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ABSTRACT The origin of the high pathogenicity of an emerging avian influenza H5N1 due to the –RRRKK– insertion at the
cleavage loop of the hemagglutinin H5, was studied using the molecular dynamics technique, in comparison with those of the
noninserted H5 and H3 bound to the furin (FR) active site. The cleavage loop of the highly pathogenic H5 was found to bind strongly
to the FR cavity, serving as a conformation suitable for the proteolytic reaction. With this configuration, the appropriate interatomic
distances were found for all three reaction centers of the enzyme-substrate complex: the arrangement of the catalytic triad,
attachment of the catalytic Ser368 to the reactive S1-Arg, and formation of the oxyanion hole. Experimentally, the –RRRKK– insertion
was also found to increase in cleavage of hemagglutinin by FR. The simulated data provide a clear answer to the question of why
inserted H5 is better cleaved by FR than the other subtypes, explaining the high pathogenicity of avian influenza H5N1.

INTRODUCTION

Proteolytic activation of the hemagglutinin (HA) is essential

for viral infectivity and for spread of the avian influenza virus

through the host’s body (1–3). This process is determined by

a cleavage reaction at the HA cleavage site, a conserved ar-

ginine, by host proteases (4–6). Insertion of the –RRRKK–

residues into the low pathogenic avian influenza (LPAI)

cleavage site is known to potentially activate infectivity of

viruses, i.e., the LPAI viruses, which then become high

pathogenic avian influenza (HPAI) viruses, allowing highly

virulent strains to be cleaved by furin (FR), an ubiquitously

expressed protease. The goal of this study is to understand

why FR cleaves the inserted hemagglutinin strains better than

the noninserted strains.

The HA is synthesized initially as an inactive precursor

(HA0) that is then activated through a controlled proteolytic

cleavage by protease into HA1 and HA2 subunits. HA1

mediates virus binding to host-cell receptors whereas HA2

promotes the release of the viral RNA complexed with poly-

merase through membrane fusion (1–6). Without proteolysis,

the fusion peptide cannot occur and therefore the virus is

essentially noninfectious.

The HA cleavage site relies on the presence of basic amino

acids and relates directly to influenza virus pathogenicity, i.e.,

the LPAI viruses possess a single arginine at the cleavage site,

while the HPAI viruses containing the polybasic insertion

upstream of the cleavage site of the H5 subtype have potential

to cause devastating pandemics in the future (3,7). In addition,

in vitro cleavage of a series of peptide substrates showed that

the insertion of the –RRRKK– residues at cleavage site led to

an increase in cleavage by FR protease (2,8,9).

FR, a subtilisin-like serine endoprotease, seems to be a

highly specific enzyme, cleaving pro-protein precursors at

specific consensus sequence –RXK/RR–, usually to produce

biologically active products (10–15). Based on the x-ray

structure of mouse FR complexed with the dec-RVKR-cmk

inhibitor, the catalytic ability of FR is considered to have

originated from the catalytic triad residues (Ser368, His194,

and Asp153) and the oxyanion hole (formed by the carbo-

xamide nitrogens of Asn295 and backbone nitrogen of Ser368

to carbonyl oxygen of the inhibitor/substrate’s centered ar-

ginine) at the active site (12). The proposed cleavage

mechanism is shown in Fig. 1 (16,17).

This work seeks the source of high pathogenicity in avian

influenza A virus subtype H5 in comparison with LPAI

subtypes H5 and H3. Three molecular dynamics simulations

were carried out for the three complexes, HPH5–FR, LPH5–

FR, and LPH3–FR. The investigation was focused to intra- and

intermolecular interactions and geometries of the substrate-

furin complex potentially involved to the cleavage mecha-

nism.

METHODS

Initial structure of individual protein
and substrates

The crystal structure of FR with bound dec-RVKR-cmk inhibitor (12) used

as receptor model for MD simulations was obtained from Protein Data Bank

(PDB), code: 1P8J. This study covers the loop of HA substrate features of

subtypes H5 (both HPAI and LPAI) and H3 (known as LPAI). The sequence

of the HPAI subtype H5 isolated during the 2006 influenza outbreaks in

Thailand was taken from Genbank LOCUS ID ABK13784 (A/chicken/

Thailand/PC-168/2006(H5N1)) (18). The sequence of the LPAI subtype H5

was obtained from Protein Data Bank (PDB entry code: 1JSM) (19).

