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ABSTRACT We present a gene–culture coevolutionary
model for brother–sister mating in the human. It is shown that
cultural—as opposed to innate—determination of mate pref-
erence may evolve, provided the inbreeding depression is
sufficiently high. At this coevolutionary equilibrium, sib mat-
ing is avoided because of cultural pressures.

Westermarck (1) proposed that ‘‘there is an innate aversion to
sexual intercourse between persons living closely together
from early youth’’ (italics added). In particular, sibs reared
together are expected to avoid mating with one another.
Studies on the Chinese custom of sim-pua (adoption of a future
daughter-in-law) (2) and on marriage patterns among adults
reared together as children in Israeli kibbutzim (3) seem to
support Westermarck’s proposition.

Throughout the vertebrate, invertebrate, and plant king-
doms, the propensity to inbreed varies widely (4). In plants,
both self-fertilization and self-incompatibility are widely rep-
resented. From simple population genetic models, an allele
that increases the level of selfing may succeed if the depression
of fitness that results from inbreeding is less than 50% (5–9).
In animals and birds, experiments designed to detect inbreed-
ing avoidance have produced mixed results (10). In Japanese
quail, for example, females reared with siblings chose the
company of first cousins over that of both sibs and third cousins
(11). Such kin recognition mechanisms would permit inbreed-
ing to be avoided without the necessity of dispersal, which is
commonly evoked as a major means of inbreeding avoidance
in many mammals.

An ‘‘innate’’ behavior is understood as one that has the same
expression across the normal range of environments, so that
within the species, there is little variation. Humans, however,
are subject to an extraordinarily wide array of social environ-
ments, partly as a result of cultural differences among ethnic
groups. Whereas sib mating has been banned in most societies
that we know about, past and present, it was institutionalized
in some (12, 13). Cousin mating, a milder form of inbreeding,
is often preferred over complete outbreeding (14).

In the case of institutionalized sib mating in Roman Egypt,
the innate avoidance mechanism postulated by Westermarck
was readily overridden. Wolf’s studies (15, 16) of minor
marriage in Taiwan are usually regarded as providing evidence
for the Westermarck effect. But matings between the foster
sibs did in fact occur.

Archaeological demonstration of lithic traditions suggests
that cultural transmission has been an important determinant
of behavior in hominids for more than two million years. In a
cultural species, it is more appropriate to frame the discussion
in terms of a ‘‘norm of reaction’’ rather than narrowly innate
behavior. Thus, a genotype may respond quite differently

depending on the cultural pressures its carrier experiences. For
example, whether the parents are sibs or unrelated may directly
affect the probability that their offspring mate with one
another.

Here we present a coevolutionary model in which the
probability of sib mating is determined by an individual’s
genotype and also by whether or not its parents were sibs.
Analysis of this model yields the particularly interesting result
that a wide norm of reaction may be evolutionarily stable (see
qualification below). When gene–culture coevolution has re-
sulted in fixation of a genotype with a wide norm of reaction,
avoidance of sib mating will not be innate. Nevertheless, the
evolved biases in cultural transmission and the selective dis-
advantage of inbred offspring will cause sib mating to be
eliminated from the population. At this coevolutionary equi-
librium, individuals are genetically capable of mating with sibs,
but do not because of cultural pressure.

Model

With genetic determination of the inbreeding rate, it is well
known that there is an evolutionary trade-off between the
transmission of genes identical by descent to inbred offspring
and the inbreeding depression suffered by those offspring. In
the case of sib mating in an outbreeding population, the
relatedness of a parent to inbred and outbred offspring is in the
ratio of 3:2. Hence, using an inclusive fitness argument, if the
inbreeding depression is d, sib mating will invade if 3 (1 2 d)
. 2 or d , 1⁄3. This was also observed in a formal dynamical
analysis (7). This argument holds under both diploidy and
haploidy. For mathematical simplicity, we assume haploidy in
what follows. Specifically, we posit two haploid genotypes A1
and A2.

Experimental data suggest that mate choice is more strongly
exercised by the female of a species. Therefore, we posit that
the occurrence of sib mating is dependent on female choice. If
she is of genotype Ai and her parents are sibs, the probability
she will want to mate with her brother is bis, whereas if her
parents are unrelated, the corresponding probability is bir. In
this context we should note, however, that marital dissatisfac-
tion in the marriages studied by Wolf is not necessarily
expressed more strongly in the sim-pua (i.e., wife).

