urokinase activates and releases various growth
factors which promote cell survival and proliferation (Hildenbrand et al., 2008). Urokinase-
uPAR intracellular signaling also modulates the cell proliferation/apoptosis ratio by regulating
cell-matrix interactions and the expression of anti-apoptotic proteins of the Bcl family which
protect cells from apoptosis (Alfano, Laccarino, & Stoppelli, 2006; Hildenbrand et al., 2008).

In vivo studies of urokinase and plasmin—Studies of humans and mice with altered
expression of components of the plasminogen system confirm critical roles for this system not
only in fibrinolysis, but also in wound healing, inflammation, angiogenesis, and fibrotic
responses to tissue injury. This system also plays critical roles in promoting tumor cell growth
and metastasis [reviewed in (Blasi et al., 2002; Laufs, Schumacher, & Allgayer, 2006; Pillay,
Dass, & Choong, 2007; Aguirre-Ghiso, 2007; Montuori, Visconte, Rossi, & Ragno, 2005)].

Fibrinolysis: Human subjects with severe homozygous type I plasminogen deficiency develop
ligneous conjunctivitis, a rare and unusual form of chronic pseudomembranous conjunctivitis,
and also develop additional pseudo-membranous lesions of other mucous membranes
(Mingers, Heimburger, Zeitler, Kreth, & Schuster, 1997). These lesions are caused by massive
fibrin depositions within the extravascular space of mucous membranes due to the lack of
clearance of these depositions by plasmin. Mice genetically deficient in plasminogen
(plasminogen−/− mice) also develop ligneous conjunctivitis (Drew et al., 1998).
Plasminogen−/− mice are also predisposed to developing spontaneous severe thrombosis in
multiple organ systems due to impaired fibrinolysis, and also suffer retarded growth, reduced
fertility, and decreased survival (Ploplis et al., 1995; Bugge, Flick, Daugherty, & Degen,
1995). Mice singly deficient in tPA, urokinase, or uPAR are healthy and have normal life span
in the unchallenged state, but tPA−/− mice have impaired clot lysis, and urokinase−/− mice have
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occasional hepatic fibrin deposits (Carmeliet et al., 1994; Bugge et al., 1996a). However, mice
with combined deficiency of tPA and uPA suffer extensive spontaneous fibrin deposition and
have impaired growth, reduced fertility, and decreased survival similar to that occurring in
plasminogen−/− mice (Carmeliet et al., 1994). Mice deficient in urokinase, tPA and
plasminogen die from generalized thrombosis and inflammation (Carmeliet et al., 1994). The
inflammation in these mice is secondary to thrombosis and extravascular fibrin deposition
(Bugge et al., 1996b; Drew et al., 1998). These data indicate that in mice there is no significant
alternative fibrinolytic pathway to tPA and urokinase.

Wound healing: Studies of urokinase−/− mice also demonstrate that urokinase-mediated
activation of plasmin plays an important role in healing skin wounds in mice by clearing fibrin
(Bugge et al., 1996a; Romer et al., 1996). Urokinase also plays a critical role in the repair of
the ischemic myocardium in mice by promoting the migration of fibroblasts into the injured
myocardium, activating TGF-β, and promoting angiogenesis by inducing migration of vascular
smooth muscle cells and endothelial cells into the injured myocardium (Heymans et al.,
1999). In these wound healing models, urokinase does not signal through uPAR since
uPAR−/− mice have minimal abnormalities in these model systems (Carmeliet et al., 1997;
Levi et al., 2001). Likely, urokinase binds to ECM proteins in the pericellular environment in
lieu of uPAR during wound healing.

Leukocyte migration: The role of uPAR in regulating leukocyte migration in vivo is
controversial. Some studies of uPAR−/− mice have found no role for uPAR in regulating
leukocyte recruitment into various organs (Dewerchin et al., 1996; Cao et al., 2006), whereas
other studies report that uPAR promotes PMN and lymphocyte recruitment into inflamed
peritoneum and into the lung in murine models of lung inflammation and infection, possibly
by uPAR signaling through β2 integrins, leading to decreased clearance of pathogens and
impaired host survival (May et al., 1998; Gyetko et al., 2000; Gyetko et al., 2001; Rijneveld
et al., 2002).

Fibrosis: Plasminogen activators and their inhibitors regulate lung fibrotic responses to injury.
Transgenic mice over-expressing PAI-1 have increased lung fibrosis compared to control mice
in the bleomycin-mediated lung fibrosis (Eitzman et al., 1996), whereas PAI−1−/− mice and
transgenic mice over-expressing urokinase in the lung in an inducible manner are protected in
this model (Eitzman et al., 1996; Sisson et al., 2002). Likely, urokinase protects against lung
fibrotic responses to injury by generating plasmin which digests fibrin in the provisional matrix
generated during bleomycin-mediated lung injury, and activates pro-MMPs leading to
increased removal of collagen and other ECM proteins deposited in the lung.

Neutrophil elastase (NE), Cathepsin G (CG) and Proteinase 3 (PR3)
Structure, expression, and regulation—NE, CG and PR3 are serine proteinases
comprised of a single chain glycoprotein with ~200 amino acid residues (Pham, 2006). All
three enzymes are all highly cationic with CG being the most and PR3 the least cationic. These
proteinases are predominantly expressed by PMNs, but are not synthesized de novo by mature
blood PMNs. Instead, they are synthesized at the promyelocyte stage of PMN development in
the bone marrow and stored at millimolar concentrations as active enzymes in PMN azurophil
granules (Borregaard & Cowland, 1997). A subpopulation of monocytes with a PMN-like pro-
inflammatory phenotype (P monocytes) also store preformed NE, CG and PR3 in their primary
granules (Kargi, Campbell, & Kuhn, III, 1990; Owen, Campbell, Boukedes, Stockley, &
Campbell, 1994). Macrophages do express serine proteinases under physiologic conditions but
can be induced to synthesize NE under some pathologic conditions (Dollery et al., 2003).
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The major inhibitors of NE, CG, and PR3 are serpins which comprise about 10% of all plasma
proteins, and include α1-proteinase inhibitor (α1-PI) and α1-antichymotrypsin (α1-Ach), which
are synthesized and secreted by hepatocytes. The universal inhibitor, α2-macroglobulin (α2-
M), also inhibits these enzymes (Carrell, 1986). Other inhibitors of these enzymes are secretory
leukocyte proteinase inhibitor (SLPI) and elafin which are produced by epithelial cells and
found in a variety of glandular secretions such as the upper and lower respiratory tract and
synovial fluid (Kramps, Rudolphus, Stolk, Willems, & Dijkman, 1991; Sallenave, Silva,
Marsden, & Ryle, 1993).

Membrane binding of serine proteinases—Under some circumstances, NE, CG, and
PR3 are freely released from the azurophilic granules of PMNs and the primary granules of P
monocytes when cells are activated to degranulate. In contrast to other proteinase-containing
granules and vesicles in PMNs which translocate to and fuse with the plasma membrane when
PMNs are activated, the azurophilic granules translocate to the PMN plasma membrane but do
not fuse with it (Borregaard et al., 1997). Serine proteinases are released from PMNs into the
extracellular space in large amounts in vitro only when the cells are exposed to pharmacologic
agonists that potently induce degranulation such as cytochalasin B, phorbol esters, and calcium
ionophores. Activation of PMNs with physiologically relevant stimuli such as cytokines,
chemokines, and bacterial products induces more modest free release of these enzymes [less
than 2% of the cellular content in vitro (Owen, Campbell, Boukedes, & Campbell, 1995a;
Owen, Campbell, Boukedes, & Campbell, 1997; Campbell, Campbell, & Owen, 2000)].
However, significant free release of serine proteinases from PMNs may occur in vivo during
extensive or frustrated phagocytosis (Liszt, Schnittker-Schulze, Stuhlsatz, & Greiling, 1991)
or in diseases in which macrophage clearance of apoptotic PMNs is either impaired or
inadequate due to excessive influx of PMNs into tissues. This occurs in the airways of COPD
patients during acute infective disease exacerbations or in the airways and lungs of patients
with cystic fibrosis (Naylor et al., 2007; Vandivier et al., 2002; Matthay & Zimmerman,
2005). In these diseases, PMNs undergo necrosis and PMN proteinases are discharged into the
extracellular space where they contribute to tissue destruction.