The initial model for the HPAI_H5 loop (RERRRKKRGL) was built up

using the sequence alignments and the atomic coordinates of the x-ray
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structure (residues 322–331: NVPEKQTQGL) of the HA0 of H3 (PDB entry

code: 1HA0) (20) and dec-RVKR-cmk inhibitor of FR (12) as a template, by

using the homology module in the Insight II program (Accelrys, San Diego,

CA) (21). The Needleman-Wunsch algorithm (22) was used for pairwise

alignment to identify the correspondence region. The coordinates of the

structurally conserved regions (SCRs) of the template —in which amino acid

sequences in the template and the model are identical—were copied to be

those of the model. In addition to the similar SCRs, only the backbone co-

ordinates were replicated and the side chain atoms were added in a manner

that preserves the residue type of the model protein.

For LPAI subtype H5, the initial structure of the cleavage loop

(NVPQRETRGL) (19) was constructed using the backbone atoms of the

HPH5 loop built previously. The side chains were generated by the LEaP

module of AMBER 7 (23). With this module, the H3 loop above was mutated

at residue 329 from glutamine (Q) to arginine (R).

Initial structure of enzyme-substrate complexes

The cleavage loop of HA complexed with FR was generated by the following

procedures (Fig. 1): i), all HA heavy atoms of S1–S4 were superimposed

with the crystal structure of the dec-RVKR-cmk inhibitor whereas the HA

backbone atoms of S5–S8 and S19–S29 were superimposed with the HA0

loop of H3. The coordinates of S1–S4 residues were changed according to

the –RVKR– coordinates of inhibitor leading to a newly formed confor-

mation of the HA loop; ii), this loop was then placed manually into the FR

active site by superimposition between the –R_KR– residues of the HA loop

and the dec-RVKR-cmk with a creation of the furin-substrate complex; iii),

the complex was minimized by keeping the S1–S4 residues and the FR fixed;

and iv), finally, three steps of the restrained MD simulations at 298 K were

carried out for relaxing the modeled systems with the restrain factors of 10, 5,

and 2.5 kcal mol�1�Å2 for 200 ps, 200 ps, and 200 ps, respectively. There-

fore, the conformation of each cleavage loop was adapted (from the initial

model) to fit better with the FR cavity. The last snapshot obtained from re-

strained MD procedure was used as the starting structure of the substrate-

enzyme complex for the next MD simulations with all atoms allowed to

move freely for 2 ns.

Molecular dynamics simulations

Three MD simulations for the HA cleavage loop complexed with furin,

HPH5–FR, LPH5–FR, and LPH3–FR, were carried out where their initial

structures were generated as described above. The simulated systems were

neutralized by 6, 11, and 11 Na1 ions and solvated by TIP3P water molecules

leading to total atoms of 54,500, 56,663, and 56,667 for the HPH5–FR,

LPH5–FR, and LPH3–FR complexes, respectively. The dimensions of the

obtained simulation boxes for the three systems are 86 Å 3 90 Å 3 88 Å. The

periodic boundary condition with the NPT ensemble was used. Energy

minimization and MD simulations were carried out using the SANDER

module of AMBER 7 (23) with the Cornell force field (24). A Berendsen

coupling time of 0.2 ps was used to maintain the temperature and standard

FIGURE 1 (A) Proposed cleavage mechanism of HA by

furin and definitions of d1–d6. (B) Loop of HPAI H5 (ball

and stick model) in the electrostatic surface of furin.
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pressure of the system (25). The SHAKE algorithm (26) was applied to

constrain all bonds involving hydrogens. The simulation time step of 2 fs was

used. All MD simulations were run with a 12 Å residue-based cutoff for

nonbonded interactions and the particle mesh Ewald method was used for an

adequate treatment of long-range electrostatic interactions (27). The MD

simulations were carried out for 2.0 ns where the production phase starts

from 0.75 ns to 2.0 ns. The convergences of energies, temperature, pressure,

and global root mean-square displacement (RMSD) were used to verify the

stability of the systems. The MD trajectories were collected every 0.2 ps.

Analysis of all MD trajectories, i.e., RMSD, distances, hydrogen bonds, etc.,

were carried out using the Ptraj, CARNAL, and MMGB/SA modules of

AMBER 7.