Mating is conditional on survival to reproductive age. Each
individual, male or female, whose parents are sibs has a
viability of 1 2 d relative to an individual with unrelated
parents. One girl and one boy are born in each family, and
deaths occur independently. A surviving female may want to
mate with her brother, but can only do so if he also survives.
If he dies, she mates with an unrelated male with probability
h. The remaining fraction 1 2 h of incestuous females who
have lost their brothers refrain from mating.

Define Sij to be the frequency of ordered sib matings
between an Ai female and an Aj male, with Rij the correspond-
ing frequency of random matings between an Ai female and an
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Aj male. Among the newborns of the next generation, let Xij be
the frequency of ordered sibships, comprising an Ai sister and
an Aj brother and derived from a sib mating. Similarly, Yij is the
frequency of ordered sibships of the same composition but
derived from unrelated parents. In this haploid model,

X11 5 S11 1
S12 1 S21

4
, Y11 5 R11 1

R12 1 R21

4

X12 5 X21 5
S12 1 S21

4
, Y12 5 Y21 5

R12 1 R21

4

X22 5 S22 1
S12 1 S21

4
, Y22 5 R22 1

R12 1 R21

4
. [1]

Finally, let zi be the frequency of genotype Ai among the
random mating males. We assume that all males, whether
mated to their sisters or not, compete equally for random
mating females. Hence

Wz91 5 ~1 2 d!SS11 1
S12 1 S21

2 D 1 R11 1
R12 1 R21

2
,

Wz92 5 ~1 2 d!SS22 1
S12 1 S21

2 D 1 R22 1
R12 1 R21

2
, [2]

where a prime indicates adults of the next generation and

W 5 ~1 2 d!O
i
O

j
Sij 1 O

i
O

j
Rij. [3]

Our assumptions imply the following recursions in the basic
variables Sij and Rij, where all summations are over 1 and 2:

TS9ij 5 ~1 2 d!2Xijbis 1 Yijbir , [4a]

TR9ij 5 O
k

~1 2 d!Xik~bisdh 1 1 2 bis!z9j

1 O
k

Yik~1 2 bir!z9j, [4b]

where

T 5 ~1 2 d!O
i
O
j

Xij @1 2 bisd~1 2 h!# 1 O
i
O
j

Yij . [4c]

Genetic Monomorphism in A1

Assume that the genotype A1 is fixed. Dynamics of the
frequency of sib matings, S11 (and of random matings, R11 5
1 2 S11) are then determined by the vertical transmission rates,
b1s and b1r, and by natural selection against inbred offspring, d.

The equilibrium frequency of sib matings, Ŝ11, satisfies

0 5 f~S11! 5 d@1 1 ~1 2 d!~1 2 h!b1s#S11
2

2 @1 1 b1r 2 ~1 2 d!2b1s#S11 1 b1r . [5]

Because b1r $ 0 and f(1) 5 2(1 2 d)[1 2 (1 2 hd) b1s] # 0,
there is only one valid equilibrium if 1 2 (1 2 hd) b1s . 0 (d .
0 is assumed). If 1 2 (1 2 hd) b1s 5 0, Eq. 5 factors to yield

f~S11! 5 ~S11 2 1!$@1 2 ~1 2 d!2b1s#S11 2 b1r%. [6]

Hence, two valid equilibria, Ŝ11 5 b1ry[1 2 (1 2 d)2b1s ] and
Ŝ11 5 1, exist if b1r , 1 2 (1 2 d)2b1s, but Ŝ11 5 1 is the only
valid equilibrium when this inequality is reversed.

For small perturbations from the equilibrium, Ŝ11, stability
is governed by the eigenvalue

l 5
$1 2 ~1 2 d!@1 2 b1sd~1 2 h!#%Ŝ11 1 ~1 2 d!2b1s 2 b1r

1 2 $1 2 ~1 2 d!@1 2 b1sd~1 2 h!#%Ŝ11

5 1 1 f9~Ŝ11!yT̂. [7]

(Here we are still assuming fixation on the genotype A1.
Stability to introduction of the allele A2 will be considered
later.) Clearly, l . 21. Hence, the equilibrium Ŝ11 is stable if
f9 (Ŝ11) , 0—i.e., when Ŝ11 is the smaller root of f(S11) 5 0, and
Ŝ11 is unstable when f9 (Ŝ11) . 0. Thus, when there is only one
valid equilibrium, it is always stable, and when there are two,
the smaller is stable.