All three serine proteinases are also expressed on the surface of PMNs and membrane-bound
NE, CG, and PR3 are likely to be the most important forms of the enzymes during physiologic
and pathologic processes. Unstimulated PMNs express minimal amounts of membrane-bound
NE and CG. Activation of PMNs with cytokines, bacterial products, chemoattractants, and
fMLP, a synthetic bacterial-like peptide induces up to 20-fold increases in PMN surface
expression of NE, CG, and PR3 [(Owen et al., 1995b; Owen et al., 1997; Owen et al., 1995a;
Campbell et al., 2000) and (Figure 2)]. Under these conditions, 6-fold more NE and CG binds
to the PMN plasma membrane than is freely released by cells.

There are several notable differences between PR3 versus NE and CG which may explain, in
part, why among these enzymes only PR3 has been implicated in the pathogenesis of Wegener’s
granulomatosis (vide infra). First, the subcellular localization of PR3 differs from that of NE
and CG. NE and CG are only stored in the azurophil granules of PMNs, but PR3 is also present
in the membrane of secretory vesicles which translocate to the plasma membrane much more
readily than the azurophil granules (Witko-Sarsat et al., 1999a). Second, PR3 moves also to
the plasma membrane during apoptosis in the absence of degranulation (Kantari et al., 2007).
Third, in contrast to NE and CG significant PR3 is expressed on the surface of unstimulated
PMNs (Witko-Sarsat et al., 1999b).

Biologic roles of membrane-bound serine proteinases
Soluble NE, CG, and PR3 have diverse activities including bacterial killing, and cleaving
diverse proteins including ECM proteins, inflammatory mediators, and cell surface receptors,
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and activating various types of cells (Pham, 2006; Owen & Campbell, 1999). Membrane-bound
NE, CG and PR3 on PMNs have similar catalytic activity and efficiency as the soluble forms
of the proteinases since membrane-bound NE and PR3 degrade ECM components (Owen et
al., 1995b; Campbell et al., 2000), membrane-bound NE and CG activate coagulation proteins
on monocyte surfaces (Allen & Tracy, 1995) and membrane-bound CG potently converts the
biologically inactive peptide angiotensin I to angiotensin II (Owen & Campbell, 1998) which
increases vascular smooth muscle tone and permeability, and stimulates mononuclear cell
chemotaxis. Membrane-bound NE and CG are also potent inducers of goblet cell degranulation
(Takeyama et al., 1998). However, membrane-bound NE, CG and PR3 have been shown to be
resistant to inhibition by physiologic inhibitors including α1-PI and α1-Ach, and membrane-
bound CG activates angiotensin I even when cells are bathed in undiluted serum which contains
high concentrations of physiologic inhibitors of CG (Owen et al., 1995b; Owen et al., 1998;
Campbell et al., 2000; Bangalore & Travis, 1994a). Recently, surface-bound NE on PMNs was
shown to be inhibited by α1-PI in bronchoalveolar lavage (BAL) samples from patients with
pneumonia and acute lung injury, but PMN surface-bound CG and PR3 were substantially
resistant to inhibition by α1-PI (Korkmaz, Attucci, Jourdan, Juliano, & Gauthier, 2005). It is
not clear why differences in susceptibility of membrane-bound NE to inhibition by α1-PI have
been reported. One possibility is that in the study of Korkmaz et al, much lower concentrations
of membrane-bound NE were assayed for their susceptibility to inhibition than in the earlier
published studies. It is possible that when low concentrations of membrane-bound NE are tested
in vitro, α1-PI binds with much higher affinity to membrane-bound NE than to membrane-
bound CG or PR3. Under these conditions, α1-PI –membrane-bound NE interactions are
sufficient to produce substantial inhibition of membrane-bound NE. However, during
inflammatory reactions in vivo, high concentrations of membrane-bound NE on activated
PMNs are likely to be present in tissues which may not be efficiently inhibited by α1-PI present
in extracellular fluids leading to NE-mediated tissue injury.

Surface receptors for serine proteinases on PMNs
The first receptor reported for serine proteinases on PMNs was CD11b/CD18 integrin. NE
binds via its active site to this integrin which leads to detachment of PMNs from fibrinogen-
coated surfaces (Cai & Wright, 1996). However, CD11b/CD18 integrins bind only a small
fraction of the total number of NE molecules expressed on the surface of activated PMNs.
More recently, we showed that NE and CG bind by an active site-independent but charge-
dependent manner to high-capacity, low-affinity binding sites (~107 sites per cell and KD ~
10−7M) which are the negatively charged sulfate groups in heparan sulfate- and chondroitin
sulfate-containing proteoglycans (HSPG and CSPG) in PMN plasma membranes (Campbell
& Owen, 2007). Likely, most of the NE and CG molecules expressed on the PMN surface bind
by their positively charged external residues to HSPG and CSPG which form a reservoir which
sequesters the large amounts of these enzymes released during PMN degranulation. A small
proportion of serine proteinases bound to HSPG and CSPG may bind subsequently to CD11b/
CD18 integrins to regulate PMN adhesion. Macrophages also express high-capacity, low-
affinity binding sites for NE and CG, which are also likely to be HSPG and CSPG (Campbell,
1982). NE and CG released by PMNs bind to these macrophage binding sites and are
subsequently internalized by macrophages (Campbell, White, Senior, Rodriguez, & Kuhn, III,
1979). CG also binds to and activates a high affinity fMLP receptor on PMNs and monocytes
which stimulates migration of these cells (Sun et al., 2004; Chertov et al., 1997).

The binding sites for PR3 on PMNs are less clear, but PR3 competes with NE and CG for
HSPG and CSPG bindings sites on PMNs (Campbell et al., 2007). PR3 also binds to lipid
components in PMN membranes (Goldmann, Niles, & Arnaout, 1999) including the
phospholipid, scramblase-1 (Kantari et al., 2007). CD177 (also called NB1), a GPI-anchored
glycoprotein on PMNs may also serve as a receptor for PR3 (Bauer et al., 2007; von Vietinghoff
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et al., 2007). Thus, although NE and PR3 are homologs, there are differences in the mechanisms
by which they bind to the surface of PMNs which suggests that they may play different roles
in regulating acute inflammatory processes.

Biologic roles of membrane-bound NE, CG, and PR3—Based upon their catalytic
activities membrane-bound NE, CG, and PR3 are well equipped to contribute to PMN
pericellular proteolysis. While there is little evidence to support a role for PMN proteinases in
degrading ECM proteins during PMN migration through tissues (Hirche, Atkinson, Bahr, &
Belaaouaj, 2004; MacIvor et al., 1999), membrane-bound serine proteinases on PMNs may
clear tissue debris and regulate the biologic activities of inflammatory mediators during wound
healing and inflammatory responses to injury (Abbott et al., 1998; Pham, 2006). Membrane-
bound serine proteinases on PMNs may also contribute directly to lung ECM destruction in
COPD and inflammatory arthritis (Shapiro et al., 2003; Adkison, Raptis, Kelley, & Pham,
2002) and mucus hyper-secretion in COPD (Takeyama et al., 1998).