RESULTS AND DISCUSSION

Overall enzyme-substrate structure

To monitor the stability of the three simulated systems,

HPH5–FR, LPH5–FR, and LPH3–FR, RMSD of the struc-

tures obtained during the 2 ns MD simulations relative to the

initial structure of all heavy atoms in the substrate-enzyme

complex and the 10 residues of HA substrate were evaluated

and plotted in Fig. 2. It can be seen from the plot of RMSD

plots versus simulation time that all three systems were found

to reach equilibrium at 0.75 ns.

Enzyme-substrate conformation

The main results refer to the schematic representation shown

in Fig. 1 where the conformation structures of the complexes

are described in terms of d1–d6 (Fig. 3) in which the reaction

coordinates involved in the acylation in three regions, the

catalytic triad of FR, nucleophilic attack, and oxyanion hole,

were described by the d1–d3, d4, and d5–d6, respectively (Fig.

1). Accordingly, percentage H-bond occupations were eval-

uated using the CARNAL module in AMBER7 based on the

following criteria: i), proton donor-acceptor distance #3.5 Å;

and ii), donor-H-acceptor bond angle $120�. The results

were summarized in Table 1.

At the catalytic triad (Asp153, His194, and Ser368) region of

the HPH5–FR, the simulated distances of d1 ¼ d2 ¼ d3 ¼
2.85 Å (Fig. 3) are comparable to those found experimentally

for the inhibitor-furin complex of 2.53 Å, 3.10 Å, and 2.95 Å,

respectively (12). This indicates that the three catalytic resi-

dues, Asp153, His194, and Ser368, are in the configuration

suitable for initiating the nucleophilic reaction. The situation

is different for the bound LPAI, H5, and H3, hemagglutinin

loops, where only d3 of both systems and d1 of LPH5–FR fall

within the range whereby the reaction can take place.

The nucleophilic attack is determined by the distance be-

tween the O3-hydroxyl oxygen of Ser368 and the carbonyl

carbon of the S1-Arg, d4 in Fig. 1. The d4 bond-making

distances were found to be at 3.05 Å, 3.45 Å, and 3.75 Å for

the HPH5–FR, LPH5–FR, and LPH3–FR systems, respec-

tively (Fig. 3). In addition to a short d4, the detected sharp and

narrow peak was found only in the HPH5–FR complex,

signifying the rigidity of the complex that thus serves as a

more appropriate configuration for the nucleophilic attack. In

contrast, for the other two complexes the d4 peak shows a

broad distribution and takes place at significantly longer

distances.

At the oxyanion hole region of the FR active site (d5 and d6

in Fig. 1), the hole is generally formed by the backbone ni-

trogen of Ser368 and the carboxamide nitrogen of Asn295,

which specifically binds with the carbonyl group of the S1

reacting residue (12). In Fig. 3, the d5 distance of 2.95 Å

for the HPH5–FR (solid line) is slightly shorter than that of

3.15 Å for the LPH5–FR (dashed line) with the presence of a

strong hydrogen bond to Ser368, 100% and 86% occupations

(d5 in Table 1), respectively. The percentage occupation of

15% for the LPH3–FR confirms a very weak interaction and

highly flexible of the complex. This conclusion was also

confirmed by a broad distribution of d5 distance varying from

3.00 Å to 5.85 Å (Fig. 3). In terms of d6 distance, the dis-

tribution plot for the HPH5–FR complex shows two apparent

peaks centered at 2.85 Å and 5.45 Å where the sharper first

peak indicated a preferential interaction. For LPAI systems,

the d6 distance is detected at 3.05 Å in H3 whereas this dis-

tance is significantly longer in H5. This means that interac-

tion between S1 residue and Asn295 was almost lost in the

LPH5–FR system. The observed intermolecular distances

agree very well with the percentage pair of hydrogen bond

through the d5 and d6 in which those values (d5 ¼ 100% and

d6¼ 34%) for the HPH5–FR are higher than those (d5¼ 86%

and d6¼ 6%) for the LPH5–FR. On the contrary, bonding via

these two distances almost disappear for the LPH3–FR

complex. Note that the experimental d5 and d6 distances for

the inhibitor-furin complex are 3.34 Å and 2.78 Å, respec-

tively (12).

