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ABSTRACT Accurate force fields are essential for the success of molecular dynamics simulations. In apparent contrast to the
conformational preferences of most force fields, recent NMR experiments suggest that short polyalanine peptides in water
populate the polyproline II structure almost exclusively. To investigate this apparent contradiction, with its ramifications for the
assessment of molecular force fields and the structure of unfolded proteins, we performed extensive simulations of Ala5 in water
(;5 ms total time), using twelve different force fields and three different peptide terminal groups. Using either empirical or density-
functional-based Karplus relations for the J-couplings, we find that most current force fields do overpopulate the a-region, with
quantitative results depending on the choice of Karplus relation and on the peptide termini. Even after reweighting to match
experiment, we find that Ala5 retains significant a- and b-populations. In fact, several force fields match the experimental data well
before reweighting and have a significant helical population. We conclude that radical changes to the best current force fields are
not necessary, based on the NMR data. Nevertheless, experiments on short peptides open the way toward the systematic
improvement of current simulation models.

Received for publication 4 March 2008 and in final form 8 April 2008.

Address reprint requests and inquiries to Gerhard Hummer, NIH, LCP/NIDDK, Bldg. 5, Rm. 132, Bethesda,
MD 20892-0520; E-mail: hummer@helix.nih.gov.

Robert B. Best’s present address is Dept. of Chemistry, Lensfield Road, Cambridge CB2 1EW, UK.

Nicolae-Viorel Buchete’s present address is School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.

All-atom molecular dynamics (MD) simulations are a

powerful tool for the exploration and mechanistic interpre-

tation of biological phenomena at a molecular scale (1).

Nonetheless, longer simulation times and interest in the

unfolded states of proteins (2–4) and in natively unstructured

peptides (5,6) are uncovering deficiencies in the commonly

used energy functions, or ‘‘force fields’’ (7), stimulating

recent refinements of peptide backbone potentials (8–11).

Conventional force field development relies heavily on gas-

phase quantum chemical calculations and spectroscopic and

thermodynamic data for small molecules (7). Experimental

data for short peptides in solution would be a valuable

addition (12), even if those data are usually averaged over

heterogeneous equilibrium ensembles of structures (13,14).

Polyalanine is a well-established model for studies of

peptide conformation and helix formation (2,4,11,15–18).

An elegant recent study by Graf et al. (19) used scalar cou-

plings measured by NMR in a series of polyalanine peptides

(Ala3 to Ala7) to probe the distributions of backbone (f,c)

angles. Scalar couplings calculated from MD simulations

were in only modest agreement with experiment. However,

the simulation data could be reweighted by adjusting the

relative populations of the a-, b-, and polyproline-II (ppII)

regions of the Ramachandran map, with the implicit

assumption that the simulations give a reasonably accurate

sampling within each state. Remarkably, the reweighted

populations indicated that Ala3 to Ala7 almost exclusively

populate the ppII region of Ramachandran space with a small

population of the b-region and negligible a-population.

In view of the importance of this conclusion for future

force field development and structure in unfolded proteins

(2,4), we have revisited it, employing a large set of MD

simulation trajectories of polyalanine in explicit solvent at

300 K (4.9 ms total) (20,21). Details of the simulations are

available in Supplementary Material, Data S1.

Remarkably, the 12 force field variants employed differ

widely in their sampling of the Ramachandran space. Based

on the scalar coupling data, most force fields indeed have too

large a helical propensity. However, the quantitative results

are sensitive to i), the choice of Karplus relation; ii), the

protonation state; and iii), terminal blocking. Overall, we

conclude that the NMR data are consistent with force fields

that give a small helical population for Ala5, and do not

require exclusive formation of ppII structure.

We classified (f,c) space into ‘‘a’’ (–160 , f , –20 and

–120 , c , 50), ‘‘b’’ (–180� , f , –90� and 50� , c , 240�;

or 160� , f , 180� and 110� , c , 180�), ‘‘ppII’’ (–90�
, f , –20� and 50� , c , 240�), and ‘‘other’’ regions, based

on a set of f,c frequencies recently derived from the Protein

Data Bank (see Fig. S1 in Data S1). The more restrictive

definition of Graf et al. (19) truncates the a-region in

particular (see Fig. S1 in Data S1). The fraction of residues in

the ‘‘other’’ category was always ,0.5% except for the

Gromos force fields (;3%) and was combined with ppII in
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the subsequent analysis (note that omitting it altogether has a

negligible effect on the results).

We quantified the agreement between experimental

J-couplings and those calculated from unweighted simula-

tion trajectories via Karplus relations (22) using

x
2 ¼ N

�1+N

j¼1
ÆJjæsim � Jj;expt

� �2
=s

2

j ;

where ÆJjæsim is the average of coupling j from the simulation.

The set of N experimental couplings (19) Jj,expt includes
3JHNHa, 3JHNC’,

3JHaC’,
3JCC’,

3JHNCb (probing f), 1JNCa,
2JNCa (probing c), and 3JHNCa (probing both f and c) for

each of the five residues. sj is the estimated systematic error

in the couplings determined from the Karplus equation,

arising mainly from the neglect of substituent effects (23) in

the Karplus equation parameters (values and sources for sj

given in Table S4 in Data S1). Sampling errors in ÆJjæsim and

experimental errors in Ji,expt are relatively small and so were

not added to sj. We used the Karplus parameters of the

original article (19), and two additional sets, with parameters

determined from DFT calculations (24) on Ace-Ala-NMe

(DFT1) and Ala-Ala-NH2 (DFT2). These may be more

relevant to alanine, with its small side chain, than parameters

fitted after pooling data from different residue types.