Stability to Introduction of New Allele A2

We next consider stability of the genetic monomorphism in A1
derived above to introduction of a new allele A2. Standard
linear stability analysis shows that the nonzero eigenvalues are
given by the roots of the characteristic polynomial

F~l! 5 @~1 2 d!2~b1s 1 b2s!y~4T̂! 2 l#@~1 2 d!2b2syT̂ 2 l#

z ~m* 2 l! 1 ~my8T̂!$~b1r 1 3b2r!l 2 ~1 2 d!2y~2T̂!

z @b2r~b1s 1 b2s! 1 b2s~b1r 1 b2r!#%, [8a]

where

m 5 ~1 2 d!$~1 2 d!@2 2 ~b1s 1 b2s!~1 2 dh!#Ŝ11

1 @2 2 b1r 2 b2s~1 2 dh!#R̂11%y~T̂Ŵ!, [8b]

m* 5 $~1 2 d!@2 2 b1s~1 2 dh! 2 b2r#Ŝ11

1 ~2 2 b1r 2 b2r!R̂11%y~2T̂Ŵ!, [8c]

T̂ 5 ~1 2 d!@1 2 b1sd~1 2 h!#Ŝ11 1 R̂11,

Ŵ 5 ~1 2 d!Ŝ11 1 R̂11. [8d]

F(l) is a cubic of the form

F~l! 5 ~l1 2 l!~l2 2 l!~l3 2 l! 1 k~l 2 l*!, [9]

where we may assume l1 # l2 # l3. In Appendix 1 we show that,
provided l* # l3, the monomorphic equilibrium is locally
stable if F(1) , 0 and locally unstable if F(1) . 0.

Norms of Reaction and Evolutionarily Stable Strategies
(ESS)

Each genotype Ai is defined by its norm of reaction specified
by bir, bis. A genetic monomorphism in A1 will be evolutionarily
stable (17, 18) if the parameters b1r and b1s are such that A2
cannot invade whatever the values of b2r and b2s.

Our first major result is that a fully internal norm of
reaction—i.e., 0 , b1r, b1s , 1—cannot be an ESS. The proof,
which is detailed in Appendix 2, relies on small perturbations
of the parameters. Set b2r 5 b1r 1 j and b2s 5 b1s 1 h, where
j and h are small. Then l* , l3 in which case linear stability
is assured if and only if F(1) , 0. In general, the expansion of
F(1) will take the form

F~1! 5 cjj 1 chh 1 cjjj
2 1 cjhjh 1 chhh2 1 third order terms.

[10]

For a fully internal norm of reaction to be an ESS, we require
the linear terms cj 5 ch 5 0 and the quadratic form to be
negative definite. However, as shown in Appendix 2, cjj 5 0,
whence cjjchh 2 (cjhy2)2 # 0 and, even if cj 5 ch 5 0, the
quadratic form is not negative definite.
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Thus, for any norm of reaction with 0 , b1r, b1s , 1, there
is always another norm of reaction b2r, b2s that can invade.
Under the reasonable assumption that b1r # b1s, an evolution-
arily stable norm of reaction entails b1r 5 0 andyor b1s 5 1.

Norms of Reaction with b1r 5 0

In view of the often-made claim that avoidance of sib mating
is innate, the case b1r 5 0 deserves special attention. When b1r
5 0, we have Ŝ11 5 0 and T̂ 5 Ŵ 5 1 at the genetic
monomorphism. (If, in addition, h 5 0 and b1s 5 1, the unstable
equilibrium Ŝ11 5 1 also exists.) From Eqs. 8a and 8c, because
l* 5 (1 2 d)2(b1s 1 2b2s)y6 , 1y2 and m* 5 (2 2 b2r)y2 $ 1y2,
we have l* , l3. Hence, linear stability of Ŝ11 5 0 to invasion
by A2 is determined by the sign of