Wegener’s granulomatosis—Membrane-bound PR3 plays a critical role in the
pathogenesis of Wegener’s granulomatosis which is a systemic, autoimmune vasculitis
affecting the kidneys and the upper respiratory tract. Circulating anti-neutrophil cytoplasmic
autoantibodies (cANCA) are detected in ~95% of patients with active Wegener’s
granulomatosis (Gross, Csernok, & Flesch, 1993). These autoantibodies are directed against
PR3 and play a direct role in vascular injury in this disease (Bosch et al., 1993; Gross, Trabandt,
& Csernok, 1998). Circulating PMNs and monocytes from patients with Wegener’s
granulomatosis express PR3 on their surface and cANCA bind via their F(ab)2 component to
membrane-bound PR3 (Csernok, Schmitt, Ernst, Bainton, & Gross, 1993; Csernok et al.,
1990). Ligation of Fcγ receptors on leukocytes by the Fc component of cANCA is a potent
stimulus for leukocyte degranulation and activation of the respiratory burst (Kettritz, Jennette,
& Falk, 1997; Ralston, Marsh, Lowe, & Wewers, 1997). Proteinases and oxidants released by
PMNs activated in this way cause the vascular inflammation and injury characteristic of this
syndrome.

Individuals differ in percentage of circulating PMNs that constitutively express membrane-
bound PR3. This percentage is genetically determined and is now considered as a risk factor
for Wegener’s granulomastosis and other inflammatory diseases. For example, individuals that
have a large subset of neutrophils expressing membrane PR3 at baseline are at increased risk
for developing vasculitis and rheumatoid arthritis (Witko-Sarsat et al., 1999b; Schreiber et al.,
2005; Schreiber, Busjahn, Luft, & Kettritz, 2003; van Rossum, Limburg, & Kallenberg,
2003). The differences in subcellular localization and mobilization of PR3 to the PMN surface
compared to that of NE and CG (vide supra) may explain, in part, why PR3 rather than NE or
CG plays a critical role in the pathogenesis of Wegener’s granulomastosis.

Type II Transmembrane Serine Proteinases (TTSPs)
TTSPs are a large family of serine proteinases anchored to the surface of diverse cell types by
a transmembrane domain [reviewed in (Szabo et al., 2003)]. All members have a short
hydrophobic signal anchor located at their amino terminus and an extracellular serine
proteinase domain at their carboxy terminus. These domains are separated by a stem region
that may contain different additional protein domains. Hespin was the first identified TTSP in
1998, and at least 17 mammalian TTSP have been identified in humans. Evidence is emerging
that these enzymes play important roles in embryonic development and in tumor growth and
metastasis (Szabo et al., 2003; List, Bugge, & Szabo, 2006). One member of this family,
matriptase is expressed by leukocytes.
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Membrane-type serine protease-1 (MT1-SP or matriptase)
Expression and localization—This enzyme was first described in 1993 and was found to
be expressed predominantly by normal and malignant epithelial cells (Oberst et al., 2001).
More recently, matriptase has been shown to be expressed by monocytes, B lymphocytes, and
endothelial cells (Kilpatrick et al., 2006; Qiu, Owen, Gray, Bass, & Ellis, 2007b; Seitz et al.,
2007). Matriptase is a 80–90 kDa protein which is synthesized as an inactive single chain
zymogen. Matriptase activation is a complex process involving its non catalytic domains and
its main inhibitor, Kunitz type inhibitor hepatocytes growth factor activator inhibitor (List et
al., 2005). The zymogen is cleaved within its activation motif in the serine proteinase domain
generating a two chain enzyme from the single chain zymogen.

Biologic functions—In epithelial cells, matriptase plays a critical role in epithelial
differentiation, in part, by processing profilaggrin (List et al., 2006). Other substrates reported
for matriptase are pro-urokinase, hepatocytes growth factor, and PAR-2 (Takeuchi et al.,
2000; Lee, Dickson, & Lin, 2000). Matriptase is expressed at high levels on the surface of
freshly isolated monocytes and B lymphocytes (Kilpatrick et al., 2006). Activation of these
cells in vitro leads rapidly to loss of expression of matriptase from their surfaces. Surface-
bound matriptase is co-localized with uPAR on the surface of monocytic cell lines where it
potently activates pro-urokinase bound to uPAR, albeit 100-fold less efficiently than plasmin.
Thus, monocyte-derived matriptase may contribute to the generation of plasmin on the surface
of monocytes. Matriptase is also upregulated on the surface of monocytes adherent to
endothelial cells in atherosclerotic lesions, and monocyte-derived matriptase may stimulate
inflammation in these lesions by activating endothelial PAR-2 and increasing endothelial
production of pro-inflammatory mediators (Seitz et al., 2007). However, it is not clear whether
matriptase expressed by B lymphocytes function plays any role in physiologic or pathologic
processes.

Metalloproteinases
Members of the matrix metalloproteinase and ADAM subfamilies of metalloproteinases are
expressed on the surface of leukocytes.

Matrix metalloproteinases (MMPs)
Structure, expression, and activation of MMPs—This class of more than 20 proteinases
in humans depend on Zn2+ ions for their activity (Puente, Sanchez, Overall, & Lopez-Otin,
2003; Parks et al., 2004). MMPs are 40–50% identical at the amino acid level and have common
structural domains (Fig. 3). The domains include: 1) a pro-enzyme domain that maintains the
enzyme in its latent form; 2) the catalytic domain containing the zinc binding consensus
sequence HEXXHXXGXXH which binds the zinc molecule essential for catalysis; and 3) a
carboxy-terminal hemopexin domain which binds MMPs to their substrates, cell membranes,
and tissue inhibitors of MMPs (TIMPs). The gelatinases (MMP-2 and MMP-9) have additional
domains (Fig. 3). The six membrane-type MMPs (MT-MMP) also have either a membrane-
spanning domain or a GPI membrane anchor.

MMPs are synthesized and secreted from cells as latent pro-enzymes (pro-MMPs). Activation
of pro-MMPs can be achieved in vitro by various proteinases and reactive oxygen species
which disrupt the interaction between the active site zinc atom in the catalytic domain and a
conserved cysteine within the pro-enzyme domain (Murphy et al., 1999). Exposure of the zinc
results in auto-cleavage of the pro-domain yielding the mature active enzyme. The mechanism
of extracellular activation of pro-MMPs in vivo has not been determined, but reactive oxygen
species inactivate rather than activate MMPs in the lung in vivo (Fu, Kassim, Parks, &
Heinecke, 2003).
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Regulation of MMPs—In most cells including leukocytes, the MMP genes are tightly
regulated at the transcriptional level and their expression is induced during tissue remodeling,
wound healing, inflammation and other processes by a variety of growth factors, cytokines,
chemokines, bacterial products, and surfactant proteins (Campbell, Cury, Lazarus, & Welgus,
1987; Busiek, Baraji, Nehring, Parks, & Welgus, 1995; Cury, Campbell, Lazarus, Albin, &
Welgus, 1988; Wahl & Corcoran, 1993; Trask et al., 2001). In mononuclear phagocytes, MMPs
are synthesized and then rapidly secreted by cells rather than stored. PMN-derived MMP-8
and MMP-9 are notable exceptions to this rule, since they are stored in PMN secondary and
tertiary granules, respectively, and rapidly released from these granules when PMNs are
activated with degranulating agonists (Dewald, Bretz, & Baggiolini, 1982; Chatham, Heck, &
Blackburn, 1992).

Inhibitors of MMPs—The activity of MMPs is controlled by the four members of the tissue
inhibitors of metalloproteinase (TIMP) family and by α2-macroglobulin (Murphy et al.,
2003). In addition, a transmembrane inhibitor, RECK, which inhibits MMPs-2 and -9 and MT1-
MMP, has recently been shown to be essential for restricting MMP activity during embryonic
development (Oh et al., 2001).

Activities of MMPs—MMPs can degrade all of the components of the ECM in vitro. Based
on this, MMPs can be divided into groups (Shapiro, 1998) including: 1) the interstitial
collagenases (MMPs-1 [human only], -8, -13) which cleave native triple helical interstitial
collagens; 2) the gelatinases (MMP-2 and MMP-9) which degrade gelatins (denatured
collagens), elastin and basement membrane proteins; 3) the stromelysins (MMP-3, MMP-10,
and MMP-11) which have a broad spectrum of activity against ECM proteins; 4) the elastolytic
MMP-7 and MMP-12 which also have a broad spectrum of susceptible ECM substrates
including basement membrane components; and 5) the MT-MMP (see below).