The a-helical content for different force fields varies

between 13 and 98%, with high a-content resulting in poor

agreement with experiment (Fig. 1, Table 1, and Table S5

in Data S1). However, a range of force fields with 10–30%

a-content give a low x2 # 2; with the x2 definition used here,

this means the deviation from experiment is comparable to

the error sj. In general, simulations of zwitterionic peptides

or those with protonated C-termini resulted in lower x2 than

those for blocked peptides (see below).

To determine the secondary structure populations that give

the closest match with experiment, we adopt the procedure of

Graf et al. (19). Each trajectory frame of a simulation was

reweighted by a factor proportional to exp[�(naea1nbeb)],

where na and nb are the number of residues in the a-and

b-regions in that frame, and ea and eb are corresponding energy

corrections (in kBT units relative to ppII), which are chosen to

minimize x2. The secondary structure content after reweighting

is shown in Fig. 1 B, D, and F (optimal ea and eb are given in

Table S6 in Data S1). Using the Karplus parameters of

Graf et al. (19), we also find almost exclusively ppII structure

(Fig. 1 B). However, with the DFT1 and DFT2 parameter sets

(24), there is a balance between b and ppII structure, with a

small a-population (Fig. 1 D and F). Table 1 summarizes the

Ramachandran populations before and after reweighting for a

representative subset of the force fields.

FIGURE 1 Secondary structure populations. Ternary diagrams

on the left (A, C, and E) and right (B, D, and F) show the relative

populations before and after reweighting for (A and B) the

original Karplus parameters (19), (C and D) DFT1, and (E and F)

DFT2 (24), respectively. Symbol areas are proportional to 1/x2:

(blue) blocked termini, (red) zwitterionic, (yellow) protonated

C-terminus without ions, (green) protonated C-terminus with

ions. Arrows indicate the direction in which each axis should be

read, and colors indicate the corresponding scale and isolines.

TABLE 1 Ramachandran populations for Ala5, before and after reweighting, for some representative force-fields (a full list is

available in Data S1)

Unweighted Reweighted

Time

(ns)

x2 Populations DFT1 DFT2 Orig

FORCE-FIELD DFT1 DFT2 ORIG % a % b x2 % a % b x2 % a % b x2 % a % b

Amber03* 120 1.8 1.5 1.6 33.0 30.7 1.4 11.0 39.9 0.8 8.0 24.5 0.3 6.6 5.3

Amber99SB 120 4.2 4.9 4.2 19.7 55.5 1.7 14.4 31.0 1.0 11.7 18.3 0.6 7.3 6.9

AmberGS 80 5.2 2.8 1.9 45.8 9.8 1.5 3.2 47.5 1.0 4.2 32.6 0.7 3.7 14.8

CHARMM27/cmap* 80 2.0 2.0 2.2 41.5 25.3 1.3 14.0 32.1 1.0 14.1 18.7 0.9 11.4 7.1

OPLS-aa/L* 80 1.8 2.0 2.0 30.9 33.5 1.5 10.0 42.0 1.1 7.7 22.3 0.4 5.2 3.9

Gromos53a6 80 1.8 2.3 2.3 13.5 50.2 1.4 3.4 41.6 1.0 3.1 21.3 0.6 2.5 5.3

Gromos43a1* 80 1.4 1.4 1.6 14.0 41.2 1.2 2.4 40.8 0.7 2.3 23.7 0.5 2.6 8.6

In these simulations, the peptides were protonated at both termini (net charge 11).

*Force fields with x2 # 2.25 before reweighting, corresponding to deviations from experiment up to 1.5 sj on average.
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Terminal effects on helical propensity are significant for

short peptides (12), one reason being that the terminal charges

at neutral pH oppose the helix dipole. We have quantified this

effect by using pairs of simulations: one of a blocked peptide

and the other of a C-terminally protonated peptide, both using

the same force field. We optimize ea and eb for the protonated

molecule, which corresponds to experiment, and reweight the

blocked molecule with the same values. The results (Fig. 2)

show that blocking tends to favor a-structure over ppII; part of

the reason for the low helicity reported by the NMR data is

likely the use of uncapped peptides with protonated C-termini.

The widely varying secondary structure propensities of

polyalanine in different force fields (17) (Fig. 1) demonstrate

the need for ongoing force field development. Although we

find that, in general, current force fields overestimate a-structure,

those that best match the experimental J-couplings have a

significant a-helical fraction. For force fields for which x2 # 2

before reweighting (Table 1), the helical fraction varies be-

tween14%and33%(unweighted)and2%and11%(reweighted).

We also find that terminal blocking significantly increases the

a-content of Ala5. With the same weight factors as for the

unblocked peptide, the helical population of blocked peptides

is between 12% and 23%. Lastly, the choice of Karplus equa-

tion parameters affects the results. Residue-specific parame-

ters for Karplus equations should improve the accuracy of

structural information obtained from scalar couplings (24),

which would make them useful in force field refinement.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.
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FIGURE 2 Secondary structure populations for C-terminally

protonated (blue) and blocked (red) peptides after re-weighting

using (A) the original Karplus equation (19), (B) DFT1, and (C)

DFT2 (24). Axes are as in Fig. 1.
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