F~1! 5 2 ~b2ry8!$4@1 2 ~1 2 d!2~b1s 1 b2s!y4#

z @1 2 ~1 2 d!2b2s# 2 ~1 2 d!@2 2 b2s~1 2 dh!#

z @3 2 ~1 2 d!2~b1s 1 2b2s!y2#}. [11]

Notice first that b2r does not affect stability provided it is
positive. Here we assume b2r . 0, reserving the analysis of the
case b2r 5 0 for the next section. Second, a norm of reaction
of the form b1r 5 0, b1s $ 0 will be an ESS only if F(1) , 0 for
all b2s. Rewrite Eq. 11 as

F~1! 5 2 ~b2ry8!C~b2s!, [12a]

where

C~b2s! 5 6~d 2 1y3! 2 d~1 2 d!2b1s 1 d~1 2 d!@22~1 2 d!

1 3~1 2 h!#b2s 1 ~1 2 d!3@1 2 d 2 d~1 2 h!#

z b1sb2sy2 2 d~1 2 d!3~1 2 h!b2s
2 . [12b]

Hence, C(b2s) is linear in b2s if h 5 1 and takes the form of a
quadratic that is convex upward if 0 # h , 1. In either case,
C(b2s) . 0 [F(1) , 0] for 0 # b2s # 1 if and only if C(0) . 0
and C(1) . 0.

In particular, from the requirement that C(0) . 0, a
necessary condition for evolutionary stability of b1r 5 0 is

6~d 2 1y3! 2 d~1 2 d!2b1s . 0. [13]

Hence, for a given value of d . 1y3, inequality 13 is more likely
to be satisfied the smaller is the value of b1s, i.e., the narrower
is the norm of reaction.

In Fig. 1 we graph the minimum values for d for which the
two extreme cases, b1r 5 b1s 5 0 and b1r 5 0 with b1s 5 1, will
be evolutionarily stable (subject to the condition b2r . 0). The
horizontal axis measures h. For intermediate values of b1s we
have a family of nonintersecting curves that lie between these
two curves. The dependence on h and b1s is not pronounced,
and we see that the norm of reaction b1r 5 0 with b1s 5 1 can
be an ESS if d . 0.4. If the inbreeding depression from sib
matings in humans has consistently exceeded 40%, then a wide
norm of reaction, i.e., a large difference (b1s 2 b1r), may have
evolved. Based on Seemanová’s study (19) of nuclear family
incest, Durham (20) estimates the inbreeding depression re-
sulting from death plus major defect to be about 45%.

Case of b1r 5 b2r 5 0

Recall that the norm of reaction we consider in this paper is
defined by the pair of probabilities, bir and bis. We showed in
the previous section that any norm of reaction with b1r 5 0 can
be stable against all alternatives that satisfy the restriction b2r
. 0. To complete the analysis, let us consider the fate of
mutants with b2r 5 0. In other words, when two strategies are

both characterized by bir 5 0 differing only in bis, which will do
better?

From Eq. 11 we expect that the dominant eigenvalue will be
one, necessitating a second order analysis. This is outlined in
Appendix 3. Applying the method of Nagylaki (21), we obtain
the interesting result that, even to second order, the genetic
monomorphism in A1 is neutrally stable. Hence, natural se-
lection on the alternative norms will be very weak, and
transitions may occur by random drift. In particular, a wide
norm of reaction is just as likely to evolve as a narrow one.

Norms of Reaction with b1s 5 1

A norm of reaction with b1r 5 0 implies no sib matings at
equilibrium. However, sibling incest is in fact observed at low,
but nonnegligible, frequencies in modern human societies.
Because sibling incest is rare, we should consider the evolu-
tionary stability of norms of reaction with b1r small. To this
end, expand the characteristic polynomial Eq. 8b evaluated at
l 5 1 in powers of b1r, giving

F~1! 5 2 ~b2ry8!C̃~b2s! 1 ~b1ry8!@C̃~b2s! 1 c1~1 2 b2s!

1 c2b2r# 1 o~b1r!, [14]

where C̃(b2s) is given by Eq. 12b with b1s set equal to 1, and c1
and c2 are functions of the parameters.