The main function of MMPs in vivo was initially thought to be in ECM remodeling. Some
studies support a role for MMPs in ECM degradation in vivo. For example, MMP-12 degrades
lung elastin in cigarette smoke-exposed mice leading to pulmonary emphysema (Hautamaki,
Kobayashi, Senior, & Shapiro, 1997). The lung elastin fragments generated by MMP-12 are
chemotactic for blood monocytes and thereby amplify chronic lung inflammation and ECM
destruction in the lungs of smoke-exposed mice (Houghton et al., 2006). Many MMPs are
expressed by tumor cells, and tumor cell MMP-mediated ECM degradation plays a critical role
in promoting tumor growth and metastasis in vivo [reviewed in (Stamenkovic, 2000)].
However, there is increasing evidence that MMPs play important roles in regulating
inflammation, host defense, and angiogenesis by cleaving diverse molecules such as cytokines,
chemokines, clotting factors, regulators of angiogenesis, defensins, to either increase or
decrease their biologic activities. For example, MMP-7 sheds KC from syndecans on the
surface of lung epithelial cells thereby promoting PMN influx into the lung during bleomycin-
mediated ALI in mice (Li, Park, Wilson, & Parks, 2002), MMP-8 activates a PMN chemokine
in murine skin inflammatory reactions (Balbin et al., 2003), and MMP-12 sheds and activates
pro-TNF-α from macrophage surfaces in murine lung acutely exposed to cigarette smoke
thereby increasing neutrophilic lung inflammation (Churg et al., 2003). Several MMPs
inactivate pro-inflammatory mediators to dampen inflammation in tissues (McQuibban et al.,
2002). MMP-7 cleaves and activates defensins to promote host defense in the murine gut
(Wilson et al., 1999). MMP-12 cleaves plasminogen to generate angiostatin which inhibits
angiogenesis and tumor growth (Cornelius et al., 1998; Balbin et al., 2003). Some MMPs
activate PARs leading to activation of leukocytes, platelets, and tumor cells (Goerge et al.,
2006; Pei, 2005; Chung et al., 2004).

Membrane binding of MMPs lacking transmembrane domains or GPI anchors—
MMPs-1, 2, -7, -8, -9, and -13 lack a transmembrane domain and have been thought to function
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exclusively as soluble proteinases after their secretion from cells. However, these MMPs have
recently been shown to bind to various molecules on the surfaces of leukocytes (vide infra)
and other cells types (summarized in Table 1). Examples of MMPs that bind to cells other than
leukocytes are active MMP-1 which binds to α2β1 integrin on keratinocytes during wound
healing (Dumin et al., 2001), and active MMP-2 which binds to αvβ3 integrin on the surface
of melanoma cells and angiogenic blood vessels and participates in pericellular proteolysis
(Brooks et al., 1996). Pro- and active forms of MMP-2, -7, -9 and -13 are bound to HSPGs in
the plasma membrane of rat uterine epithelial cells [Table 1, (Yu & Woessner, Jr., 2000)] where
they may maintain the patency of the glandular lumen, promote host defense against bacteria
by activating defensins, and activate or degrade cell surface proteins that regulate epithelial
cell function. MMP-7 binds to CD44 on the surface of tumor cell lines, postpartum uterine and
lactating mammary gland epithelia, and uterine smooth muscle cells where it forms a complex
with and activates the HB-EGF precursor. The active HB-EGF thus generated, engages and
activates its receptor, ErbB4, promoting epithelial cell survival (Yu, Woessner, Jr., McNeish,
& Stamenkovic, 2002). CD44 is a docking molecule for active MMP-2 and -9 and on the surface
of breast tumor cells, melanoma cells, and normal keratinocytes (Yu & Stamenkovic,
1999;Yu & Stamenkovic, 2000). MMP-9 bound to CD44 on tumor surfaces degrades collagen
IV in the pericellular environment and promotes tumor cell invasion (Yu et al., 1999). MMP-2
and -9 bound to CD44 may also promote tissue remodeling by tumor cells by cleaving and
activating latent TGF-β (Yu et al., 2000).

Binding of MMPs to leukocyte integrins—PMN-derived MMP-8 and MMP-9 are
rapidly secreted by degranulating PMNs. Until recently, they have been thought to function
exclusively as soluble enzymes. However, PMNs also express MMP-8 and -9 on their surface.
Unstimulated cells have minimal cell-associated MMP-8 or -9, but activation of PMNs with
cytokines, chemokines, and bacterial products leads rapidly to 10-fold increases in surface
expression of these MMP due to translocation of the MMP-containing granules the PMN
surface (Owen, Hu, Lopez-Otin, & Shapiro, 2004; Owen, Hu, Barrick, & Shapiro, 2003). Latent
and active forms of these MMPs have been detected on the PMN surface, and active forms of
membrane-bound MMP-8 and -9 on PMNs degrade ECM proteins as efficiently as the soluble
forms of the proteinases (Owen et al., 2004; Owen et al., 2003). However, membrane-bound
MMPs are resistant to inhibition by TIMPs. The pro-forms of these MMPs bind, at least in
part, to a β2 integrin, CD11b/CD18 (Mac-1) on the PMN surface (Stefanidakis, Ruohtula,
Borregaard, Gahmberg, & Koivunen, 2004). The pro-MMPs bind via negatively charged
residues in their catalytic domain to the I domain of the CD11b chain on PMNs (Stefanidakis,
Bjorklund, Ihanus, Gahmberg, & Koivunen, 2003). However, the mechanism by which MMP-8
and -9 are activated and subsequently retained on the PMN surface is not clear.

Biologic roles of membrane-bound MMP-8 and -9 on PMNs—Membrane-bound
MMP-8 and -9 play no direct role in PMN migration through tissues since PMNs from
MMP-8−/− and MMP-9−/− mice are able to migrate in vitro and into inflamed tissues in vivo
(Betsuyaku, Shipley, Liu, & Senior, 1999; Owen et al., 2004). Surface-bound MMP-8 and -9
on activated PMNs may locally degrade the ECM, and remove tissue debris during wound
healing or contribute to resolution of inflammatory responses since they cleave pro-
inflammatory mediators in vitro, and MMP-8−/− mice have increased neutrophilic pulmonary
inflammation in murine models of asthma and acute lung injury (Gueders et al., 2005; Owen
et al., 2004).

Integral membrane MMPs (MT-MMPs)
Structure, activation, expression, and regulation—There are six members of this
subfamily of metalloproteinases (Table 1). They share 30–50% sequence homology, the multi-
domain structure typical of MMPs, and are expressed on cell surfaces by either a
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transmembrane domain spanning hydrophobic region or a GPI anchor (Itoh et al., 1999;Kang
et al., 2001). Like MMPs, MT-MMPs are synthesized as inactive pro-enzymes, but unlike most
MMPs, MT-MMPs are activated by furin-mediated cleavage on the pro-domain within the
trans-Golgi network before they are transported to cell surfaces (Sato, Kinoshita, Takino,
Nakayama, & Seiki, 1996;Pei, 1999;Imai et al., 1996).

The MT-MMP family is expressed by different cell types (Lehti, Lohi, Valtanen, & Keski-Oja,
1998) including leukocytes (Table 1). MT1-MMP is produced by macrophages, monocytes,
and dendritic cells (Stawowy et al., 2005; Yang et al., 2006), MT4-MMP is expressed by
eosinophils (Gauthier et al., 2003) and MT6-MMP is expressed only by PMNs (Kang et al.,
2001). In most cells including mononuclear phagocytes, MT-MMP expression is generally
upregulated at the steady state mRNA level by various cytokines and growth factors (Lohi,
Lehti, Westermarck, Kahari, & Keski-Oja, 1996; Origuchi et al., 2000; Migita et al., 1996), or
when cell adhere to ECM proteins (Ailenberg & Silverman, 1996). However, PMNs store MT6-
MMP as a preformed proteinase within their gelatinase and secretory vesicles from where the
enzyme translocates to the cell surface when PMNs are activated with degranulating agonists
(Kang et al., 2001).