FIGURE 2 RMSDs relative to the initial structure for all

heavy atoms of the substrate-furin complexes (black) and

the HA loops (gray) for the three systems studied: HPH5–

FR, LPH5–FR, and LPH3–FR.
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H-bonds of the hemagglutinin loop

To assess to molecular interaction at the cleavage loop of

hemagglutinin, percentage, and number of hydrogen bond

between each HA residue and the active site residues of FR,

were evaluated and plotted in Fig. 4. The criteria used are the

same as those mentioned earlier. Here, the experimentally

detected hydrogen bonds for the inhibitor-furin complex (12)

were also given for comparison, the residue with a box

around the amino acid label. Interest was focused on S1-Arg

of HA and FR’s flat groove—a cavity formed by residues

Pro256, Asp258, Ala292, and Asp306. The latter was found to

play an important role in facilitating the cleavage reaction by

forming hydrogen bonds to the guanidinium side chain (Fig.

1) of P1-Arg of the inhibitor (12) (Si denotes a residue of the

substrate whereas Pi represents one of the inhibitors, where

i¼ 1, 2, 3, . . .) (28). Strong hydrogen bonds between the four

flat groove residues and S1-Arg were highly detected for the

HPH5–FR complex (S1 in Fig. 4). The cleavage reaction in

the HPH5–FR system was also promoted by the other hy-

drogen bonds from S1-Arg to Ser368 (two bonds, one of

which is d5 in Fig. 1) and Ser253 (one bond) of FR with almost

100% occupation. These observations are strongly supported

by the experimentally detected hydrogen bonds also shown

in Fig. 1. This is in contrast with LPH5–FR in which no

hydrogen bond with the flat groove was detected and only a

single bond with the catalytic Ser386 (d5 in Fig. 1) was

formed. The LPH3–FR loop shows much less interaction

with the FR residues, forming no hydrogen with either the flat

groove or the catalytic Ser368 residue.

Some comments could be made concerning the two hydro-

gen bonds formed between the reacting S1-Arg and the catalytic

Ser386 of HPH5–FR (Fig. 4). Besides the bond defined by d5,

another bond is S368_O3. . .NH_S1-Arg (71% occupation). This

hydrogen bond that has never been found in the oxyanion hole

region of any other HA subtype or in the inhibitor-furin com-

plex (12), could be a reason for the shortening and rigidity

(narrow and sharp peaks shown in Fig. 3) of the intermolecular

d4 distance, which could directly facilitate the nucleophilic re-

action in HPH5–FR.

Considering the role of the –RRRKK– insertion (Fig. 1),

more hydrogen bonds and a higher percentage occupation be-

tween the S2-S6 residues of HA and the surrounding residues

of FR (Fig. 4) were found for HPH5–FR in comparison with the

two LPAI systems. This means that the –RRRKK– insertion

can directly help to hold the substrate in place.

Taking into account all the hydrogen bond data given

above, the hemagglutinin loop of HPH5–FR is observed to

bind much more tightly into the catalytic site of FR than the

LPH5–FR and LPH3–FR systems.

Per residue enzyme-substrate interactions

To seek the fundamental basis of substrate-furin interactions,

the interaction energy between individual FR residue and

the three HA loops and vice versa were calculated using the

decomposition energy module of AMBER 7. Plots of the

decomposition energies (DC) of the HA residues, as well as

the selected FR residues that are located within 5 Å from the

10 residues of HA loop, were shown in Fig. 5. The overall

FIGURE 3 Distributions of the d1–d6 distances defined

in Fig. 1 for the three simulated systems, sampling from

0.75 to 2.0 ns in MD simulations.

TABLE 1 Percentage of hydrogen bond according to the

d1–d3 and d5–d6 distances defined in Fig. 1 for the three

simulated systems

Distance H-bond HPH5–FR LPH5–FR LPH3–FR

d1 D153_O1. . .HN1_H194 100 100 0

d2 D153_O2. . .HN1_H194 96 75 32

d3 H194_N2. . .HO3_S368 81 90 98

d5 S1-R_ Og . . . HN3_ S368 100 86 15

d6 S1-R_ Og . . . HN4_N295 34 6 34

S368_O3. . .HN_S1-R 71 10 0
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DCs of FR residues were observed in the following order:

HPH5–FR� LPH5–FR ; LPH3–FR (Fig. 5 B). For the HA

loops, the DCs for the residues of HPH5–FR are significantly

lower than for the corresponding residues of LPH5–FR and

LPH3–FR (Fig. 5 A). This is especially true for the S1, S4,

and S6 residues. The calculated results are consistent with

experimental results for the inhibitor-furin complex, which

stated that P1, P4, and P6 residues of the inhibitor were ob-

served to interact strongly with FR (11,29). In addition, these

two P4 and P6 residues are required to dramatically increase

the cleavage reaction (30). The DCs for the FR and HA

residues agree very well with the hydrogen bond data shown

(Fig. 4) and discussed above.