Evolutionarily stability obtains when F(1) , 0 for all b2r and
b2s. However, from Eq. 14 this cannot occur: If C̃(b2s) , 0 for
some b2s, then F(1) . 0 for sufficiently large b2r. If C̃(b2s) .
0 for all b2s, then F(1) . 0 when b2r 5 0 and b2s 5 1. From Eq.
12b, we see that C(b2s) can vanish at most twice for b2s in [0,1].
Hence, we conclude that a strategy with b1r small and b1s 5 1
cannot be an ESS.

On the other hand, numerical work suggests that a norm of
reaction where b1r is large can be evolutionarily stable to all
alternative strategies that satisfy b2s , 1. When b2s 5 1, this
norm of reaction is neutrally stable to second order. An

FIG. 1. The curves labeled b1s 5 0 and b1s 5 1 give the minimum
values of the inbreeding depression, d, for which the two norms of
reaction b1r 5 b1s 5 0 and b1r 5 0 with b1s 5 1 will be evolutionarily
stable against all alternatives that satisfy b2r . 0. The horizontal axis
measures the probability, h, that an incestuous female mates with an
unrelated male when her brother dies. For intermediate values of b1s,
there is a family of nonintersecting curves that lie between these two
curves. The curve labeled b1s 5 0 meets the d axis at 1/3.
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example of such a norm of reaction is b1r 5 0.5 and b1s 5 1
when d 5 0.2 and h 5 0. However, in this case the frequency
of sib matings at equilibrium is predicted to be one, which is
unrealistically high.

Discussion

In our model, if bir 5 bis the female’s mating preference is
completely determined by her genotype. The particular case bir
5 bis 5 0 corresponds to innate avoidance of brother–sister
mating. On the other hand, if bir , bis parental mating behavior
directly affects mate choice by their daughter. In particular, if
bir 5 0 and bis 5 1 then we can say that mate choice is culturally
determined.

A norm of reaction provides for phenotypic plasticity of a
genotype in a range of environments. Sensitivity to variation in
parental mating type may then be regarded as a norm of
reaction mediated by cultural transmission. In our model the
norm of reaction for genotype Ai is defined by the pair bir, bis.
It is natural to refer to the difference bis 2 bir as the width of
this norm.

We have attempted to identify parameter sets b1r, b1s that are
unbeatable by any alternative set b2r, b2s. Although there are
no norms of reaction that are truly evolutionarily stable, the
approach has proved informative. First we showed that a fully
internal norm of reaction 0 , b1r, b1s , 1 cannot be an ESS.
On the reasonable assumption b1r # b1s (otherwise a daughter
is more likely to be incestuous when her parents are unrelated
than when they are themselves incestuous), evolutionary sta-
bility entails b1r 5 0 andyor b1s 5 1. Next we showed that a
norm of reaction where b1r is positive and small with b1s 5 1
can also be rejected. Hence, the remaining candidates for an
unbeatable parameter set are (i) b1r 5 0 with b1s arbitrary; and
(ii) b1r positive and large with b1s 5 1.

Concerning alternative ii, numerical work suggests that the
norm of reaction b1r positive and large with b1s 5 1 may be
evolutionarily stable. However, the only cases we have been
able to identify entail an equilibrium frequency of one for sib
matings. Even if we introduce forms of cultural transmission
other than the vertical (parent–offspring) assumed here (22),
it would seem difficult to reduce the predicted frequency to the
low levels observed in most societies past and present.

A norm of reaction where b1r 5 0 may be evolutionarily
stable against all alternatives that satisfy b2r . 0. Here, the
other parameter defining the norm, b1s, may take any value
between 0 and 1. In Fig. 1 we graph the minimum values of the
inbreeding depression, d, for which the two extreme cases, b1r
5 b1s 5 0 and b1r 5 0 with b1s 5 1, are evolutionarily stable.
For intermediate values of b1s, we have a family of noninter-
secting curves that lie between these two curves.

When d is sufficiently large and h is relatively small—e.g., if
d . 0.358 and h , 0.617, any such norm of reaction will be
evolutionarily stable (subject to the condition b2r . 0). For
smaller d or larger h, Fig. 1 shows that a small value of b1s is
more likely to produce evolutionary stability. Note that a norm
of reaction where b1r 5 0 and b1s is small involves relatively
strong genetic determination of inbreeding avoidance, whereas
if b1r 5 0 and b1s is large, there is a significant cultural
component in the determination of the daughter’s preference.
There is no theoretical reason to prefer one norm over the
other on the basis of our model, although the latter norm
seems more realistic because human mate choice is sensitive to
cultural pressures. That the former will evolve in a larger
region of the space of parameters d and h is consistent with the
proposal of Cavalli-Sforza and Feldman (23) that genetic
determination will usually prevail over the cultural.