Inhibition—MT-MMPs vary in their susceptibility to inhibition by TIMPs. For example,
TIMP-2, -3, and -4 inhibit MT1-MMP and MT2-MMP but TIMP-1 does not (D’Ortho et al.,
1998; Hernandez-Barrantes, Shimura, Soloway, Sang, & Fridman, 2001; Butler, Will,
Atkinson, & Murphy, 1997a). MT3-MMP is inhibited by TIMP-2 and -3 (Zhao et al., 2004).
MT4-MMP is inhibited efficiently by TIMP-1 (Kolkenbrock, Essers, Ulbrich, & Will, 1999)
and MT6-MMP is inhibited by TIMP-1 and -2 (Alon et al., 1994). TIMP-3 is sequestered at
cell surfaces by binding to proteoglycans, and this may explain, in part, its greater activity
against MT-MMP compared to other TIMPs which function as soluble inhibitors (Murphy et
al., 2003). MT-MMP expression can also be controlled by ectodomain shedding MT3-MMP
(Zhao et al., 2004).

Biologic roles—MT-MMPs contribute to ECM remodeling and regulate inflammation,
angiogenesis, cell migration, and tumor invasiveness and metastasis. MT1-MMP, MT2-MMP,
and MT3-MMP play critical roles in degrading interstitial collagens and denatured collagens.
MT1-MMP deficiency in mice causes craniofacial dysmorphism, arthritis, osteopenia,
dwarfism, and fibrosis of soft tissues due to loss of MT1-MMP-mediated collagenase activity
which is essential for modeling of skeletal and extra-skeletal connective tissues (Holmbeck et
al., 1999). By degrading interstitial collagen and other ECM proteins, MT1-MMP, MT2-MMP,
and MT3-MMP independently confer tumor cells with the ability to degrade the basement
membrane scaffolding which promotes transmigration of tumor cells during metastasis
(Hotary, Allen, Punturieri, Yana, & Weiss, 2000). MT-MMPs also degrade basement
membrane components and cartilage proteoglycans (D’Ortho et al., 1998; Ohuchi et al.,
1997; D’Ortho et al., 1997; Kang et al., 2001) and degrade ECM proteins indirectly by
activating pro-MMPs on cell surfaces (vide infra). MT-MMP may also regulate inflammation
by cleaving and activating pro-tumor necrosis factor-α (TNF-α), and by degrading proteinase
inhibitors (D’Ortho et al., 1997; English et al., 2000; Kang et al., 2001; Maquoi et al., 2000).

Activation of pro-MMPs on cell surfaces: MT-MMPs play critical roles in activating MMPs
on cell surfaces to amplify pericellular proteolytic events. This was first reported for MT1-
MMP activating pro-MMP-2 on tumor cells, fibroblasts, and endothelial cells (Strongin et al.,
1995; Butler, Will, Atkinson, & Murphy, 1997b; Sato et al., 1996; Cao, Rehemtulla, Bahou,
& Zucker, 1996; Cao, Sato, Takino, & Seiki, 1995). However, all members of the MT-MMP
subfamily have now been shown to activate pro-MMP-2 on cell surfaces (Zhao et al., 2004;
Wang, Johnson, Ye, & Dyer, 1999; Wang, Yi, Lei, & Pei, 1999; Butler et al., 1997a; Nie &
Pei, 2003), including MT1-MMP on the surface of macrophages (Stawowy et al., 2005).
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Activation of pro-MMP2 involves the formation of a ternary complex of pro-MMP-2, TIMP-2
and MT1-MMP on cell surfaces (Fig. 4). The activation of pro-MMP-2 is a two step procedure
in which pro-MMP-2 binds via its COOH terminal domain to the COOH terminal domain of
TIMP-2 which itself binds via its NH2 terminal inhibitory domain to the active site of MT1-
MMP. Adjacent TIMP-free MT1-MMP then cleaves the cell-associated pro-MMP-2
generating an intermediate form. This initial cleavage destabilizes the MMP-2 pro-domain
leading to auto-proteolytic cleavage in an MMP-2-dependent-manner. It is also noteworthy
that active MMP-2 also activates pro-MMP-13, thus MT-MMP activation of pro-MMP-2 can
also lead to MMP-13 activation on cell surfaces. Many tumors express high levels of pro-
MMP-2 and MT-MMP, and activation of pro-MMP-2 on the tumor surface permits
invadopodia to locally degrade the ECM permitting tumor cell invasion and metastasis (Chen,
1996).

ADAMs
ADAMs are a family of at least 35 members of type I transmembrane proteins so called because
they have a disintegrin and a metalloproteinase domain (Seals & Courtneidge, 2003). They
belong to the adamalysin subfamily of metalloproteinases along with ADAM-TS enzymes.
ADAM-TS proteinases are structurally similar to ADAMs, but differ from ADAMs in that
they function as soluble proteinases and have one or more thrombospondin domains (Stone,
Kroeger, & Sang, 1999; Primakoff & Myles, 2000). The first ADAMs identified in the early
1990s were the two subunits of the heterodimeric sperm protein, fertilin (ADAM-1 and -2),
which induce sperm-oocyte fusion by binding to α6β1 integrin on oocytes (Wolfsberg et al.,
1993; Myles, Kimmel, Blobel, White, & Primakoff, 1994). Interest in the ADAM family in
the biomedical community soared in 1997 when metalloproteinase inhibitors were shown to
prevent LPS-induced death by blocking TNF-α release from the surface of macrophages in
experimental animals (Black et al., 1997). Characterization and cloning of the enzyme
responsible for this activity led to the discovery of ADAM-17. Since then, other ADAMs have
been shown to participate in diverse physiologic and pathologic processes.

Structure, expression, and regulation—Like the MMPs, ADAMs have a multi-domain
structure (Fig. 5) including: 1) a pro-domain which maintains the metalloproteinase domain in
a latent form; 2) a metalloproteinase catalytic domain; 3) a disintegrin domain which binds
integrins; 4) a cysteine-rich region which may contain an epithelial growth factor (EGF)-like
domain; 5) a transmembrane domain which anchors ADAMs to cell membranes; and 6) a
carboxy-terminal cytoplasmic tail ( Seals & Courtneidge, 2003;Primakoff et al.,
2000;Yamamoto et al., 1999). Although all ADAMs have a metalloproteinase domain, only
~50% carry the active sites Zn2+ atom and are predicted to be catalytically active. ADAMs are
synthesized as latent enzymes and latency is maintained by an interaction between a conserved
cysteine residue in the pro-domain and the active site zinc. Many of the ADAMs contain
consensus sequences (RXXR) for furin and other pro-protein convertases and are activated by
furin-mediated cleavage in the trans-Golgi before ADAMs are transported to cell surfaces
(Yamamoto et al., 1999;Loechel, Overgaard, Oxvig, Albrechtsen, & Wewer, 1999;Roghani et
al., 1999;Lum, Reid, & Blobel, 1998).

The expression of ADAMs varies widely in mammalian tissues. ADAMs known to be
expressed by leukocytes include ADAM-8, -10, -15, -17, and -28 (Gomez-Gaviro et al.,
2007; Armstrong, Godinho, Uppington, Whittington, & Millar, 2006; Li, Brazzell, Herrera, &
Walcheck, 2006; Lum et al., 1998; Bridges et al., 2002). ADAM expression is generally
regulated at the transcriptional level by various mediators. For example, ADAM-10 and -17,
are up-regulated in many cell types in vitro by various agonists including phorbol esters,
cytokines, chemokines, and growth factors (Walcheck et al., 2006; Bzowska, Jura, Lassak,
Black, & Bereta, 2004; Bandyopadhyay et al., 2006) which generally regulate ADAM
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expression at the steady state mRNA level (Bzowska et al., 2004; Fujita et al., 2006). However,
ADAM-8 is stored as a preformed proteinase in PMN specific and gelatinase granules and
translocates rapidly to the surface when PMNs are activated with phorbol esters (Gomez-
Gaviro et al., 2007).