Solvation structure

Hydrophilicity that is determined by the ligand solution in the

cavity region of enzyme-substrate complex is known to play

an essential role in the catalytic mechanism of biological

systems. To seek this information, the plot of the radial dis-

tribution functions (RDFs, gxy(r))—the probability of finding

the particle of type y in a spherical radii, r, around the particle

of type x—was evaluated. Here, the RDFs from the acceptor

atoms of FR pocket (O1, O2:Asp153; N1, N2:His194;

N4:Asn295, and N3, O3:Ser368) and the reactive HA residue

(Og:S1-Arg) (see label in Fig. 1), to oxygen atom of water

was calculated. The results for the three simulated systems

are shown in Fig. 6 together with the corresponding running

integration numbers up to the first minimum of the RDF plot.

The RDFs for all oxygen atoms, O1, O2, O3, and Og, of the

LPH3–FR complex show sharp and narrow first peaks at

;2.9 Å with the integration number (coordination number,

CN) of 1.5, 1, 1 and 2 water molecules, respectively (Fig. 6).

The CN denotes the number of water molecules that locate

in the first hydration shell around the central atom. This is in

contrast for the LPH5–FR complex where only O2 can be

accessed by water molecule whereas no water was detected

around the four oxygen atoms of HPH5–FR.

The RDFs centered on N1 and N4 atoms of the three systems

are almost similar, the first broad peaks at ;3.8 Å and sharp

peaks at ;3 Å, respectively. Note that, N3 atom of only

LPH3–FR was solvated by water molecule. Interest is focused

FIGURE 4 Percent occupations of hy-

drogen bonds between furin and the ten

HA residues (defined in Fig. 1) where the

residues with a box around the label

represent experimentally detected bonds

for the inhibitor-furin complex.

132 Decha et al.

Biophysical Journal 95(1) 128–134



to N2 atom of His194 where the catalytic water was observed

and proposed to play role in the reaction mechanism of serine

protease (14). In good agreement with our simulated results,

one water (CN ¼ 1) was detected to preferentially coordinate

(first peak centered at ;2.9 Å) to N2 atom of only for the

HPH5–FR complex. This is not the case for the other two low-

pathogenic systems, LPH3–FR and LPH5–FR, where less

water, 0.5 and 0.2 were, respectively, was found (Fig. 6,

dashed and dotted lines). In addition, distance to the LPH3-FR

water molecule of ;3.45 Å is significantly longer than that of

the HPH5–FR complex.

Taking into account the solvation data shown above, the

number of overall water molecules around the selected central

atoms are in the following order: LPH3–FR . LPH5–FR .

HPH5–FR. The obtained data indicates that more water mole-

cules can take place in the catalytic pocket of FR in the complex

whose substrate does not fit well with the FR active site, giving a

subsequent result of more cavities or less binding between

substrate and enzyme. This suggestion agrees very well with the

conformational structures of the complexes (Fig. 3) and the

hydrogen bond data (Fig. 4) shown and discussed previously.

CONCLUSIONS

The technique of molecular dynamics simulations has been

applied to look for detailed information focused on the intra- and

FIGURE 5 Decomposition energies (DC) of (A) 10 HA

residues (defined in Fig. 1), and (B) selected furin residues

within 5 Å of those 10 HA residues.

FIGURE 6 Radial distribution functions, g(r), from ac-

ceptor atoms of furin catalytic residues and HA loops (see

Fig. 1 for definition) to oxygen atoms of water molecules

for the three simulated systems, HPH5–FR, LPH5–FR, and

LPH3–FR complexes.
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intermolecular interactions and geometries of the three sub-

strate-furin complexes, HPH5–FR, LPH5–FR, and LPH3–FR.

The results obtained from this study indicate that the

–RRRKK– insertion in the HPH5–FR (two arginines at S4 and

S6 positions in particular) helps to directly hold the HA

cleavage loop in place by forming many strong hydrogen bonds

between the residues of HA and FR. This data is well supported

by the corresponding strong-decomposition interaction ener-

gies and leads consequently to the accumulation of less water

molecules accessible to the FR cavity. An active conformation

of the HPH5–FR complex suitable for the acylation reaction by

FR was formed. In conclusion, the results from this study

provide a clear answer to the question of why HPAI hemag-

glutinin H5 is better cleaved by FR than the other two HA

subtypes.
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