With this norm of reaction, regardless of the value of b1s, the
frequency of sib mating will converge to zero at the gene–
culture coevolutionary equilibrium. In particular, if b1s . 0,

individuals are genetically capable of sib mating, but do not
because of cultural pressures.

An interesting relation exists between the two norms of
reaction b1r,b1s, and b2r,b2s, where b1r 5 b2r 5 0 but b1s and b2s
differ. Both are neutrally stable to second order to invasion by
the other. In fact, numerical iteration of Eq. 4 reveals that the
subspace R11 1 R12 1 R21 1 R22 5 1 is neutrally stable. Hence,
two such norms of reaction may coexist, implying a genetic
polymorphism in the probability that a daughter from a
brother–sister union will herself be incestuous. Moreover, in a
finite population transitions between the two norms may occur
by random drift.

We now argue that the norm of reaction, b1r 5 0 with b1s .
0, may be consistent with the known facts and suggest a way in
which this may be tested. First, in apparent contradiction, sib
matings are observed at low, but nonnegligible, frequencies in
modern societies. However, nuclear family incest often in-
volves the mentally retarded (19), so that this is unlikely to be
an evolved response. Second, about one-sixth of all marriages
in one region of Roman Egypt were between full sibs (13).
These socially recognized unions were recorded in the census
documents and persisted for several centuries before the
custom eventually disappeared. Hence, the institution is best
regarded a transient phenomenon, initiated by forces extra-
neous to our model. We may be able to test our prediction of
b1s . 0 (or, for example, that incest results from being
homozygous for a recessive gene) if sufficient trans-
generational data are available. If b1s . 0, brother–sister
marriages should occur recurrently in the descendants of an
incestuous pair. What is transmitted vertically may not be an
‘‘inbreeding meme,’’ but rather economic circumstances that
favor sib mating. However, the result will be the same. If b1s 5
0, on the other hand, occurrence of sib mating should be
sporadic. Third, the norm of reaction b1r 5 0 with b1s . 0
cannot be an ESS unless the inbreeding depression, d, exceeds
1y3. As noted above, Durham’s (20) estimate of d based on
Seemanová’s (19) data is about 45%. However, this estimate
combines the effects of mortality and morbidity, on the
assumption that serious abnormalities are the equivalent of
death. The inbreeding depression as computed from differen-
tial mortality alone is about 10%.

Ralls et al. (24) estimated inbreeding depression in 38
captive species of mammals. As measured by survivorship to a
specified age, the average inbreeding depression for sib mat-
ings is 33%. They suggest that, under natural as opposed to
captive conditions, the cost of inbreeding may be exacerbated.
In the case of humans, it is arguable whether inbreeding
depression would have been more severe without modern
medical care. Although this seems likely, reproductive com-
pensation coupled with selective infanticide of malformed
children would partly reduce the disparity in the number of
surviving children. We conclude that the inbreeding depres-
sion for sib matings may have been about 45% during most of
history and prehistory, if serious congential abnormalities
resulted in death, infertility, or the inability to mate.

Finally, a few words on the incest taboo. Why sex and
marriage within the nuclear family are prohibited by custom,
rule, or law is a major conundrum that continues to puzzle
anthropologists, and even some jurists (ref. 25; see also ref. 20
for a recent review). The present paper only scratches the
surface of the problem, but we believe that it suggests one
direction in which a solution may be sought. In the context of
a gene–culture coevolutionary model, the establishment of an
incest taboo may be equated with the spread of an ‘‘outbreed-
ing meme.’’ The meme spreads in our model because of
evolved biases in cultural transmission and natural selection
against inbred offspring. There is no need to invoke rational
choice based on a realization of the deleterious consequences
of inbreeding.
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Appendix 1

Our demonstration assumes that in Eq. 9 we have the strict
inequalities 0 , l1 , l2 , l3, but the proof can be generalized.
From Eq. 8e, T̂ $ (1 2 d)2. Hence, two of the li’s have the
bounds