Inhibitors—The activity of the metalloproteinase domain can be regulated by TIMPs, but
ADAMs vary widely in their susceptibility to inhibition by TIMPs. For example, ADAM-17
is inhibited by TIMP-3, but not by TIMP-1 or -2 (Amour et al., 1998; Amour et al., 1999).
ADAM-10 is inhibited by TIMP-1 and -3, but not by TIMP-2 and -4 (Amour et al., 2000).
ADAM -8 and -9 are not inhibited by TIMP-1, -2 or -3 (Amour et al., 2002).

Biologic activities—The major functions of ADAMs are linked to their domain structure
and include role for: 1) the metalloproteinase domain in shedding cell surface proteins; 2) the
disintegrin domain in regulating cell adhesion and migration; 3) the cysteine-rich and
disintegrin domains in promoting cell fusion; and 4) the cytoplasmic tail in intracellular
signaling events.

Sheddase activities: ADAMs have been reported to cleave only a limited number of ECM
proteins (Millichip, Dallas, Wu, Dale, & McKie, 1998) and likely play little role in ECM
turnover. The critical function of the metalloproteinase domain is the shedding of a wide variety
of transmembrane proteins from cell surfaces by juxtamembrane cleavage. The best known
example is that of ADAM-17 (TNF-α convertase or TACE). TNF-α is expressed as an inactive
26 kDa protein on the surface of macrophages, PMNs, and other cells. Pro-TNF-α is cleaved
by juxtacrine ADAM-17 on the cell surface releasing soluble, active 17 kDa TNF-α (Black et
al., 1997). Together, ADAMs cleave a wide variety of membrane-associated proteins, but they
lack unique consensus sequences and there is considerable overlap in substrates. Membrane-
bound proteins cleaved by ADAMs include: 1) other cytokines and their receptors such as
TRANCE, fractalkine, CXCL-16, CD40 ligand, TNF receptors, and IL-6 receptor (Lum et al.,
1999; Garton et al., 2001; Gough et al., 2004; Amour et al., 2000; Althoff, Reddy, Voltz, Rose-
John, & Mullberg, 2000); 2) epidermal growth factor (EGR) ligands and receptors such as
TGF-α, EGF, HB-EGF, amphiregulin, betacellulin, amphicellulin, and Erb4/HER (Sahin et
al., 2004; Rio, Buxbaum, Peschon, & Corfas, 2000); 3) adhesion molecules such as VCAM-1,
L-selectin, N-cadherin, and CD44 (Garton et al., 2003; Walcheck, Alexander, St Hill, &
Matala, 2003; Reiss et al., 2005; Vachon et al., 2002); 4) other receptors such as CD23, Notch,
and ErbB4/HER (Fourie, Coles, Moreno, & Karlsson, 2003; Brou et al., 2000; Hartmann et
al., 2002). As a result of these sheddase activities, ADAMs play roles in development and in
regulating inflammation, cell adhesion, cell growth, proliferation, and survival.

The activity of ADAM sheddases can be regulated by non-transcriptional mechanisms. For
example, G-protein coupled receptor agonists increase ADAM-17-mediated shedding of
EGFR ligands by activating EGFR/MAP/ERK pathway (Schafer, Gschwind, & Ullrich,
2004). The cytoplasmic tail of ADAM-17 is phosphorylated by various intracellular kinases
including Ras/Raf/MEK kinase leading to activation of ADAM-17 sheddase activities (Fan,
Turck, & Derynck, 2003). Phorbol esters also regulate the activity of ADAM-17, but this does
not involve the cytoplasmic tail of ADAM-17 since phorbol ester also activates an ADAM-17
mutant lacking the cytoplasmic tail (Doedens, Mahimkar, & Black, 2003). Cigarette smoke
increases ADAM-17 shedding of EGFR ligands to regulate airway mucin production but the
mechanism involved is unknown (Basbaum, Li, Gensch, Gallup, & Lemjabbar, 2002;
Lemjabbar et al., 2003).

Disintegrin domain in regulating cell adhesion and migration: This domain enables
ADAMs to regulate cell adhesion and migration. This domain is structurally similar to the
snake venom disintegrins which have an RGD-binding motif which binds integrin αIIbβ3 to
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impair platelet aggregation leading to severe hemorrhage. However, mammalian ADAMs lack
RGD sequences with the notable exception of human ADAM-15. ADAM-15 has an RGD-
binding site through which it binds to αvβ3 and α5β1 integrins (Nath et al., 1999). However,
ADAM-15 also contains Rx6DEVF sequences which mediate RGD-independent binding of
many ADAMs to various integrins. By binding and regulating integrin activity ADAMs can
either promote or inhibit cell adhesion, migration, and cell fusion. In addition to ADAM-1 and
-2 binding to various integrins to promote sperm-oocyte fusion (Evans, 2001), ADAM-15
promotes cell-cell adhesion of fibroblasts to inhibit wound healing (Herren et al., 2001) and
inhibits RGD-dependent αvβ3 adhesion and migration of ovarian tumor cells (Beck et al.,
2005). Endothelial ADAM-15 binds to activated αIIbβ3 integrin on platelets to promote platelet
adhesion and aggregation and thrombus formation (Langer, May, Bultmann, & Gawaz,
2005). ADAM-9 promotes fibroblast adhesion and motility by its disintegrin domain binding
to α6β1 integrin (Nath et al., 2000). However, the roles of ADAMs in regulating leukocyte
adhesion and migration have not been studied.

Cysteine-rich domain in regulating cell fusion and cell adhesion: This domain has been
less well studied than the other ADAM domains, but has been implicated in cell fusion and
adhesion. The cysteine rich domain of some ADAMs contains a sequence of amino acids
resembling viral fusion peptides, and this domain plays roles in ADAM-12-mediated myoblast
fusion and in ADAM-1- and ADAM-2-mediated sperm-oocyte fusion (Brzoska, Bello,
Darribere, & Moraczewski, 2006; Blobel et al., 1992; Yagami-Hiromasa et al., 1995). The
cysteine-rich domain of ADAM-2 also regulates cell adhesion by binding to the sulfate groups
in the HSPG, syndecan-4, to promote cell adhesion which requires interactions between the
cysteine-rich domain and activated β1 integrins (Iba et al., 2000). The disintegrin-cysteine rich
domain of ADAM-9 binds to β1 integrins to promote keratinocyte adhesion and migration
(Zigrino et al., 2007). However, the roles of this domain in leukocyte function have not been
elucidated.

The cytoplasmic domain: This domain can regulate the sheddase activities of ADAMs or
regulate intracellular signaling by binding to intracellular proteins or by being phosphorylated
by intracellular kinases. For example, phosphorylation of the cytoplasmic tail of ADAM-17
by Ras/Raf/MEK kinase increases ADAM-17- mediated sheddase activities (Fan et al.,
2003). The cytoplasmic domains of several ADAMs including ADAM-9, -12, and -15 have
Src homology 3 (SH3)-binding motifs which binds Src kinases and other intracellular proteins
(Nelson, Schlondorff, & Blobel, 1999; Howard, Nelson, Maciewicz, & Blobel, 1999). The
cytoplasmic tails of ADAM-17 and -9 bind mitotic arrest deficient 2 (MAD2) and MAD2-β,
respectively (Nelson et al., 1999). However, it is not clear whether the cytoplasmic tails of
ADAM15 tranduce intracellular signaling events by binding intracellular proteins in
leukocytes or other cells.

Biologic activities of ADAMs—Studies of mice or murine cells genetically deficient in
ADAMs have confirmed roles for ADAMs in diverse physiologic processes (Table 2) including
critical roles in morphogenesis for ADAM-10, -19 and -17. ADAM-10 is critical in early neural
development by proteolytically activating Notch, which by binding to its receptors, promotes
formation of different neural cell types in a spatially and temporally regulated manner
(Hartmann et al., 2002). ADAM-17 deficient embryos have abnormal epithelial differentiation
and growth in developing heart and lung which is likely due to defective EFGR ligand shedding
(Peschon et al., 1998).