0 # ~1 2 d!2~b1s 1 b2s!y~4T̂! # 1y2, [A1-1]

0 # ~1 2 d!2b2syT̂ # 1, [A1-2]

and l* has the bounds

0 # ~1 2 d!2@b1rb2s 1 b2r~b1s 1 2b2s!#y

z @2T̂~b1r 1 3b2r!# # 1y2. [A1-3]

We wish to prove that the dominant eigenvalue, which is
positive, is less than unity if F(1) , 0, and is greater than unity
if F(1) . 0. Consider three cases. First assume l* # l1. Then
F(l) . 0 in the interval l2 # l # l3, where l2 # 1 from Eqs.
A1-1 and A1-2. Moreover, F0(l) 5 2 [(l1 2 l) 1 (l2 2 l) 1 (l3
2 l)] , 0 for l $ l3. Hence, F(l) intersects the l-axis only
once when l . l3. Next, if l1 , l* # l2, then F(l1) , 0 #
F(l2) and we also have l1 , l2 # 1. Similarly, if l2 , l* #
l3, then F(l1) , 0 # F(l*) where l1 , l* # 1y2. In all cases,
therefore, if l* # l3, then the largest root of F(l) is less than
unity if F(1) , 0 and greater than unity if F(1) . 0. It is clear
that if l* . l3 and F(1) . 0, the largest eigenvalue is greater
than unity.

Appendix 2

Set

b2r 5 b1r 1 j, b2s 5 b1s 1 h, [A2-1]

where j and h are small. Then l* ' (1 2 d)2b1sy(2T̂) , (1 2
d)2b1syT̂ ' (1 2 d)2b2syT̂, which implies l* , l3. Substitution
of Eq. A2-1 and l 5 1 in Eq. 8b yields

F~1! 5 @~1 2 d!2b1sy~2T̂! 2 1 1 ~1 2 d!2hy~4T̂!#

z @~1 2 d!2b1syT̂ 2 1 1 ~1 2 d!2hyT̂#

z @$~1 2 d!@2 2 b1s~1 2 dh! 2 b1r#Ŝ11

1 2~1 2 b1r!R̂11%y~2T̂Ŵ! 2 1 2 jy~2T̂!#

1 ~1 2 d!y~8T̂2!@$2~1 2 d!@1 2 b1s~1 2 dh!#Ŝ11

1 @2 2 b1r 2 b1s~1 2 dh!#R̂11%yŴ

2 ~1 2 dh!h#z $4b1r@1 2 ~1 2 d!2b1sy~2T̂!#

1 3@1 2 ~1 2 d!2b1sy~2T̂!#j 2 @3~1 2 d!2b1ry

z ~2T̂!#h 2 @~1 2 d!2yT̂#jh%. [A2-2]

Expanding Eq. A2-2 in j and h, there is no j2 term. Hence, cjj

5 0 in Eq. 10.

Appendix 3

Expansion of Eq. 4 in the small variables S11, S12 1 S21, S12 2
S21, S22, R12 1 R21, R12 2 R21, and R22 yields the local stability
matrix:

M 5

p

0
0
0
0
0
0

p

p

p

p

p

p

0

0
0
0
0
0
0
0

0
0
0
p

p

p

0

0
0
0
0
1
0
0

0
0
0
0
0
0
0

0
0
0
0
2
0
0

. [A3-1]

The asterisks indicate nonnegative terms. In particular, the
three diagonal asterisks are less than unity, whence the dom-
inant eigenvalue one is nondegenerate.

The right eigenvector corresponding to this dominant eig-
envalue (0,0,0,0,1,0,0)T, where T denotes the transpose. Hence,
according to the method of Nagylaki (21) we need consider
only the terms in (R12 1 R21)2 among the second-order terms.
Such terms appear in the expansions of (R12 1 R21)9 and R22

9 ,
where they contribute 2(R12 1 R21)2y2 and (R12 1 R21)2y4,
respectively.

Next, the left eigenvector corresponding to the eigenvalue
one is

~0, p, 0, p, 1, 0, 2!, [A3-2]

where the asterisks here indicate positive terms. Then the
product of the vector of second order terms and Eq. A3-2
vanishes. Thus, if b1r 5 b2r 5 0, then to second order, the
genetic monomorphism in A1 is neutrally stable to the intro-
duction of A2.
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