ADAM expression is also dysregulated in various organ systems during pathologic processes.
Ischemia up-regulates ADAM-17 expression in rat forebrain (Hurtado et al., 2001). ADAM-15
and -17 expression are enhanced on macrophages and fibroblasts in rheumatoid synovium
(Bohm, Aigner, Blobel, Kalden, & Burkhardt, 2001; Ohta et al., 2001), and ADAM-8 is
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upregulated in neurons, astrocytes, and microglia in neurodegenerative processes in the murine
brain (Schlomann, Rathke-Hartlieb, Yamamoto, Jockusch, & Bartsch, 2000). ADAM-33 has
been identified as the first asthma gene in Caucasians (Van Eerdewegh et al., 2002). ADAM-8
expression is upregulated in the airway structural cells and inflammatory infiltrates in human
asthma subjects (Foley et al., 2007). However, the mechanisms by which ADAM-33 and -8
contribute to asthma pathogenesis are not clear (Shapiro & Owen, 2002). Several ADAMs are
upregulated in tumors and hematologic malignancies including ADAM-10, -12, and -15
(Kveiborg et al., 2005; Liu et al., 2006; Ortiz, Karkkainen, & Huovila, 2004; Kenny & Bissell,
2007; Wu, Croucher, & McKie, 1997). Several ADAM deficient mice have no abnormalities
in the unchallenged state (Table 2), but it is likely that future studies of these mice in murine
models of disease will uncover critical roles for these in pathologic processes in various organs.

Cysteine proteinases
Cysteine proteinases have a two-domain globular structure, a similar size (about 23–27 kDa),
and an active-site cysteine which is critical for catalytic activity (Turk, Turk, & Turk, 1997).
There are four cysteine proteinases present in human lysosomal granules: cathepsins B, H, L,
and S which are members of the papain superfamily of cysteine proteinases. They are
synthesized as pro-enzymes which are processed by limited proteolysis to the active forms in
lysosomes. The main naturally-occurring inhibitors of cysteine proteinases in tissues are the
cystatin superfamily. The kininogens and α2-macroglobulin are the major inhibitors of cysteine
proteinases in plasma (Henskens et al., 1996).

The main role of lysosomal cysteine proteinases in to degrade intracellular proteins under the
acidic conditions (pH 5–6.5) of the lysosomes (Henskens, Veerman, & Nieuw Amerongen,
1996). However, these enzymes have also been implicated in extracellular proteolytic events
at or near the surfaces of leukocytes, leukocyte-derived cells, and tumor cells. For example,
osteoclasts do not store cysteine proteinases in large quantities within their lysosome. Rather,
the enzymes are targeted to the osteoclast surface/bone interface where strong adhesive
attachments and proton secretion by osteoclasts creates an environment that favors the
resorption of bone matrix proteins in the pericellular environment (Baron, Neff, Louvard, &
Courtoy, 1985; Blair, Teitelbaum, Ghiselli, & Gluck, 1989).

Cysteine proteinases including cathepsins S, L, and B are also involved in the degradation of
insoluble extracellular elastin by lung macrophages at neutral pH in vitro (Chapman, Jr.,
Munger, & Shi, 1994; Mason, Johnson, Barrett, & Chapman, Jr., 1986; Shi, Munger, Meara,
Rich, & Chapman, 1992). Among these lysosomal cysteine proteinases, only cathepsin B has
been confirmed to be expressed on cell surfaces.

Cathepsin B
This lysosomal cysteine proteinase was first localized on the surface of alveolar macrophages
in 1984 (Chapman, Jr. & Stone, 1984). About 50% of the alveolar macrophage’s content of
cathepsin B was reported to be expressed on the cell surface where it contributes to extracellular
elastin degradation. However, the binding site(s) for cathepsin B on macrophages have not yet
been identified.

More recently, cathepsin B has been shown to be expressed on the surface of various tumor
cells (Cavallo-Medved, Mai, Dosescu, Sameni, & Sloane, 2005; Cavallo-Medved et al.,
2003; Calkins, Sameni, Koblinski, Sloane, & Moin, 1998). The light chain of annexin II
tetramer, p11, has been reported to be the receptor for this enzyme on some tumor cells (Mai,
Waisman, & Sloane, 2000). Surface-bound cathepsin B on tumor cells is active and can degrade
extracellular proteins including type IV collagen and activates pro-urokinase, pro-MMPs, and
activate growth factors (Sameni, Moin, & Sloane, 2000; Kobayashi et al., 1993b; Guo, Mathieu,
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Linebaugh, Sloane, & Reiners, Jr., 2002). Thus, surface cathepsin B on tumor cells may play
roles in tumor growth and invasiveness (Podgorski & Sloane, 2003).

Catalytically active cathepsin B has also been reported on the surface of cytotoxic T cells
(CTLs). Unstimulated CTLs express very low levels of surface cathepsin B but when they are
activated to degranulate, surface cathepsin B levels rapidly increase (Balaji, Schaschke,
Machleidt, Catalfamo, & Henkart, 2002). The binding sites for cathepsin B on CTLs have not
been identified. Surface bound cathepsin B on CTLs prevents lymphocyte cell death by
cleaving and inactivating perforin molecules released along with cathepsin B during CTL
degranulation, thereby preventing perforin molecules which diffuse back to the CTL surface
from injuring CTLs (Balaji et al., 2002).

Conclusions
An increasing number of biologically important neutral and acidic proteinases have been shown
to be expressed on the surface of leukocytes, and become associated with leukocyte plasma
membranes by diverse mechanisms. Surface localization of proteinases likely focuses and
restricts proteolysis to the leukocyte pericellular environment thereby keeping proteinase
activity under close regulatory control by regulating cell surface levels of proteinases by the
availability of binding sites and by internalization or shedding of proteinases from the cell
surface. Localization of proteinases on leukocyte surfaces confers many advantages to
proteinases including rendering them resistant to inhibition by physiologic processes,
promoting and amplifying activation of proenzymes, and increasing the stability and half life
of proteinases in the extracellular space. Cell surface binding of proteinases also enables them
to participate in intracellular signaling in leukocytes via the cytoplasmic tails or transmembrane
proteinases, or by binding of proteinases to their receptors or adjacent cell surface proteins
such as integrins. Leukocyte cell-surface proteinases make critical contributions to
extracellular proteolysis, and cell adhesion and migration during physiologic and pathologic
processes. Future studies likely will uncover additional roles for leukocyte cell-associated
proteinases in disease processes.

The binding of proteinases to leukocytes has important therapeutic implications. Surface-
bound serine and metallo-proteinases on PMNs and other cell types are likely to be the major
bioactive forms of the proteinases in vivo. In addition, many membrane-associated proteinases
are resistant to inhibition by physiologic inhibitors indicating that augmentation of physiologic
inhibitors may not have therapeutic efficacy in diseases characterized by excessive proteolysis.
However, low-molecular-weight synthetic inhibitors are very effective against membrane-
bound forms of serine proteinases and MMPs on PMNs (Owen et al., 1995b; Owen et al.,
1998; Owen et al., 2003; Owen et al., 2004), and against members of the ADAMs family
(Martin, Eynstone, Davies, Williams, & Steadman, 2002; Amour et al., 2002) suggesting that
they may have therapeutic potential in diseases characterized by excessive activity of
membrane-bound proteinases. The binding sites for proteinases on leukocytes also represent
novel therapeutic targets. In this respect it is noteworthy that delivering heparin or other sulfated
compounds to animals dislodges MMPs from HSPG on cell surfaces, and attenuates excessive
tissue destruction associated with inflammation and reduces tumor metastasis, and
angiogenesis (Rogachefsky, Dean, Howell, & Altman, 1993; Anees, 1996). More knowledge
about the mechanisms by which cell surface proteinases bind to and are regulated on leukocyte
surfaces may facilitate the development of new treatment strategies to control the deleterious
activities of these enzymes in inflammatory diseases.
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Figure 1. PMN pericellular proteolysis
PMNs were incubated for 45 min. at 37°C on FITC-conjugated fibronectin which had been
coated on tissue culture plates, and then opsonized. PMNs were bathed in 100% autologous
serum which contains micromolar concentrations of TIMPs and serine proteinase inhibitors.
Note that PMNs degrade fibronectin substrate as they migrate over it. However, fibronectin
degradation is localized to the pericellular environment of the migrating PMNs by the inhibitors
present in the bathing medium (arrows). Thus, physiologic proteinase inhibitors present in
serum cannot block PMN pericellular proteolytic activity. When cells are bathed in inhibitor
free buffers, the FITC-conjugated FN is completely degraded (not shown). One mechanism
leading to this inhibitor-resistant pericellular proteolysis is expression of proteinases on the
PMN surface in inhibitor-resistant forms which has been demonstrated for several serine and
metallo-proteinases families.
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Figure 2. Neutrophil elastase is expressed on the surface of activated PMNs
Human PMNs were activated for 30 min. at 37°C with 10−7M fMLP and then fixed and
immunostained with rabbit anti-NE (top panel) or non-immune rabbit IgG (bottom panel)
followed by a secondary antibody conjugated to a red fluorophore. Cells were examined using
Normaski objective (left panel) and confocal miscroscopy (right panel). Note the intense
staining for NE on the surface of activated PMNs. Most NE (and CG) bind to HSPG and CSPG
on the PMN surface by an active site-independent manner (Campbell et al., 2007). However,
a small proportion of NE and CG bind via their active sites to CD11b/CD18 integrins on PMNs
to regulate PMN adhesion to extracellular matrix proteins (Cai et al., 1996).
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Figure 3. Domain structure of MMPs
MMPs share common features including a pro-enzyme domain (I), a catalytic domain with the
active site zinc bound to the HEXXHXXGXXH consensus sequence (II), and a C-terminal
domain (III) which may regulate MMPs binding to their substrates and to tissue inhibitors of
metalloproteinases. The catalytic zinc (Zn) atom interacts with a conserved cysteine (C) in
domain I to maintain the pro-enzyme in an inactive conformation. The gelatinases have an
additional domain similar to the fibronectin type II domain, which interrupts the catalytic
domain. MMP-9 also has a region with homology to type V collagen (not shown).
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Figure 4. MT1-MMP activates pro-MMP-2 on cell surfaces
Pro-MMP-2 and TIMP-2 form a ternary complex with MT1-MMP (or other MT-MMP family
members) on the surface of fibroblasts, tumor cells, macrophages, and other cell types. TIMP-2
binds via its NH2 terminal inhibitory domain to MT-1-MMP. The COOH terminal domain of
pro-MMP-2 binds to the COOH terminal domain of TIMP-2. Pro-MMP-2 is activated by
adjacent free MT1-MMP which cleaves the NH2-terminal pro-domain of MMP-2, generating
active MMP-2 anchored to the cell surface. Homotypic interactions between two adjacent
MT1-MMP molecules facilitate pro-MMP-2 activation.
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Figure 5. Structure and function of the ADAMs family members
ADAMs have a multi domain structure including a pro-domain which maintains the
metalloproteinase domain in a latent form by a cysteine residue in the pro-domain coordinating
with the active site zinc atom in the metalloproteinase domain. Many ADAMs are activated
by furin-mediated cleavage of the pro-domain in the trans-Golgi network. All ADAMs have a
metalloproteinase (MP) domain, but only 50% have the active site zinc atom and are predicted
to be catalytically active. ADAMs with an active MP domain can shed cytokines, growth
factors, apoptosis ligands and receptors for these molecules to regulate many cellular processes.
The disintegrin domain binds to integrins to increase or decrease cell adhesion and migration.
The cysteine-rich region may contain an epithelial growth factor (EGF)-like domain which
plays roles in cell adhesion and cell-cell fusion. The transmembrane domain anchors ADAMs
to cell membranes. The COOH terminal cytoplasmic tail can regulate the sheddase activities
of ADAMs and bind intracellular proteins and may play roles in intracellular signaling.
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Table 1
Mechanisms of cell surface binding of proteinases

Binding mechanism Proteinases bound Cell types Proteolytic Activities
Transmembrane
Domain

MT1-MMP
MT2-MMP
MT3-MMP
MT5-MMP

Epithelial cells
Tumor cells
Fibroblasts
Macrophages

ECM degradation, tumor invasiveness
Pro-MMP-2 &-13 binding and
activation, TNF-α activation, proteinase
inhibitor degradation

ADAMs Epithelial cells
Endothelial cells
Fibroblasts
Smooth muscle cells
Inflammatory cells
Tumor cells

Shedding of membrane- associated
cytokines, apoptosis ligands, growth
factors and receptors for these molecules
Pro-urokinase activation

Type II serine proteases
(matriptase)

Monocytes, B lymphocytes

GPI anchor uPAR and urokinase PMN mononuclear phagocytes
Fibroblasts
Epithelial cells
Smooth muscle cells

Fibrinolysis Activation of latent growth
factors & proMMPs

MT4-MMP CNS eosinophils ECM degradation proMMP-2 activation
MT6-MMP PMN ECM degradation

Proteoglycans Pro- and active MMP-2, -7, -9,
and -13

Uterine epithelial cells ECM degradation Host defense

NE, CG, PR3 PMN, macrophages Wound healing Inflammation
Integrins β2: Pro-MMP-9 & -8, NE, CG PMN Unknown

α2β1: MMP-1 Keratinocytes Cell migration
αvβ3: MMP-2 Endothelial cells & melanoma

cells
Tumor invasiveness and
neovascularization

TIMP-2 Pro-MMP-2 and proMMP-13 Fibroblasts Endothelium
Tumor cells

ECM degradation
Tumor invasiveness

CD44 MMP -2 & MMP-9 Tumor cells & keratinocytes ECM degradation, activation of latent
TGF-β

MMP-7 Tumor cells & epithelial cells Post partum uterine involution, and
lactation through HB-EGF shedding

Tissue factor Factor VII Monocytes/macrophages Activation of actor VII and other serine
proteases involved in thrombosis

High-molecular-
weight Kininogen

Prekallirein Endothelial cells Factor XI activation leading to
thrombosis
Bradykinin generation
Pro-urokinase activation

P11 Cathepsin B Tumor cells Tumor growth and metastasis
Unknown Cathepsin B Macrophages, CTLs Elastin degradation, degradation of

perforins
Legend for Table 1. ECM, extracellular matrix; PMN, polymorphonuclear neutrophils; TNF-α, tumor necrosis factor- α; GPI, glycosyl phosphatidyl
inositol; CNS, central nervous system; NE, neutrophil elastase; CG, cathepsin G; PR3, proteinase 3; TGF-β, transforming growth factor- β, HB-EGF,
heparin binding epidermal growth factor; CTLs, cytotoxic T lymphocytes
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Table 2
Phenotypes of mice genetically deficient in ADAMs

Genotype Phenotype
ADAM8−/− Viable and fertile with no phenotype in the unchallenged state(Kelly et al., 2005).
ADAM9−/− Viable and fertile with no phenotype in the unchallenged state(Weskamp et al., 2002).
ADAM10−/− Embryonic lethal (E9.5). Defects in the heart and central nervous system development and vasculogenesis (Hartmann et Al, 2002).
ADAM12−/− 30% embryonic lethal. Surviving mice have normal fertility. Minor brown fat and neck muscle hypertrophy (Kurisaki et al., 2003).
ADAM15−/− Viable, fertile with and no phenotype in the unchallenged state. Reduced neovascularization in a murine model of retinopathy of

prematurity (Horiuchi et al., 2003)
ADAM17−/− Perinatal lethal. Epithelial dysplasia similar to that in TGF-α deficient mice with defective heart and lung development, and defective

EGFR ligand shedding (Peschon et al., 1998; Zhao et Al., 2001; Shi et al., 2003).
ADAM19−/− 80% post-natal lethality 1–3 days after birth with defective heart development (Zhou et al., 2004).
Legands for table 2. TGF-α, transforming growth factor-α; EGFR, epidermal growth factor receptor.
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